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We study experimentally the primary instability of a visco-plastic film flow down an
inclined plane. The experimental setup is a channel with a varying slope angle, in which a
permanent flow of a Herschel-Bulkley fluid (carbopol or kaolin) is established. Controlled
perturbations are imposed at the entrance of the channel to generate surface waves, and
their downstream evolution is observed with a laser sensor system measuring the local fluid
thickness. Growth rates and cutoff frequencies are obtained after processing the thickness
signal, and experimental critical Reynolds and Bingham numbers are deduced. We find
that the experimental stability map obtained is well described by the pseudo-plug model of
Balmforth & Liu (2004), a model obtained after neglecting the film thickness compared to
its length. This is not the case for dispersion effects (growth rates, cutoff frequencies, phase
speeds), for which a more accurate model is needed.
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1. Introduction
Mud flows are natural hazards which can cause extensive damage, yet they are still very
difficult to predict. At the surface of such destructive events, unstable waves can develop and
sometimes reach very large amplitudes (up to 3 m for the Yellow river in August 1977, as
reported by Engelund & Zhaohui (1984), quoting Qian et al. (1979)). These waves can travel
much faster than the primary flow, and therefore can have very destructive power. They need to
be taken into account in any risk assessment (Köhler et al. 2016).Mud and slurries, when they
flowdown a slope, are usually described as visco-plastic fluids. This large family encompasses
very different fluids involved for example in industry (hydrocarbons, concrete, cosmetics,
biomedical materials, emulsions), in food processing (jam, butter, ketchup, mayonnaise)
or in other natural phenomena (lava flows (Blake 1990), avalanches (Nishimura & Maeno
1987), debris flows (Iverson 1997)). Those fluids have in common two characteristics: 1- they
exhibit a yield stress behavior, i.e. they need to undergo a minimal stress to flow, otherwise
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they behave as a solid, and 2- their viscosity decreases when the shear rate increases (shear-
thinning). This rheological behaviour is often described by the Herschel-Bulkley model
(Herschel & Bulkley 1926), with a constitutive law :{

τ = τy + K Ûγn when τ > τy ,
Ûγ = 0 when τ < τy ,

(1.1)

where τy is the yield stress, K the consistency index and n the flow index (the case n = 1 is
called Binghamfluid (Bingham 1922)). Here, τ refers to the second invariant of the deviatoric
stress tensor, and Ûγ, the shear rate, refers to the second invariant of the rate-of-strain tensor.
It is known that an unperturbed film flow down a slope has a shear stress that grows linearly
with depth from zero at the surface. When the fluid is visco-plastic, this has the consequence
that there is a region close to the surface where the shear stress is smaller than the yield stress,
leading to an apparent solid, unsheared region, with a uniform velocity, known as a plug flow.
This characteristic first misled the theoreticians into believing that this system was similar
to a Poiseuille flow of a visco-plastic fluid, with very high stability thresholds, significantly
higher than for a Newtonian fluid (Frigaard et al. 1994). Yet, such high stability thresholds
were in contradiction with observations in the experiments (Coussot 1994). This paradox
was resolved by Balmforth & Craster (1999), who pointed out that the hypothesis of the plug
region at the surface being a true elastic solid, was incompatible with thickness variations
in the flow, as observed for example at surge fronts or when flowing over an obstacle. They
stated that the "plug" region was in fact an approximation of order 0 in ε , the ratio between
the typical thickness and the typical length of the film, assumed to be small. They proposed
to introduce a newmodel, in which the flow speed is expressed as an asymptotic expansion in
ε , and if the term of order 0 still exhibits a uniform velocity close to the surface, this is not the
case of higher order terms of the expansion, which are found to be varying even close to the
surface. In other words, the "plug" region is in fact sheared, and the shear rate in this region is
of order at leastO(ε). This is possible even if the shear stress (i.e. the off-diagonal component
of the deviatoric stress tensor) drops below the yield stress, because height variations induce
longitudinal speed variations, which in turn induce a non-zero deviatoric stress along the
flow, and in the end, τ the second invariant of the full deviatoric stress tensor remains larger
than the yield stress τy .
With this idea, they were able to study the roll-wave-like instability in muds. This instability
has the same physical origin, i.e. inertia, as in Newtonian fluids (Smith 1990) and in other
non-Newtonian fluids (Millet et al. 2008). They calculated the linear stability threshold of a
visco-plastic film flow with the Orr-Sommerfeld approach, considering the lowest order in
ε in the sheared region, and the first order in ε in the pseudo-plug region (Balmforth & Liu
2004). From the obtained equations, they were able to perform a long wave expansion, and to
obtain a critical Reynolds number ReBal

c , above which infinitesimal long waves perturbations
are amplified:

ReBal
c =

[1 + n + 2nBi(1 + nBi)](1 + n)(2 + n)(2 + 3n)(1 − Bi)−2/n

2(2 + n)(1 + n)2 + n(2 + n)(7 + 9n)Bi + (11 + 19n + 6n2)(2 + nBi)n2Bi2
(1.2)

with n the flow index, and Bi the Bingham number defined as the ratio between yield stress
and maximum viscous shear stress. In this model, the onset of instability depends only on Bi
and n. Rec diverges when Bi → 1 because of the term (1 − Bi)−2/n, and this divergence is
all the more strong as n is small. This singular limit corresponds to the transition towards a
full flow arrest, a situation which cannot then exhibit unstable roll-waves. It is important to
note that even if the influence of the pseudo-plug, where the velocity gradient is of order 1
in ε , is taken into account, only the 0th order terms are kept in the equations. In other words,
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the model is still of order 0 in ε . For this reason, their model did not get unanimous support
in the literature. In fact, Fernández-Nieto et al. (2010) (F.N.) criticised the validity of a 0th
order approach, and showed that an additional term of order ε should be accounted for to
derive the expression of the critical Rec , at least for a Bingham fluid. When translated in the
formalism used by Balmforth & Liu (2004), they found an expression for a Bingham fluid:

ReF .N .c =
5[1 + Bi + Bi2 − 3ε(πBi2/4)]

3Bi5 − 5Bi3 + 2
(1.3)

which corresponds to Eq. (1.2) for n = 1 with an additional term of order ε . Until now, based
on the literature of experimental works on the subject, it has not been possible to validate
any of these approaches. In fact, on the experimental side, the literature is not abundant.
The first to experimentally visualise this sort of surface waves in Newtonian fluids was
Kapitsa & Kapitsa (1949), but it was not before the ’90s that the critical Reynolds number
of the roll-waves instability was measured by Liu et al. (1993), again for a Newtonian fluid,
confirming the theory of Benjamin and Yih (Benjamin 1957; Yih 1963). This work inspired
other scientists to investigate the stability for non-Newtonian fluids, for example Forterre &
Pouliquen (2003) in the different, but related, context of granular flows, or Allouche et al.
(2017) for shear-thinning fluids. The latter showed that shear-thinning properties tend to
destabilise the flow. More recently, Freydier et al. (2017) looked into the influence of terms
of higher order in ε , thanks to an original setup of a stationary surge. However they mainly
focused on the front study, and did not look into the stability of the nearly uniform part of the
flow. To our knowledge, very few experiments were performed on the stability of visco-plastic
fluids down a slope (Coussot 1994; Tamburrino & Ihle 2013). In particular, Coussot (1994)
was the first to investigate the presence of roll-waves in a rectangular channel. This seminal
experimental work was however not designed to finely explore the stability under small
controlled perturbations. In this paper, we experimentally investigate the primary instability
of visco-plastic fluids down an inclined plane. In the next sections, we will describe the
experimental setup, the fluids used and the measurements made. Finally, we will compare
our results with the theory of Balmforth & Liu (2004) for the stability thresholds, wave
numbers and growth rates.

2. Experimental setup
In this section, we describe the system we designed to produce film flows down an incline,
with a clean and controlled surface perturbation, and indicate how tomeasure and characterise
the stability of the waves produced this way. This setup was originally the same as in Allouche
et al. (2017), but had to be adapted to work with yield-stress fluids.

2.1. Flow and perturbation system
The setup consists in a film flowing down a long channel (2 m×0.5 m), as shown in figure 1(a-
b): the fluid is collected at the channel output in a tank (collector), and sent back to the inlet
by a volumetric pump (PCM EcoMoineau) through a manifold at the channel entrance,
creating a permanent regime. The channel angle φ is adjustable between 0 and 15 ± 0.5
degrees, and the flow rate is controlled by the volumetric pump, up to 1 L/s. Flow rate q is
also measured between the output tank and the pump using a Rosemount™ electromagnetic
flow meter. A typical experiment requires roughly 70 L of fluid to work properly. Controlled
perturbations are generated at the flow surface using a plate plunging into the collector at
the entrance of the channel. This plate is connected to a shaker (B&K 4809) vibrating in
the flow direction, itself driven by a low frequency generator. The generator produces an
electric sine wave of frequency f , converted by the shaker into a sinusoidal, quasi-plane
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Figure 1: (a) Scheme of the experimental setup. (b) View of the experiment with unstable
roll waves. Horizontal shadow is due to the measuring apparatus. (c) Average flow

thickness: Values measured (sensor) and curve expected from flow rate and measured
rheology, with a uniform flow hypothesis.

wave also of frequency f , at the surface of the flow. The amplitude voltage is kept small
enough so that the height of the surface perturbation remains sinusoidal close to the entrance
channel, i.e. the initial perturbations are kept in the linear regime (note also that there is
no need to amplify the electric signal between the generator and the shaker to produce and
measure small perturbations). The flow must also be isolated from external (and undesired)
perturbations, in particular from the pump. To mitigate these disturbances, we have placed
two additional damping tanks with a free surface between the pump and the channel entrance,
and we have taken great care to isolate the channel body from any other parts of the circuit
connected to the pump, as well as from the ground (the setup is placed on rubber wedges).
In summary, a film flow is generated with a flow rate q, in a channel inclined at an angle φ,
and with a controlled sine perturbation of its thickness, at frequency f .

2.2. Fluids
In our experiments, two types of visco-plastic fluids have been used : 1-carbopol and 2-kaolin.

2.2.1. Carbopol microgel
Carbopol is a highly cross-linked polyacrylic polymer, which adopts the structure of a
microgel at neutral pH (Ketz et al. 1988). The concentration of microgel particles is directly
related to the initial concentration of the polymer, so it is possible to tune the rheology of the
fluid by changing the initial polymer concentration. Note that the flow index remains roughly
constant. To prepare the fluid, we start by dissolving powder of carbopol (carbopol 980™ by
Lubrizol) in a can filled with water while continuously stirring the mixture. After two hours,
the polymer is dissolved and the solution is homogeneous. Then the fluid is left at rest for
2-3 days to get rid of air bubbles and finish the dissolution. After that, water is added to the
solution to reach a desired weight fraction, usually between 1.5 10−3 and 2 10−3 for a total
volume of 70 L. The solution is then neutralized in pH by adding sodium hydroxide (NaOH),
giving the fluid its final visco-plastic behaviour. The choice of Carbopol 980 prepared with
low stirring at these weak concentrations ensures that the fluid thixiotropic and viscoelastic
properties can be neglected (Dinkgreve et al. 2018; Piau 2007). Finally, to allow the film
thickness to be measured using a triangulation position sensor (see below), the solution is
made opaque by the addition of 50 g of titanium dioxide (TiO2).
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Fluid τy (Pa) K (Pa.sn) n
Carbopol 980 1.6 − 5 0.9 − 1.5 0.52 − 0.56
Kaolin slurry 5 − 11 4 − 13 0.22 − 0.28

Table 1: Ranges of the measured rheological parameters.

2.2.2. Kaolin slurry
The second fluid is obtained by mixing approximately 40 kg of kaolin powder with 35 to
45 kg of water, resulting in a visco-plastic fluid of density d ' 1450 kg/m3. The fluid is
constantly mixed in the collector tank throughout the experiments to avoid sedimentation.
Two kaolin powders have been used, one fromHostun quarry (near Grenoble, France) and the
other from Quessoy quarry (near St-Brieuc, France). Only batches with similar rheological
properties, in particular the flow index n, have been kept. Given the experimental conditions
(permanent regime, permanent shear rate), we assume that the visco-plastic behaviour is
dominant compared to any other effects (specially visco-elasticity and thixiotropy), similarly
to Chambon et al. (2009). Moreover, flow rates in the experiments are always small enough
to ensure a regular visco-plastic behavior (Coussot 1995).

2.2.3. Rheological characterisation
During the experiments, fluid samples are regularly taken for characterisation. The rheology
of the fluids under study ismeasuredwith a cone-plate rheometer (LamyRheology Instrument
Rheometer RM 200 Touch), with rough surfaces to avoid slippage at low shear rates (Coussot
& Piau 1994; Piau 2007). The measurement consists in rotating the top plate at different
imposed rotating speeds and measuring the torque, with both quantities converted into shear
rate and stress, in ramp-up then ramp-down series. To measure steady-state values, the
measurement duration is adapted to the rotating speed (the faster the rotation, the shorter the
measurement). The flow curves obtained always follow the Herschel-Bulkley law (see Eq.
(1.1) and figure 2(a) for a typical curve). By varying the concentration in carbopol or kaolin,
we are able to obtain fluids with rheological parameters within the ranges given in Table 1.
Homogeneity of the fluid is verified by comparing the rheology of samples taken at various
places of the setup.We observe also a slow variation of the rheological properties in time, due
to different effects depending on the fluid: water evaporation for kaolin and acidification by
CO2 dissolution for carbopol (see figure 2(b) and (c)). Rheological properties are checked at
regular intervals throughout the experiments (every one to three hours), in order to determine
time windows over which we can consider that the fluid being studied does not change. As
illustrated in figure 2, the typical yield stress variation with time is over 2 weeks, whereas a
series of experiments has never lasted more than one day. In fact, the slow variation of the
yield stress over time has been our most reliable way of finely tuning the rheology of the
fluids.

2.3. Local thickness measurement
Film thickness ismeasuredwith a laser triangulation sensor (Micro-Epsilon optoNCDT1420)
as illustrated in figure 1. A laser is shot at the film surface, a spot appears on the surface by
light diffusion, and the distance from this spot to the sensor is measured using triangulation.
This allows us to measure the thickness over a region less than 0.5 mm wide, and with a
theoretical precision of 1 µm, small enough to detect perturbations of a few 10 µm. However,
we have been surprised to measure a constant offset of a few 100 µm for a given experiment
series, between the spatio-temporal average of the measured thickness, noted 〈h〉 (see below),
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Figure 2: (a) Herschel-Bulkley fit of a typical experimental flow curve for carbopol, with
fitted parameters τy = 4.2 Pa, K = 0.99 Pa.sn, n = 0.54. (b) Evolution of rheological
parameters over a typical experiment series with carbopol. Green lines correspond to

median values. (c) Evolution of rheological parameters over different series of
experiments with carbopol. The yield stress slowly decays with time, probably due to

water acidification.

and the thickness expected from the rheology, assuming a uniform flow (see figure 1(c)).
We believe this is due to the strong optical penetration of both fluids used, stronger than
for typical opaque solid surfaces. Even if this offset did not affect the wave measurements
(growth rates and wavelengths), we have decided to exclude every series with a difference
between measured and predicted thicknesses greater than 10%, and otherwise to correct the
measured thickness with the offset. The sensor is fixed to a linear translation stage (Zaber
LSQ300-B) able to move along the flow over 30 cm with a speed of 1 cm/s. If we assume the
film is perturbed by a linear plane sine wave of the form h(x, t) = 〈h〉+h0eαx cos(2π f t− k x),
with α the spatial growth rate, k the wave number, and h0 the wave amplitude, the signal hs
measured by the sensor over a translation at speed v (see a typical signal in figure 3(a)) takes
the following form:

hs(t) = 〈h〉 + h0eαvt cos(2π f t − kvt) . (2.1)
To extract the spatial growth rate α and wave number k, the Fourier transform of the signal is
analysed following Yoshida et al. (1981). Close to the imposed frequency of the perturbation,
the form of the discrete Fourier transform F of the real signal hs shows a peak, and can be
approximated in its vicinity as:

F [hs]( fm) =
A

f? − fm
+ B + C fm , (2.2)

with f? = ( f − kv/2π) − iαv/2π the complex frequency, fm the mth Fourier frequency, A
a prefactor that includes amplitude and sampling rate, B a constant (white noise), and C fm
a linear variation in spectrum, which approximates any other resonances far from f . By
taking the ratio of finite differences of the Fourier transform close to the resonance peak, it
is possible to eliminate the unknown constants A, B and C, in order to extract directly the
value of f?, which then simply yields:

k = 2π
f −<( f?)

v
and α = −2π

=( f?)
v

, (2.3)

where<( f?) and =( f?) refer to the real and imaginary parts of the complex number f?.

3. Linear stability measurement
In this section, we explain how we determined the stability map from our measurements.
The determination of the linear stability thresholds consisted of the following steps. First, we



7

0 10 20 30
t (s)

3.6

4.0

4.4

4.8
h
s(
t)

(m
m
)

〈h〉

(a)

0 2 4 6 8
fm (Hz)

10−1

100

101

102

103

|F
[h

s
]|

(b) F [hs](fm)

f

Figure 3: (a) Blue: typical measured signal hs(t). Red: signal envelope h0eαvt , with α
given by Eq. (2.3). (b) Blue: Fourier transform of signal hs(t). Red: imposed frequency at

3.6 Hz. The main peak is at a frequency<( f?) = f − kv/2π, slightly shifted from the
imposed frequency.

0 1 2 3
f (Hz)

−2

0

2

α
(1
/m

)

fc

(a)

0.1 0.2 0.3 0.4 0.5
q (L/s)

0

1

2

3

4

f
(H

z)

(b)

−2

−1

0

1

2

α
(1/m

)

Figure 4: (a) Variation of the growth rate α with the frequency f , at flow rate
q = 0.412 dm3.s−1 and at angle φ = 15.6◦, for carbopol with a rheology τy = 4.21 Pa,

K = 0.99 Pa.sn, n = 0.54. (b) Stability map in the (q, f ) plane (same φ and rheology as in
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(see the scale in (b)).

fixed the frequency f , the flow rate q and the angle of inclination φ, and we measured the
spatial growth rate α and the wave number k. We then repeated the measurement at different
frequencies. Figure 4(a) shows the variation of the typical growth rate α with f for a given
flow rate. The cutoff frequency fc is deduced as the frequency above which the flow is stable
(α < 0). At very low frequencies ( f < 0.5 Hz), the measured growth rates are not reliable
because the shaker transfer function decays rapidly when f → 0. We repeated the process
at different flow rates (slope fixed), to obtain the evolution of fc with q. Figure 4(b) shows
the stability diagram in the (q, f ) plane. We identified the unstable regime ( f < fc) and the
stable regime ( f > fc). We also can see that under a critical flow rate, the flow is always
stable. To summarise and discuss these results, we need to convert the critical flow rate into
critical Reynolds and Bingham numbers. As in Balmforth & Liu (2004), we can regroup the
parameters on which depends the flow in four dimensionless groups, which we chose to be
n, φ,Re,Bi. For the last two groups, we adopted the Balmforth & Liu (2004) conventions:

Re =
ρ tan(φ)

K

(
ρg〈h〉1+n sin φ

K

) 2−n
n

〈h〉n and Bi =
τy

ρg〈h〉 sin φ
. (3.1)

The Bingham number Bi compares the yield stress of the fluid to the maximum shear
stress in the flow, and the Reynolds number Re is based on a typical flow speed V =(
ρg〈h〉1+n sin φ/K

)1/n and a typical viscosity µ = K(V/〈h〉)n−1. In the results presented
hereafter for the thresholds, we will see that for the rather low values of the angle φ used
in the experiments, the stability threshold does not depend on φ, apart from its influence
through Re and Bi (Eq. (3.1)). As a consequence, our objective was to measure a stability
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boundary in the formRec = f (Bi,n). Unfortunately, in our experiments, when φ and rheology
are fixed, Re and Bi both vary with the dimensional parameter q and it is not possible to
work with Bi kept constant. This led us to define both a critical Reynolds number Rec and a
critical Bingham number Bic at the extremity of the marginal curve ( f → 0), and to compare
them to the theory. Figure 5 shows the stability diagram of figure 4(b) translated in the planes
(Re, f ) and (Bi, f ), with the critical Reynolds and critical Bingham numbers determined with
a square root fit of the marginal curve, following the Liu et al. (1993) approach. In order to
compare the results to the Balmforth & Liu (2004) prediction, we repeated this measurement
at different φ and for different rheologies (τy and K), to explore the (Re,Bi) plane, but with
the same fluid type to keep n roughly constant. Finally, figure 6 shows the critical Reynolds
and critical Bingham numbers for two different n, corresponding to the two different fluids.

4. Results and discussion
Figure 6(a) shows the variation of the critical Reynolds number with the critical Bingham
number. Because the dimensionless numbers depend strongly on n, using two fluids allowed
us to span almost two decades in Rec . Over this range, the experimental thresholds seem very
well captured by the model of Balmforth & Liu (2004), even for the kaolin slurry (n = 0.25),
for which the experimental error was important. We observe also that Rec increases with Bic ,
which is consistent with the stabilizing effect that we expect if τy increases or if φ decreases,
since Bic increases in both cases. In fact, this corresponds to a divergence of Rec when
Bic → 1, as predicted by Balmforth & Liu (2004). This explains why we could not see any
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unstable perturbation for Bi > 0.35 in our setup. A reasonable simplification of the Rec(Bic)
relation can be obtained from Eq. (1.2), if we approximate the polynomial fraction, in factor
of the diverging term, by the average of its extreme values in the interval Bi ∈ [0,1]:

Rec '
(
1 +

3
4

n
)
(1 − Bic)−2/n , (4.1)

as we can see in figure 6(b).
To discuss further these results, we would like here to recall how the threshold prediction
by Balmforth & Liu (2004) was obtained. They solved the linear stability problem through
an Orr-Sommerfeld approach, for a Herschel-Bulkley fluid, with the following features in
particular:

(i) the film thickness is small enough to neglect any term of order 1 or more in ε , the
aspect ratio of the film defined as thickness over length (ε is chosen as tan φ for convenience
by Balmforth & Liu (2004))
(ii) the dimensionless numbers Bi and n are fixed
(iii) they perform a long wave development in their temporal stability analysis of the form:

ω̃ = ω1 k̃ + ω2 k̃2 + ... , (4.2)

with k̃ = k 〈h〉 and ω̃ = 2π f 〈h〉/V , the rescaled wave number and pulsation.
(iv) they define Rec as the Re value that cancels the quadratic term ω2 in the development.

Surprisingly, a 0th order model in ε seems sufficient to quantitatively predict the linear
stability threshold, contrary to the claim of Fernández-Nieto et al. (2010). This does not
mean that Fernández-Nieto et al. (2010) were wrong. In fact, their definition of Reynolds
number, slightly different, makes the inertial terms to appear in the equations as terms of
order ε . This definition could be convenient for cases where Re in our definition and ε are
of the same order of magnitude. In our experiments, we are not in this regime since Re
varies between 2 and 50, whereas ε = tan φ is at most 0.28. Considering the prediction of
Fernández-Nieto et al. (2010) for a Bingham fluid (Eq. (1.3)), we expect that the correction
of order ε becomes more and more important when Bi → 1. We also expect the prediction of
Balmforth & Liu (2004) to be less accurate at larger angles, more likely because the choice
of ε = tan φ, i.e. the choice of a horizontal typical length L = 〈h〉/tan φ, may not be relevant
any more. Again, we were not able to reach those regimes in the experiments.
We will now look at the rescaled wave numbers and dispersion relations comparing our

experiments with the model of Balmforth & Liu (2004) and their long wave expansion Eq.
(4.2). The first term calculated by Balmforth & Liu (2004) is found to be ω1 = (1 − Bi)1/n.
This suggests that the rescaled phase speed c̃ = ω̃/k̃ should be constant at long waves and
equal to cb = (1− Bi)1/n. At higher frequencies, the dispersion relation becomes non-linear,
when terms of order 3 in k̃ start to play a role. Moreover, this non-linearity depends on the
Reynolds number as well. In the experiments, where we perform spatial stability analysis,
we expect to see similar effects: a constant phase speed c̃ equal to cb for long waves (low
frequency) and non-linear dispersion at higher frequencies. Figure 7(a) shows the normalised
phase speed c̃/cb as a function of the rescaled pulsation ω̃ for different Re. We observe that
at a given Re, the phase speed c̃ reaches a plateau, and as Re increases, the plateau gets closer
to cb. If part of this feature can be understood as an effect of the rescaling, as the rescaled
pulsation 2π f 〈h〉/V decreases with Re, it seems also that the long wave approximation is
all the more valid as Re increases. We have numerically solved the model of Balmforth &
Liu (2004) to compare it with the linear behavior and our experiments. A typical example is
shown in figure 7(b). We see that the wave numbers predicted by Balmforth & Liu (2004)
are systematically higher than those we measured, and that the deviation from the long wave
regime is more pronounced than in the experiments and occurs in the opposite direction.
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Figure 7: For carbopol (n = 0.54), variation with the pulsation ω̃ of (a) the normalised
experimental phase speed c̃/cb , at different Re, (b) the wave number k̃ times cb

(dispersion relation), (c) the growth rate α̃. (b) and (c) correspond to the same case as in
figure 4(a) (Re = 11.2, Bi = 0.29). Balmforth & Liu (2004) prediction: green line, for

long waves: black line, experimental results: colored circles.

Moreover, when we compare the growth rates (see figure 7(c)), we observe that the model
of Balmforth & Liu (2004) is also unable to predict the cutoff frequencies observed in the
experiments. This is clearly a limit of dropping terms of order ε and higher order in the
model. Indeed, those terms appear with powers of k̃ in the equations (see for example Eq.
(3.3) in Balmforth & Liu (2004), at the order 2 in ε). And such terms in ε k̃, ε2 k̃2, ... cannot be
neglected when k̃ is of order 1/ε , i.e. at higher frequencies, and they have overall a stabilising
effect on the waves. The comment of Fernández-Nieto et al. (2010) is then justified when it
comes to predicting the wavelengths and growth rates: a model with higher order terms in ε
is needed to describe properly wave dispersion mechanisms. Moreover, additional physical
ingredients may be missing in the model to give a finer description of the dispersion effects,
in particular viscoelasticity and surface tension effects.
5. Conclusion and perspectives
Wedescribed a series of experiments on visco-plastic film flows down an inclined plane.With
a controlled perturbation setup and an original wave characteristic measurement technique,
we determined the stability map in the (Re,Bi) plane for two different fluids, with two
different flow indices n. We have shown that the waves were weakly dispersive, at least in the
explored range of frequencies. As we mentioned in the introduction, ε , the aspect ratio of the
film, is a key feature in existing prediction models. As such, it is crucial to know the highest
order in ε needed to accurately describe the stability and the characteristics of the waves.
Our experiments can provide a partial answer to this unsettled question: in the considered
regimes, including terms of order 1 or higher in ε appears not to be required to describe
stability thresholds in terms of critical Bingham and Reynolds numbers. On the contrary,
dispersion mechanisms are not well described by a linear model of order 0 in ε .
We thank G. Chambon and F. Rousset for fruitful discussions, E. Mignot for TiO2 supply,
and S. Martinez and G. Geniquet for their help building the experimental setup. Declaration
of Interests : The authors report no conflict of interest.
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