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ABSTRACT

Accurate segmentation of airways from chest CT scans is
crucial for pulmonary disease diagnosis and surgical navi-
gation. However, the intra-class variety of airways and their
intrinsic tree-like structure pose challenges to the develop-
ment of automatic segmentation methods. Previous work
that exploits convolutional neural networks (CNNs) does
not take context scales into consideration, leading to perfor-
mance degradation on peripheral bronchiole. We propose
the two-step AirwayNet-SE, a Simple-yet-Effective CNNs-
based approach to improve airway segmentation. The first
step is to adopt connectivity modeling to transform the bi-
nary segmentation task into 26-connectivity prediction task,
facilitating the model’s comprehension of airway anatomy.
The second step is to predict connectivity with a two-stage
CNNs-based approach. In the first stage, a Deep-yet-Narrow
Network (DNN) and a Shallow-yet-Wide Network (SWN)
are respectively utilized to learn features with large-scale
and small-scale context knowledge. These two features are
fused in the second stage to predict each voxel’s probability
of being airway and its connectivity relationship between
neighbors. We trained our model on 50 CT scans from public
datasets and tested on another 20 scans. Compared with state-
of-the-art airway segmentation methods, the robustness and
superiority of the AirwayNet-SE confirmed the effectiveness
of large-scale and small-scale context fusion. In addition, we
released our manual airway annotations of 60 CT scans from
public datasets for supervised airway segmentation study.

Index Terms— Airway segmentation, context scale,
voxel connectivity, convolutional neural networks

1. INTRODUCTION

Segmentation of airway tree from chest computed tomogra-
phy (CT) scans is indispensable for both pulmonary disease
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diagnosis and endobronchial navigation. Manual segmenta-
tion of airway tree is time-consuming due to its complex tree-
like structure with varying airway lumen size and lumen-wall
intensity contrast. To relieve radiologists from such strenuous
work, airway segmentation methods have been proposed [1,
2, 3, 4]. Most of them used region growing or filtering-based
techniques for tubular structure enhancement. The evaluation
results in [4] revealed that the performance of these meth-
ods degraded drastically on detecting small and thin periph-
eral bronchi. Besides, a large amount of leakage was ob-
served when the intensity contrast between airway wall and
lumen was low. More recently, convolutional neural networks
(CNNs)-based methods have been explored for airway extrac-
tion [5, 6, 7, 8, 9]. They adopted U-Net [10] or 3D U-Net
[11] as their backbone for segmentation in either a volume-
of-interest (VOI) tracking way or a sliding window manner.
Moreover, graph-based methods such as fuzzy connectedness
segmentation (FCS) [7] and graph neural networks (GNNs)
[12] have been combined with CNNs for post-refinement.

Although deep learning approaches achieved superior per-
formance, there still remain challenges to be solved. First, the
intensity distribution of airways is quite different among tra-
chea, primary bronchus, secondary bronchus, and peripheral
bronchiole (see Fig. 1). The intensity contrast between lu-
men and wall is clear at trachea regions, but becomes weaker
as the airway bifurcates into smaller branches. The airway
wall is much thinner and darker at bronchiole regions. Sec-
ond, the scale of context is dissimilar for segmentation on
large and small bronchi. The context refers to the feature in-
formation that describes the mutual relationship between air-
ways and background. To extract trachea and main bronchus,
large-scale context is preferred for the model to perceive the
main body with large field-of-view. On the contrary, for seg-
menting bronchiole, context of close neighborhood is enough.
Third, for CNNs architecture, the number of pooling layers
requires careful design. Features of thin bronchi, whose di-
ameters are usually only 2-3 voxels, are prone to vanish after
three times of pooling, making it difficult to reconstruct and
recover. However, for large bronchi, multiple pooling layers
are necessary to extract effective context. Furthermore, pub-



lic datasets with airway annotations are unavailable for model
training and fair comparison between different methods.
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Fig. 1. The intensity distribution of trachea (a), primary (b)
and secondary (c) bronchus, and peripheral bronchiole (d).
The scale of contexts needed for airway segmentation on (a)-
(d) is decreasing from large to small.

To address these gaps, we propose the two-step AirwayNet-
SE, a Simple-yet-Effective approach that incorporates two
different scales of context to comprehend large and small
airways, respectively. With 3-D connectivity modeling [9] in
the first step, the networks are trained to predict whether a
voxel is connected to its neighbors instead of directly clas-
sifying airway voxels. The AirwayNet-SE consists of one
deep-yet-narrow network (DNN) and one shallow-yet-wide
network (SWN). The DNN, with deeper layers yet smaller
number of channels per layer, aims at extracting features
of thick branches. Four pooling operations are used for the
model to be aware of the overall context of thoracic cavity.
While for the SWN, shallower layers with two pooling opera-
tions are adopted to prevent thin bronchi from vanishing. The
feature channels of SWN are widened to increase representa-
tion power. The second step is to predict connectivity using
two-stage CNNs. In the first stage, we respectively train our
DNN and SWN to learn effective features of large and small
bronchi. In the second stage, features from both DNN and
SWN are concatenated as the fusion of context knowledge
from two scales. Such fused features are utilised for all airway
connectivity prediction. Our contributions are summarised
as follows: 1) The AirwayNet-SE proposed a solution to the
conflict caused by the difference between large and small
airways. With connectivity modeling, it leveraged the fusion
of context knowledge from two scales to predict whether a
voxel is airway and connects to its neighbors. Our method
achieved the state-of-the-art Dice coefficient of 93.0% on 10
public scans and 88.7% on 10 private scans, respectively. 2)
We released the manual annotations of 60 public CT scans to
promote airway segmentation study that requires supervised
learning. To the best of our knowledge, this is the largest
publicly available dataset of airway annotations.

2. DATA

The experiment dataset contains 70 clinical thoracic CT scans
in total, with 60 public CT scans and 10 privately collected
CT scans. The acquisition and investigation of data were
conformed to the principles outlined in the declaration of

Helsinki [13]. We used 20 scans from the training set of
EXACT’09 [4] and 40 scans from LIDC-IDRI [14]. The
EXACT’09 only provides raw CT images without airway
annotation. The LIDC-IDRI (under Creative Commons At-
tribution 3.0 Unported License) includes 1018 scans with
pulmonary nodule annotations. In view of image quality,
40 scans whose slice thickness ≤ 0.625 mm are randomly
chosen. The 10 private CT scans were obtained from patients
with severe lung diseases such as emphysema and pneumonia.
The axial slices of all scans have the same size of 512×512,
with their spatial resolution in the range of 0.5–0.781 mm.
Their slice thickness varies from 0.45 to 1.0 mm.

For each CT scan, the ground-truth annotation of airway
lumen was obtained by: 1) using an interactive segmentation
method to generate a rough airway tree via ITK-SNAP [15];
2) manual correction and delineation by well-trained experts.
The annotations of 60 public CT scans are released to promote
further study of airway extraction using supervised learning
methods1. However, the 10 private CT scans and annotations
will not be made available online at the moment.

3. METHOD

The first step is to model each airway voxel’s connectivity.
The second step is to predict connectivity using two stages as
follows: 1) Feature learning with large-scale and small-scale
contexts, 2) Connectivity prediction based on fused contexts.

3.1. CT pre-processing

To avoid feature learning from irrelevant marginal area, a lung
mask extraction technique is employed to exclude invalid re-
gions. We first smooth each CT scan with a Gaussian filter
and binarise it with OTSU method. The connected compo-
nent analysis is performed to keep the largest two components
and remove holes. The convex hull of the components is then
computed to avoid under-segmentation. Finally, the voxel in-
tensity is truncated inside the window of [-1000, 600] (HU)
and normalised to [0, 1]. To reduce GPU cost, the bounding
box of lung field is extracted and cropped into overlapping
cubes using a sliding window technique. The size of each
cube is 32×240×240 and the sliding stride is [8, 64, 64].

3.2. Step 1: Connectivity modeling using binary labels

Given a voxel P = (x, y, z) in a 3-D volume of binary airway
label, its direct neighbor Q = (u, v, w) can be defined by:
d(P,Q) = max(|(x − u)|, |(y − v)|, |(z − w)|) ≤ 1. Since
each voxel has 26 direct neighbors, we index those neighbors
from 1 to 26 and denote each pair (P,Qi), i ∈ {1, 2, ..., 26}
as a connectivity orientation (see Fig. 2). We use 26 binary
labels to represent the corresponding 26 connectivity pairs.
For example, if P and its right neighbor Q14 are connected

1Annotations will be available at http://www.pami.sjtu.edu.cn/



airway voxels, then the position P on the 14-th connectivity
label is marked as “1”. Otherwise, we mark the position P as
“0” on the i-th connectivity label if P is disconnected to the
neighborQi. After connectivity modeling, the original binary
airway label is transformed into 26 connectivity labels of the
same size. We concatenate them along the channel axis into a
26-channel 3-D label. The task of binary airway segmentation
is therefore converted to the prediction of airway connectivity.
The model trained using such a 26-channel label is believed
to perform better in grasping the intrinsic tree-like structure
of airway than using the original binary label.

0000010101000010000

26-neighborhood
cube (centered at P)

Slice 1 Slice 2 Slice 3

Q1 Q2 Q3

Q4 Q5 Q6

Q7 Q8 Q9

Q10 Q11 Q12

Q13 P Q14

Q15 Q16 Q17

Q18 Q19 Q20

Q21 Q22 Q23

Q24 Q25 Q26

P

P
Center airway voxel

P (x,y,z)

Connected airway 

neighbor voxel Qi

Disconnected background 

neighbor voxel Qi

Binary airway
ground-truth label

26-channel
connectivity

label of all voxels

26

Dimension:
1 x Z x H x W

Dimension:
26 x Z x H x W

P

P

P
Channel 1

P

Sliding

window

Dimension:
1 x 3 x 3 x 3

Split into 3 axial slices

}

Generate 26 labels for the center voxel P

On the i-th label:

    1) Check whether P and Qi are connected

    2) Mark “1” for connected pair (P, Qi)

        Mark “0” for disconnected pair (P, Qi)

0

P

0 0 1 1 1 100 0…………

1st 2nd 3rd 8th 14th 17th18th19th20th 26th

Reshape into 26 channels as the

connectivity label of voxel P

0

Dimension:
26 x 1 x 1 x 1

Generate 26-channel

connectivity label

for each voxel 

Channel 2

Channel 26

In
p

u
t

O
u

tp
u

t

Fig. 2. Illustration of the 26-connectivity modeling.

3.3. Step 2: Connectivity prediction using 3-D CNNs with
fused context scale

The illustration of the AirwayNet-SE for connectivity predic-
tion is shown in Fig. 3. It consists of two stages as follows.

Stage 1: Feature learning with large-scale and small-
scale contexts. In this stage, we respectively employ the
DNN and SWN to learn features of airway connectivity with
different context scales. The 3-D U-Net [11], containing a
contracting path and an expansive path, is used in both DNN
and SWN as backbone. To enlarge the receptive field of DNN,
four pooling layers are used and accordingly ten convolution
layers (Conv) with batch normalization (BN) and rectified lin-
ear unit (ReLU) are set on the contracting path. For SWN,
only two pooling layers are kept to preserve the details of
“delicate” and thin bronchi. The number of feature channels
in DNN and SWN are separately designed to fit for such ar-
chitecture difference. The trade-off between feature extrac-
tion ability and GPU memory limit is considered as well.

Stage 2: Connectivity prediction based on fused con-
text knowledge. In this stage, feature representations from
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Fig. 3. Illustration of the AirwayNet-SE. The channel number
is denoted on each feature map. The first stage is to extract
features of two context scales via DNN and SWN. The second
stage is to classify the connectivity of airways using fused
features with both large-scale and small-scale contexts.

DNN and SWN are concatenated as context knowledge fu-
sion. The voxel coordinates are also included as inputs. They
are considered beneficial for the model to comprehend the
anatomical structure of airways because the position of air-
ways within the thoracic cavity is not randomly distributed.
We build a simple three-layer CNN to learn the mapping from
the fused features to the 26-channel connectivity prediction.

Optimization: To train the proposed AirwayNet-SE, the
Dice coefficient loss is used in both the two stages because it
generally performs better than binary cross-entropy loss in the
segmentation task. Given a voxel x in the cropped cubeX , its
i-th channel of the connectivity label yi(x), i ∈ {1, 2, ..., 26}
and the corresponding prediction output pi(x), the averaged
Dice loss is defined as:

L = 1− 1

26

26∑
i=1

2
∑

x∈X pi(x)yi(x)∑
x∈X(pi(x) + yi(x)) + ε

, (1)

where ε is used to avoid division by zero.

3.4. Airway candidate generation

The predicted airway connectivity needs to be transformed
back into conventional binary airway candidates. First, we
apply a thresholding t = 0.5 on the probability output. The
pairwise adjacent voxels in each 3 × 3 × 3 neighborhood
should agree with each other in connectivity. Therefore, we
only keep voxels that connect each other in mutual connectiv-
ity channels. Then, we perform channel-wise summation to
obtain the 1-channel airway candidate output and multiply it
with the lung field mask to generate valid airway regions. No
post-processing is employed for refinement.



4. EXPERIMENTS AND RESULTS

In view of the dataset under investigation, we randomly chose
50 public CT scans for training and hyper-parameter fine-
tuning. The remaining 10 public and 10 private scans were
used for evaluation. Performance comparison and ablation
studies are conducted to confirm the validity of our method.

4.1. Implementation details

To improve the model’s generalizability on diverse CT scans,
data augmentation is performed on-the-fly during training via
random horizontal flipping and Gaussian smoothing. In the
first stage, we densely sampled cubes near trachea and main
bronchus regions for training DNN. The cubes containing thin
peripheral bronchiole are mostly chosen for SWN to learn
their complicated branching patterns. In the second stage,
all cubes near airways are used for network training, result-
ing in around 6000 samples. We implemented our method in
Keras and adopted Adam optimizer (β1 = 0.9, β2 = 0.999)
with learning rate set as 10−4. The training converged after
30 epochs for networks in stages 1 and 2.

4.2. Evaluation metrics and results

The performance of the proposed AirwayNet-SE was evalu-
ated in terms of three metrics: 1) Dice coefficient (DSC), 2)
True positive rate (TPR), and 3) False positive rate (FPR). As
shown in Table 1, the proposed AirwayNet-SE achieved the
highest DSC of 93.0% and 88.7% on both the public and pri-
vate testing sets, respectively. Compared to DNN and SWN
that only rely on context of single scale for airway extraction,
the AirwayNet-SE increased the DSC over 2% on average,
respectively, demonstrating the effectiveness of feature fusion
from two context scales. The comparison with state-of-the-art
methods [7, 8, 9] was conducted. These methods were imple-
mented by ourselves and fine-tuned on the current dataset.
For the public testing set, Juarez et al. [8] segmented more
conservatively and they had a lower FPR and a competitive
DSC. But our TPR is 3% higher than theirs with smaller stan-
dard deviation, meaning that more airway voxels can be de-
tected by the AirwayNet-SE. Qin et al. [9] achieved a higher
TPR than ours and higher false positives are observed on both
two testing sets. Since DSC is a comprehensive metric that
considers both sensitivity and specificity, the highest DSC of
our method with comparable TPR and FPR verified its ro-
bustness and superiority. Qualitative comparison of the seg-
mentation results is visualized in Fig. 4. Compared to SWN
and DNN, more peripheral branches were successfully de-
tected by AirwayNet-SE and there exists less discontinuity in
the predicted airway regions. Furthermore, SWN performed
worse on thick bronchi due to its relatively small scale of con-
text. In contrast, the prediction of DNN was prone to missing
thin bronchiole and produce ruptures. With the fused context
knowledge of both small and large scales, our AirwayNet-SE

Table 1. Results (%) of the proposed AirwayNet-SE in
comparison with state-of-the-art methods and ablation study
(mean±standard deviation). The DNN, SWN, and AN-SE
stand for deep-yet-narrow network, shallow-yet-wide net-
work, and AirwayNet-SE (AN-SE), respectively.

Public testing set
Method DSC TPR FPR
Jin et al. [7] 90.5±4.0 94.7±2.6 0.044±0.029
Juarez et al. [8] 92.8±3.5 89.2±6.5 0.008±0.004
Qin et al. [9] 90.9±4.3 92.7±3.5 0.033±0.027
DNN 90.1±3.8 93.3±3.3 0.041±0.024
SWN 89.5±5.4 95.4±2.4 0.055±0.043
AN-SE 93.0±3.1 92.4±4.0 0.018±0.012

Private testing set
Method DSC TPR FPR
Jin et al. [7] 86.3±5.4 81.7±8.9 0.027±0.022
Juarez et al. [8] 87.2±5.3 81.0±8.8 0.016±0.021
Qin et al. [9] 88.5±4.0 86.5±6.0 0.033±0.029
DNN 86.9±6.8 82.0±11.2 0.022±0.021
SWN 87.4±4.7 83.4±7.6 0.027±0.023
AN-SE 88.7±5.3 84.6±8.7 0.020±0.017

avoided the aforementioned limit of single-scale context and
achieved more accurate segmentation results.

CT scan AirwayNet-SE DNN Ground-truthSWN
DSC: 92.2
TPR: 97.6
FPR: 0.056

DSC: 87.3
TPR: 78.7
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Fig. 4. Comparison of airway segmentation results between
the AirwayNet-SE, DNN, SWN, and ground truth.

5. CONCLUSION

This paper introduced a two-step AirwayNet-SE for airway
segmentation. With connectivity modeling, it fused context
of two scales to improve performance. Experimental results
proved that our approach was effective at overcoming the dis-
tribution difference between large and small airways. The
airway annotations were also released to boost research on
airway extraction using supervised learning methods.
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