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Femtochemistry of bimolecular reactions from weakly

bound complexes: computational study of the H +

H′OD−−−→H′OH+D/HOD+H′ exchange reactions

Alexandre Voute,a Fabien Gatti,b Klaus B. Møllera and Niels E. Henriksen∗a

A full-dimensional wavepacket propagation describing the bimolecular exchange reactions H +

H′OD −−→ H′OH + D/HOD + H′ initiated by photolysis of HCl in the hydrogen-bound complex

(HCl) · · ·(HOD) is reported. The dynamics of this reaction is carried out with the MCTDH method

on an ab initio potential energy surface (PES) of H3O and the initial state is derived from the ground

state wavefunction of the complex obtained by relaxation on its own electronic ground state ab initio

PES. The description of the system makes use of polyspherical coordinates parametrizing a set of

Radau and Jacobi vectors. The calculated energy- and time-resolved reaction probabilities show,

owing to the large collision energies at play stemming from the (almost full) photolysis of HCl, that

the repulsion between oxygen in the H′OD molecule and the incoming hydrogen atom is the main

feature of the collision and leads to non-reactive scattering. No abstraction reaction products are

observed. However, both exchange processes are still observable, with a preference in O�H′ bond
dissociation over that of O�D. The selectivity is reversed upon vibrational pre-excitation of the O�D

stretching mode in the H′OD molecule. It is shown that, after the collision, the hydrogen atom of

HCl does most likely not encounter the almost stationary chlorine atom again but we also consider

the limit case where the H atom is forced to collide multiple times against H′OD as a result of being

pushed back by the Cl atom.

1 Introduction

The vast majority of chemical reactions rely on the encounter be-
tween molecules. At the elementary molecular level, the collision
between two molecules, possibly giving rise to new compounds,
is the basic phenomenon where molecules exchange atoms and
energy.1 As is known, the outcome of a single bimolecular col-
lision depends on the initial quantum state of the reactants and
the shape of the potential energy surface (PES) in which they lie.
Other conditions are also crucial, such as their relative orienta-
tions, the collision impact parameter and the relative translational
kinetic energy.

Molecular crossed-beam scattering experiments,2–5 where a
molecule conveyed in one beam with a selected translational ki-
netic energy scatters due to the sole interaction with a single
molecule from the other beam, provide a deep understanding of
bimolecular reactions. In these specific conditions, one can quan-
tify the energy required for a given reaction to succeed, charac-
terize whether a collision is elastic or inelastic and, in the latter
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case, determine how energy is redistributed within the molecules.
Yet, the influence of the relative orientations and the impact pa-
rameter on the outcome of these collisions can not be readily dis-
cerned, as the molecules in the beam are randomly distributed.
With the emergence of ‘transition state spectroscopy’,6,7 the na-
ture of the reaction in the vicinity of the barrier could be eluci-
dated for some cases by fixing these geometrical aspects. One of
the methods used to achieve this geometrical restriction is to form
weakly-bound complexes of the reactants.

The use of weakly bound atom-molecule aggregates in
chemical reactions can be traced back to the work of
Jouvet and Soep8 who studied the photochemistry of the
Hg · · ·Cl2 atom-molecule van der Waals complex. Later,
complexes of two molecules were used by Wittig et al.
such as (HBr) · · ·(CO2)

9,10, (H2S) · · ·(CO2)
11, (HI) · · ·(CO2)

12,
(N2O) · · ·(HI)13, (OCS) · · ·(DI)14. These groups took the advan-
tage of bringing different molecules close to each other thanks to
their weak mutual interaction, ranging from van der Waals inter-
actions to the stronger hydrogen-bonds. It is then by irradiating
the formed complex with light that they would trigger a reaction
involving the two moieties. In the case of two molecules A�B

and C, one forms the weakly bound complex A�B · · ·C, then ir-
radiates the system with light so as to photodissociate A�B. As
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a result, the fragment A is ejected away from the whole system
and B is thrown against C. The collision of B with C is then the
bimolecular elementary process of interest. What is special here
is that the initial positions of the colliding molecules are given
by the geometry of the starting complex and that the collisional
process takes place in the electronic ground state of the latter,
provided that the fragment A is far enough from the two others,
B+ C, and that B is formed in its electronic ground state.

In these works, the measured physical quantities were given
as functions of the photodissociating continuous wave laser fre-
quency, preventing the observation of time-dependent quantities.
Eventually, sub-picosecond time-resolved analysis of bimolecular
reactions from predefined initial conditions were accomplished by
Zewail and collaborators who exploited the idea of using weakly
bound complexes in pump-probe laser femtochemistry experi-
ments. Here, a first short laser pulse (‘pump’) initiates the process
by photodissociating one of the molecules of the complex (in the
example above, A�B), thus setting a ‘zero of time’ of the reaction
to be observed. A second, delayed, laser pulse (‘probe’) is beamed
on the system. The response of the latter by interaction with the
probe pulse gives then an indication of the status of the system at
a given time after the pump pulse. This procedure is ubiquitous in
Zewail’s pioneering work and has been applied to a large number
of studies of more common unimolecular dynamics. The situa-
tion described here is conceptually the same if one considers the
complex as a single ‘supermolecule’ where the collisional process
unfolds internally. The first experiments of this kind carried out
by Zewail’s group involved the complexes (HI) · · ·(CO2)

15,16 and
(HBr) · · ·(I2)17,18. Since then, this and other groups explored or
revisited this class of reactions19–24 and similar ones relying on
charge transfer between the moieties of the complex upon pho-
toexcitation by the pump pulse.25–30

One of the prototypical examples of bimolecular reactions is
the pair of exchange reactions:

H+H′OD−−→
{
HOD+H′

HOH′+D
(1)

These exchange reactions have been studied only from a theo-
retical standpoint,31–36 whereas the competing ‘abstraction’ reac-
tions H + H′OD−−→ HH′ +DO or HD+ H′O have received a lot
of attention in both theory4,31–36 and experiments.4,37–42 In the
context of the ideas explained above, we explore, in this paper,
the possibility of initiating the exchange reactions (1) starting
from the hydrogen-bound complex (HCl) · · ·(HOD) by breaking
the HCl moiety with an appropriate short laser pulse. The ap-
proach we adopt is based on quantum mechanics where we solve
numerically the time-dependent Schrödinger equation (TDSE) for
the nuclear wavefunction, aiming at predicting how the nuclei in-
volved in the reaction will move. In particular, one of our main
goals here is to calculate time-dependent reaction probabilities
along the exchange and recoil channels of the above-mentioned
reaction. To the best of our knowledge, no time-resolved experi-
ments on that exchange reactions and no study of such reactions
occurring from the use of the (HCl) · · ·(HOD) complex seem to
have ever been conducted. With this paper, our hope is to revive

the interest in the femtochemistry of these ‘precursor-initiated’
bimolecular reactions, which have received attention from ex-
perimentalists until twenty years ago but have lacked theoretical
studies.43 As will be shown, the development of new accurate ab
initio PESs and efficient algorithms for solving the TDSE in recent
years have made it possible to come back to these.

We structure this work as follows. First, we will briefly review
the existing work regarding the (HCl) · · ·(HOD) complex and the
photodissociation of HCl. Next, we explain how the nuclear coor-
dinates of the reacting system H + H′OD are described in terms
of polyspherical coordinates whose choice determines the form of
the kinetic energy operator to be used. Subsequently, we will be in
the position of specifying the initial state used for the time prop-
agation given the assumptions invoked in this study. Details on
the computational aspects of the simulations are then provided.
Finally, we present and discuss the results we have obtained.

2 The starting complex (HCl) · · ·(HOD) and the

photodissociation of HCl

The complex (HCl) · · ·(H2O) and its various isotopologues are
known in the literature. Experimentalists could observe it in a va-
riety of conditions by many methods, including Fourier transform
microwave (FTMW) spectroscopy in supersonic jets,44–46 Fourier
transform infrared (FTIR) spectroscopy in supersonic jets,47,48

inert matrices49–54 and Helium nanodroplets,55–57 time-of-flight
mass spectrometry and velocity-map imaging used to observe vi-
brational predissociation of the complex58,59 and infrared cavity
ringdown spectroscopy.60,61 Many theoretical analyses using ab
initio electronic structure methods62–76 were published as well.

It is established that HCl is the hydrogen-bond donor in the bi-
nary complex while remaining non-ionized. Ab initio methods in-
dicate the existence of three noteworthy stationary points on the
potential energy surface. Two of them are identical global minima
with Cs geometries (as in fig. 1), one being the image of the other
by reflection through the plane of the water molecule. The other
one is a saddle point with planar C2v geometry (where HCl and
H2O are now coplanar) connecting the two minima and whose
imaginary frequency normal mode is the oscillation between one
such geometry to the other. The minimum energy path on the PES
going through these three points describes a double-well poten-
tial curve. However, the barrier between the two Cs geometries
turns out to be smaller than the vibrational zero-point energy. As
a consequence, the vibrational ground state wavefunction is delo-
calized over that double-well and the planar C2v geometry is the
most likely to be observed. With the calculation of the potential
energy surface for this system at the CCSD(T)/aug-cc-pvtz level of
theory, Mancini and Bowman could accurately calculate the bar-
rier height and obtain the vibrational ground state wavefunction
and zero-point energy by the diffusion Monte Carlo method.73

Excited states potential energy surfaces of the complex, in par-
ticular of (HCl∗) · · ·(H2O) where HCl dissociates, are instead not
available. However, the photodissociation of HCl alone is known
and is not expected to differ much when occurring within the
complex because of the relatively weak bond between the water
molecule and the hydrogen halide. This aspect will be further dis-
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cussed when defining the initial state. According to the work of
Schmidt et al.,77 the first allowed electronic transition originat-
ing from the electronic ground state X1Σ is the A1Π← X1Σ, with
vertical energy 7.9274 eV corresponding to 156.40 nm. When cor-
rected with the vibrational zero-point energy of HCl,78 the effec-
tive vertical transition energy becomes 7.7434 eV, corresponding
to 160.12 nm. The potential curve of the A1Π state is characteristic
of an exponential-decay-like unbound state correlating to ground
state Cl(2P) and H(2S). The difference ∆Vexc in energy between
the Franck-Condon geometry and the infinitely separated Cl and
H is ∆Vexc = 3.2825 eV. Were these two atoms considered as clas-
sical particles, by conservation of momentum they would then
gain opposite partial momenta of magnitude pexc =

√
2µ∆Vexc, as

shown in appendix A. It is important to note that these quantities
are given in the space-fixed frame of reference of HCl.

These considerations, will be important for the definition of the
initial state of H + HOD, as will be done in section 4. In order to
be specific, we first discuss in the following section how nuclear
configurations are defined in this study.

3 Choice of coordinates and Hamiltonian

As in any many-body dynamical problem, the choice of the coordi-
nates describing the system is crucial. A balance has to be found
between convenience (for analysis and interpretation of the re-
sults) and tractability of the equations of motion. In molecules,
the nuclei move with respect to one another, so that distances be-
tween pairs of them and various angles are, at first sight, the most
natural coordinates to choose. It turns out that this very choice
is not optimal in general, in particular when molecules contain
more than three atoms. Indeed, distance vectors do not yield
a convenient kinetic energy operator to work with, as the num-
ber of terms coupling the conjugated momenta associated to each
vector scales with the square of the number of atoms. However,
one can judiciously work with another set of vectors which, by
design, make these crossed terms disappear. Such vectors, in the
context of molecular many-body dynamics, are called ‘orthogonal
vectors’ (this does not mean they are perpendicular) since they
‘diagonalize’ the kinetic energy operator. By this we mean that the
kinetic energy is expressed simply as the sum of momenta squared
(weighted by their associated masses) without mixed terms. For
this reason, as detailed in the following, we choose a non-trivial
set of orthogonal vectors to describe the molecular system. These
are parametrized in spherical coordinates and, by the polyspher-
ical approach,79 we find the expression of the kinetic energy op-
erator used in this study.

From now on, we call Ha the hydrogen atom belonging to HCl

and Hb the one belonging to HOD (see fig. 1). G is the center
of mass of HaHbOD, Gs is the center of mass of the subsystem
HbOD and K is its so-called ‘canonical point’ with O being the
heliocenter, as defined by Radau.80,81 . These points are defined

Ha

~R3

D

~R2

Hb
~R1

O

Gs

K G

Cl

Fig. 1 Minimum potential energy geometry of the (HCl) · · ·(HOD) com-

plex and the vectors describing the relative positions of the atoms Ha,

Hb, D and O. The shown points are: G, the center of mass of {Ha, Hb,

D, O} ; Gs, the center of mass of the subsystem {Hb, D, O} ; K, the

Radau canonical point of {Hb, D, O} with heliocenter O. Some lengths

are exaggerated for visualization purposes (to make G, Gs and K distin-

guishable).

G

x
y

z

~R3

βs

βs

z′

~R2

γs

γs

x′

y′~R1

θ

Fig. 2 The three vectors R⃗1, R⃗2 and R⃗3 of �g. 1 and de�nition of the

angles βs, γs and θ between them in the BF and BFs frames of reference.

The coordinate system (Gxyz) is attached to the body-�xed frame BF,

whereas (Gx′y′z′) is attached to the `subsystem'-body-�xed frame BFs.

In the text, u = cosθ
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such that:

x⃗G =
mHx⃗Ha

+mH x⃗Hb
+mOx⃗O+mDx⃗D

2mH+mO+mD
(2)

x⃗Gs =
mHx⃗Hb

+mOx⃗O+mDx⃗D
mH+mO+mD

(3)

x⃗K − x⃗O = (1+αO)
−1 (⃗xGs − x⃗O) (4)

αO =

√
mO

mH+mO+mD
(5)

Since we are not interested in the fate of the chlorine atom after
HCl has dissociated, the wavefunction for which we will solve
the time-dependent Schrödinger equation will not depend on its
coordinates. As will be shown later, these will play a role only in
obtaining the initial state in the computations. We focus here on
the other atoms of the molecular system Ha + HbOD, shown in
fig. 1 with the points we have just defined. The relative positions
of these four atoms are given by three vectors R⃗1, R⃗2 and R⃗3, also
shown in the figure and defined as follows:

R⃗1 = x⃗Hb
− x⃗K (6)

R⃗2 = x⃗D− x⃗K (7)

R⃗3 = x⃗Ha
− x⃗Gs (8)

We call α, β and γ the three Euler angles of the overall rotation
of the system. The rotating body-fixed (BF) frame of reference
is chosen such that its z-axis is aligned along the R⃗3 vector and
the x-axis is in the plane defined by R⃗2 and R⃗3 (with R⃗2 being
oriented towards positive x). By this choice, α and β are given
by the spherical angles of R⃗3 with respect to a given lab frame of
reference and γ is defined in such a way that (for small values
γ) R⃗2 lies in the (xz, x > 0) semi-plane. As will be clearer later,
we write γ = αs for convenience. Finally, as shown in fig. 2, we
call βs, γs and θ the angle from R⃗3 to R⃗2, the rotation angle of R⃗1

around R⃗2 and the angle from R⃗2 to R⃗1, respectively. We define
for convenience a ‘subsystem’-body-fixed (BFs) frame of reference
attached to HbOD, whose z′-axis is aligned along R⃗2 and the x′-
axis is such that (for small values of θ) R⃗1 is in the (x′z′, x′ >
0) semi-plane. As the Euler angles α, β and γ = αs define the
overall orientation of the system, they will be called ‘external’
coordinates, as opposed to R1, R2, R3, βs, γs and θ which will be
called ‘internal’ coordinates (Rk =

∥∥∥R⃗k

∥∥∥ ,k ∈ {1,2,3}).
R⃗1, R⃗2 (which are Radau vectors within HbOD) and R⃗3 (Jacobi

vector) are said to be ‘orthogonal’ in the sense that the classical
expression of the kinetic energy in the space-fixed frame of refer-
ence of HaHbOD (i.e. whose origin is the center of mass G and
the axes do not rotate with respect to any given lab-fixed frame
of reference) is a linear combination of the squares of their con-
jugate momenta P⃗1, P⃗2 and P⃗3, respectively. This gives:

T =
3

∑
k=1

P⃗k
2

2µk
(9)

with µk (k ∈ {1,2,3}) being masses depending on the problem.

With our particular choice of vectors:

µ1 = mH µ2 = mD µ3 =
mH(mH+mO+mD)

2mH+mO+mD
(10)

that is, the masses associated to the Radau vectors are the masses
of the ‘satellite’ atoms Hb and D of HbOD and the one of the Ja-
cobi vector is the reduced mass of Ha and HbOD. The study of
the Ha + HbOD system is therefore equivalent to that of three
fictive particles with these three masses, respectively. It is worth
noting that, owing to the heavier mass of oxygen than those of
the other atoms, these vectors can be roughly interpreted as the
distance vectors from O to Ha/D/Hb, respectively. This is also the
reason why this choice of vectors is suitable for the description of
the exchange processes in eq. (1), since each of the regions of the
configuration space corresponding to Rk → +∞ (for k ∈ {1,2,3})
describes an exchange reaction (k = 1 or 2) or recoil (k = 3). Note
also that the abstraction reactions channels would correspond to
regions where pairs of radial coordinates tend to infinity simulta-
neously.

We choose to parametrize these vectors with polyspherical co-
ordinates, where each vector is described by spherical coordinates
(one distance and two angles) with respect to a frame of reference
moving with other vectors: R⃗1, R⃗2 and R⃗3 are respectively defined
by the triplets of coordinates (R1,γs,θ), (R2,αs,βs) and (R3,α,β )

(see fig. 2). By using a separation into two subsystems82 with
the two Radau coordinates for the water-d1 molecule,83 which
can be seen as a very particular case of the systematic approach
of Gatti and Iung,79,84,85 twice the quantized form of the kinetic
energy operator of this system reads:

2T̂ =− h̄2

µ3

∂ 2

∂R3
2 +

ˆ⃗L†
3 ·

ˆ⃗L3

µ3R2
3
+2T̂HOD

=− h̄2

µ3

∂ 2

∂R3
2 +

(
ˆ⃗J− ˆ⃗L1,2

)†
·
(

ˆ⃗J− ˆ⃗L1,2

)
µ3R2

3
+2T̂HOD

=− h̄2

µ3

∂ 2

∂R3
2 +

ˆ⃗J† · ˆ⃗J+ ˆ⃗L†
1,2 ·

ˆ⃗L1,2−2 ˆ⃗J† · ˆ⃗L1,2

µ3R2
3

+2T̂HOD

=− h̄2

µ3

∂ 2

∂R3
2 +

Ĵ2 + L̂2
1,2−2Ĵ2

z − Ĵ+(L̂1,2)−− Ĵ−(L̂1,2)+

µ3R2
3

+2T̂HOD

(11)

where † denotes the Hermitian conjugate of the operator, which
appears here since we work with conjugate momenta of curvilin-
ear coordinates (see e.g. refs. 86–88). Here T̂HOD is the kinetic
energy of HOD in the space-fixed frame of reference:
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2T̂HOD =− h̄2

µ1

∂ 2

∂R1
2 −

h̄2

µ2

∂ 2

∂R2
2 + h̄2

(
1

µ1R2
1
+

1
µ2R2

2

)(
∂

∂u

(
1−u2

)
∂

∂u
+

1
1−u2

∂ 2

∂γs2

)

+
1

µ2R2
2

[
L̂2

1,2−2(L̂1,2)
2
z + h̄

(
−
√

1−u2 ∂

∂u
+

1
2

u√
1−u2

)(
(L̂1,2)

BFs
+ − (L̂1,2)

BFs
− )

)
+

u

2
√

1−u2

(
(L̂1,2)

BFs
+ (L̂1,2)

BFs
z +(L̂1,2)

BFs
− (L̂1,2)

BFs
z

+(L̂1,2)
BFs
z (L̂1,2)

BFs
+ +(L̂1,2)

BFs
z (L̂1,2)

BFs
−
)]

(12)

where we have carried out a change of variable u = cosθ . In
eq. (11), ˆ⃗J and ˆ⃗L1,2 = ˆ⃗L1 +

ˆ⃗L2 are respectively vector operators
of the total angular momentum and the angular momentum of
HbOD (corresponding to the fictive particles 1 and 2 together).
Ĵ2, Ĵz and Ĵ± are the magnitude squared, the z-component and
the ladder operators of the angular momentum of HaHbOD. L̂2

1,2
and (L̂1,2)z are the magnitude squared and the z-component of
ˆ⃗L1,2 in the space-fixed frame of reference. In eq. (12), the op-
erators (L̂1,2)

BFs
+ , (L̂1,2)

BFs
− and (L̂1,2)

BFs
z are the lowering, raising

and z-component of the angular momentum ˆ⃗L1,2 projected on the
(BFs) frame of reference axes (still expressed within the space-
fixed frame of reference).

The kinetic energy operator T̂ , written as in eqs. (11) and (12),
can be implemented in the Heidelberg MCTDH package which
will be introduced in section 5. The correctness of the operator
T̂HOD and its implementation have been tested numerically as ex-
plained in appendix B.

4 De�nition of the initial state

As our main focus is on the collision between Ha and HbOD, the
wavefunction Ψ of the system HaHbOD will be a function of the
internal coordinates R1, R2, R3, βs, γs and u as well as the ex-
ternal angle αs. For a fixed orientation (α,β ,γ = αs), there is a
one-to-one relation between these internal coordinates and the
space-fixed Cartesian coordinates x⃗Ha

, x⃗Hb
, x⃗D, x⃗O of the atoms in

Ha + HbOD. The definition of the initial state Ψ0 of the system
Ha + HbOD is specified by invoking the Franck-Condon approx-
imation: the excitation is so fast that the complex retains its ge-
ometry, given by its (ro-)vibrational ground state ψg, as it transits
to the electronic excited state. Moreover, the hydrogen-bond is
disregarded in the photodissociation process of HaCl, as the in-
termolecular binding energy is small with respect to the excess
energy ∆Vexc.

This allows to consider that (a) the potential energy curves of
the X1Σ and A1Π states of HaCl remain the same as when it is iso-
lated and (b) the centers of masses of HaCl and HbOD keep the
same distance at all times. Now, as we will be observing the colli-
sion occurring between Ha and HbOD in the space-fixed frame of
these four atoms (and not the frame of the whole complex, which
includes Cl), we must correct the partial momentum of the re-
leased hydrogen atom. The relative momentum between Ha and

HbOD becomes:

p′exc =

(
1− mH

2mH+mD+mO

)
pexc (13)

as shown in appendix A. The classical translational kinetic energy
of collision is then, in the frame of reference of Ha+HbOD, Ecoll =

∆Vexc(mCl/mHCl)(mHOD/mH2OD) = 3.03 eV.
In view of these assumptions, the initial state of the propaga-

tion is defined in the rotational ground state J = 0 as:

Ψ0(R1,R2,R3,u,αs,βs,γs) = ψg(R1,R2,R3,u,βs,γs)e−ip′excR3/h̄ (14)

Equation (14) expresses the fact that the momentum of the so-
defined wavepacket is that given by full photodissociation of
HaCl. Although Ha is not fully dissociated from Cl when the for-
mer reaches HbOD, it is shown in appendix C that this aspect has
not a major impact on the outcome of the propagation. Note also
that, since the atoms Cl, Ha and O in the complex are aligned
and G almost coincides with oxygen, we consider that the mo-
mentum of Ha is entirely converted into momentum along the R3

coordinate.

5 Computational details

This study has been carried out with the Multi-Configuration
Time-Dependent Hartree method (MCTDH),89–93 more precisely
the Heidelberg MCTDH package (version 8.5.11).94 The wave-
function Ψ to be propagated is defined over a grid in the internal
coordinates R1, R2, R3, βs, γs and u plus the overall rotation angle
γ = αs. The chosen wavefunction ansatz is:

Ψ(R1,R2,R3,u,αs,βs,γs, t)

=
n1

∑
i1=0

n2

∑
i2=0

n3

∑
i3=0

Ai1,i2,i3(t)ϕ
(1)
i1 (R1,u, t)ϕ

(2)
i2 (R2,R3, t)

×ϕ
(3)
i3 (αs,βs,γs, t) (15)

That is, we use three sets of combined-modes single-particle
functions (SPF). The SPFs are defined, for i1 ∈ {1, . . . ,n1}, i2 ∈
{1, . . . ,n2} and i3 ∈ {1, . . . ,n3}, as:

ϕ
(1)
i1 (R1,u, t) =

N1,1

∑
j1=0

N1,2

∑
j2=0

c(1)i1, j1, j2(t)χ
(1,1)
j1 (R1)χ

(1,2)
j2 (u) (16)
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Table 1 De�nition of the grid and of the corresponding primitive basis.

κ Coord. PBF type1 Nκ Range Units2 ni

(1,1) R1 sin 30 [1.0,5.0] a0 20
(1,2) u sin 20 [−0.99,0.6] –
(2,1) R2 sin 40 [1.0,5.0] a0 25
(2,2) R3 sin 55 [1.0,7.0] a0
(3,1) αs k 1 – – 16
(3,2) βs wigner 20 – –
(3,3) γs exp 31 [0,2π] rad
1 sin = particle in a box eigenfunctions ; wigner = Wigner ro-

tation matrix elements ; exp = imaginary exponentials with
periodic boundary conditions ; k = K-rotational quantum
number in the Wigner-DVR

2 1 a0 = 1 Bohr = 0.529 Å

ϕ
(2)
i2 (R2,R3, t) =

N2,1

∑
j1=0

N2,2

∑
j2=0

c(2)i2, j1, j2(t)χ
(2,1)
j1 (R2)χ

(2,2)
j2 (R3) (17)

and

ϕ
(3)
i3 (αs,βs,γs, t) =

N3,1

∑
j=0

N3,2

∑
k=0

N3,3

∑
m=0

c(3)i3, j,k,m
(t)χ(3)

j,k,m(αs,βs,γs) (18)

The functions χ
(κ)
j (qκ ) – where κ is a multi-index labelling a co-

ordinate in a mode, e.g. κ = (2,1) labels the coordinate R2 – are
the time-independent primitive basis functions (PBF). These func-
tions, for the coordinates R1, R2, R3 and u, are chosen to be the
discrete variable representation (DVR) associated with particle-
in-a-box eigenfunctions:

χ
κ
j (qκ ) =

√
2

Lκ

sin

(
π j(qκ −qmin

κ )

Lκ

)
(19)

where the coordinate qκ takes values between qmin
κ and qmax

κ , and
Lκ = qmax

κ −qmin
κ . For the angular coordinates we choose the DVR

associated with an expansion in Wigner rotation matrix elements
which are non-direct product functions of the three angles:

χ
(3)
j,k,m(αs,βs,γs) =

√
2( j+1)

8π2 D j
m,k(αs,βs,γs) (20)

where

D j
m,k(αs,βs,γs) = e−imγs/h̄d j

m,k(cosβs)e−ikαs/h̄ (21)

the functions d j
m,k are Jacobi polynomials.95

The discrete points where the wavefunction and the poten-
tial energy operators are evaluated in coordinate space are de-
termined by the DVR algorithm built into the MCTDH program.
These correspond to Gaussian quadrature points specific to the
type of PBF used for each degree of freedom. The number of grid
points Nκ along a given coordinate equals the number of primi-
tive functions used in the expansions in eqs. (16) to (18). The
parameters of the grid/PBF expansions are given in table 1.

The ground state wavefunction ψg of the complex

(HaCl) · · ·(HbOD) was obtained by improved relaxation96

on the potential energy surface by Mancini and Bowman 73 with
implicit inclusion of the Cl atom. By “implicit” we mean that
the position of the Cl atom is deduced by the position of the
other ones Ha, Hb, D and O. To be specific, the potential energy
function V used in this relaxation is a function of the coordinates
x⃗Ha

, x⃗Hb
, x⃗D, x⃗O (or, equivalently, as a function of the internal

coordinates, since the potential is invariant by overall rotation
and translation) and its definition is related to the original
potential energy surface of the complex U by:

V (⃗xHa
, x⃗Hb

, x⃗D, x⃗O) =U (⃗xHa
, x⃗Hb

, x⃗D, x⃗O, f (⃗xHa
, x⃗O)︸ ︷︷ ︸

= x⃗Cl

) (22)

with f defined as

f (⃗xHa
, x⃗O) = x⃗Ha

+
x⃗Ha
− x⃗O

∥⃗xHa
− x⃗O∥

Re (23)

In other words, the chlorine atom is placed along the (OHa)
axis, behind the hydrogen atom at a fixed distance Re = 1.29 Å
corresponding to the equilibrium bond length of HCl in the
(HCl) · · ·(H2O) complex at the Cs geometry. The kinetic energy
operator used for the relaxation is the one in eq. (11), thus miss-
ing some terms related to the HCl elongation and rotation which
are neglected. However, this procedure still allows to obtain a
physically reasonable ground state wavefunction ψg without ex-
plicit consideration of the Cl coordinates which are not of interest
in the subsequent collision between Ha and HbOD. We could in-
deed obtain a wavefunction with C2v symmetry, with expectation
values of the coordinates in agreement with the ground state ge-
ometry found by Mancini and Bowman. The potential was recon-
structed as a sum of products of ‘one particle’ (also called ‘natu-
ral’) potentials – a suitable form for the evaluation of its action on
the MCTDH ansatz (eq. (15)) – with the POTFIT program.97–99

A narrow relevant region including the double-well potential was
considered for the fit. Contraction along the mode (R2,R3) was
performed whereas, for the modes (R1,u) and (βs,γs), 213 and 166
natural potentials were respectively included for the fit and, after
a few fitting iterations, the rms error in the relevant regions was
20.7 meV.

The wavefunction ψg obtained above is then multiplied by the
imaginary exponential as in eq. (14) so as to obtain the initial
state for the subsequent dynamics of the Ha+HbOD collision, for
which we used the H3O potential energy surface of Chen et al. 100

(of the three versions presented in the paper, the NN1 was cho-
sen). The latter was POTFITted over a region corresponding to
energies below 6.1 eV (the reference being at the H+H2O asymp-
tote). The mode (R2,R3) was again contracted and, for the other
modes, we used 191 and 77 natural potentials for the fit. The
obtained rms error in the relevant region was, after several itera-
tions, 14.3 meV.

Additional complex absorbing potentials (CAPs) were added at
the ends of the three reaction channels in which the wavefunction
had more likelihood to exit: the HaOD + Hb and HaHOb + D

exchange channels (which we label ‘1’ and ‘2’, respectively) and
the Ha + HbOD recoil channel (‘3’). In practice, the CAPs were
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placed at the ends of the grid for large values of R1, R2 and R3

and were of the form (for k ∈ {1,2,3}):

Θk(Rk) =−iηk ·Γ(Rk−R0
k) · (Rk−R0

k)
2 (24)

where Γ is the Heaviside step function, R0
k is the starting point of

the kth CAP and ηk its strength. The lengths (i.e. max(Rk)−R0
k ) of

the CAPs were set to 1.5 a0 at the ends of channels ‘1’ and ‘2’ and
to 2 a0 for channel ‘3’. The strengths were chosen by an autom-
atized optimization procedure – included in the MCTDH package
– in order to minimize the reflection on and transmission through
these.101–103 Due to the limited range of values taken by R3 and
the fact that the initial state is located in the region covered by
the third CAP, the latter was activated only a few femtoseconds
after the beginning of the propagation, i.e. when the wavepacket
would mostly be outside that region.

Time-resolved reaction probabilities Pk(t) with k ∈ {1,2,3} for
the three outcomes listed above (two exchanges and one recoil)
were calculated by accumulation in time of the probability current
along each of the three channels. The latter were evaluated by
taking the expectation value of the flux operators F̂k defined as
the following commutator104 (for k ∈ {1,2,3}):

F̂k =
[
Ĥ,Γ(Rk−R0

k)
]
=
[
T̂ ,Γ(Rk−d)

]
(25)

with Ĥ = T̂ +V̂H+H2O and d = 3.5 a0. In the following we call ‘in-
teraction region’ the portion of the configuration space where, for
k ∈ {1,2,3}, 0 < Rk < d. The reaction probability in each channel
k is then given by:

Pk(t) =
∫ t

0
⟨Ψ(τ)|F̂k|Ψ(τ)⟩ dτ +Pk(0) (26)

where Pk(0) is the probability of finding the system in the region
where Rk < d at t = 0.

In addition, energy-resolved reactions probabilities along the
three channels were calculated too. The computation of these
quantities depend on the energy distribution ∆(E) of the wave-
function which is determined by the (inverse) energy-time Fourier
transform of the wavefunction autocorrelation function:

∆(E) =
1

2π h̄

∫ +∞

−∞

⟨Ψ(0)|Ψ(τ)⟩ eiEτ/h̄ dτ

=
1

π h̄
Re
(∫ T

0
⟨Ψ(0)|Ψ(τ)⟩ eiEτ/h̄ dτ

)
(27)

where T is the final time of the propagation. In the following,
we will represent energy-dependent quantities as functions of the
collision energy between Ha and HbOD. The energy axes are
thus shifted by 0.498389 eV corresponding to the vibrational zero-
point energy of the latter. This energy is calculated by improved
relaxation of HbOD on the same surface we use for the dynamics
(where Ha is fixed, far away from HbOD, see appendix B for de-
tails). In order to calculate the reaction probabilities, one needs
the energy-dependent fluxes φk(E) for k ∈ {1,2,3} at the end of
each channel. These can be computed thanks to the CAPs:92,93

φk(E) =
2

π h̄
Re
(∫ T

0
gk(τ) eiEτ/h̄ dτ

)
(28)

with:

gk(τ) =
∫ T−τ

0
⟨Ψ(t)|Θk|Ψ(t + τ)⟩ dτ

+
1
2
⟨Ψ(T − τ)|Γ(Rk−R0

k)|Ψ(T )⟩ (29)

Eventually, the energy-resolved reaction probabilities are given
by:

Πk(E) =
φk(E)
∆(E)

(30)

Because of the presence of CAPs, the norm of the wavefunc-
tion would eventually decrease during the propagation. We let
it proceed until the former would fall below 10−3, for which a
propagation time of 130 fs is sufficient.

The convergence of our results was checked by inspection of
(1) the squares of absolute values of the expansion coefficients
c(κ)i, j,k,m(t) and the populations at the ends of the grid and (2) the
magnitude of the natural weights (i.e. the eigenvalues of the one-
mode density matrices ∑iκ |ϕ

(κ)
iκ ⟩⟨ϕ

(κ)
iκ |). It was required that, over

the entire propagation, the smallest value of each of the quantities
in (1) and (2) was below 10−3 and 10−4, respectively. In addition,
we required that the sum of the energy-resolved reaction proba-
bilities would be as close as possible to unity within a 1% error
over the largest possible collision energy range. The precision
constraint was satisfied by further increasing the number of SPF.
The coverage of a larger portion of the energy spectrum was made
possible by carrying out additional propagations at slightly higher
or lower collision energy (namely by increasing or decreasing p′exc
– we chose 16 a.u. and 22 a.u., respectively) and then joining
the respective calculated reaction probabilities Π

⊕
i and Π

⊖
i to the

main one Π0
i by using smooth switching sigmoid-type functions:

Πi(E) = Π
⊖
i (E)(1− s(E− ε⊖))(1− s(E− ε⊕))

+Π
0
i (E)s(E− ε⊖)(1− s(E− ε⊕))

+Π
⊕
i (E)s(E− ε⊖)s(E− ε⊕)

(31)

where s(E) = (1+ exp(−E/ε))−1, the junction extent is ε = 0.1
and the junction points are (ε⊖,ε⊕) = (2.5,4.1) eV.

The chosen parameters to achieve the desired level of precision
are the ones given in table 1.

6 Results and discussion

6.1 Main results

We first look at the evolution of the nuclear wavepacket over time.
The most relevant coordinates for tracking the present process in
eq. (1) are the radial ones R1, R2 and R3 (since, as noted in sec-
tion 3, they roughly correspond to the O�Hb, O�D and O�Ha

bond distances, respectively). Figure 3 displays three contour
plots of cuts of the potential energy surface of H3O as functions
of different pairs of these coordinates. In these cuts, the angular
coordinates u, βs and γs as well as, in turns, R1, R2 or R3, were
chosen as their respective expectation value at t = 0. On top of
the PES cuts, the marginal probability densities (also known as
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(a)

(b)

(c)

Fig. 3 Snapshots of the reduced densities (coloured contours) of the wavepacket as functions of di�erent pairs of radial coordinates: (a) R1 and R2,

(b) R3 and R1 and (c) R3 and R2. These are overlaid over cuts of the PES (grey-scaled contours) where the �xed coordinates equal their expectation

value in the initial state. The dashed lines denote the beginning of a complex absorbing potential.

‘reduced densities’) are represented at different times during the
propagation. These were evaluated by integrating |Ψ(t)|2 with
respect to all but two radial coordinates over the entire grid.

The marginal probabilities are, at t = 0, Gaussian-like func-
tions of the radial coordinates located around ⟨R1⟩ = 1.81 a0,
⟨R2⟩ = 1.78 a0 and ⟨R3⟩ = 4.0 a0. This reflects the fact that the
initial state describes the Ha atom and the HbOD molecule as
separated bodies. Note, though, that the wavepacket is not in-
finitely far from the interaction region: it is indeed lying on the
uphill slope of the PES (see e.g. fig. 16) leading to the HaHbDO

transient (a saddle point [Ha(HbOD)]
̸= and a shallow local min-

imum HaHbOD behind it). As time unfolds, because of the ini-
tial momentum −p′exc in the direction of R⃗3, the wavepacket ap-
proaches the interaction region. As shown in figs. 3b and 3c,
it quickly reaches ⟨R3⟩ ≈ 1.6 a0, crossing many high-lying con-
tour lines of the repulsive potential wall, yet keeping the HbOD

molecule undisturbed (see fig. 3a). Around 12 fs, the wavepacket
is almost entirely rejected back towards large values of R3, i.e. in
the non-reactive scattering channel ‘3’. There is just a small frac-
tion of the wavepacket that stands out and manages to enter the
reactive channel ‘1’ corresponding to the Ha/Hb exchange (see

figs. 3a and 3b at 12 fs). During this time, no O�D dissociation
seems to be observable (fig. 3c). The abstraction reactions are
also totally absent.

Since this collision unfolds over a few femtoseconds, the chlo-
rine atom must have not moved a lot from its original position be-
cause of its large mass relative to that of Ha (we estimate that in
10 fs the Cl atom moves only by 0.07 Å). This raises the question
whether the rejected Ha atom meets Cl again, causing multiple
collisions of Ha against HbOD.

Investigation of the motion of the wavepacket over time in the
coordinates βs (which roughly corresponds to the angle ĤaOD)
and γs (which is approximately π minus the dihedral angle be-
tween O�Ha and O�Hb about the OD axis) suggests an answer.
As shown in fig. 4, the wavepacket does not move much until
the collision between Ha and O occurs, at t = 6 fs. The peak of
the reduced density then quickly moves to larger values of |γs|.
This is accompanied by a slight shift towards smaller βs. By look-
ing at the propagation in the coordinates R3 and γs, shown in
fig. 5, one sees again that the displacement of the wavepacket
from γs = 0 to |γs| > 0 happens after the collision at t = 6 fs. On
the rightmost panel at t = 16 fs, it can be seen that the part of
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Fig. 4 Reduced density (coloured contour lines) of the wavepacket of the main propagation as a function of the angular coordinates βs and γs at

di�erent times. The black contour lines correspond to the cut of the potential energy surface at the expectation values of the other coordinates at

t = 0.

Fig. 5 Reduced density (coloured contour lines) of the wavepacket of the main propagation as a function of the coordinates R3 and γs at di�erent

times. The black contour lines correspond to the cut of the potential energy surface at the expectation values of the other coordinates at t = 0. The
dashed line indicates the beginning of the complex absorbing potential.
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the wavefunction describing the return to increasing values of
R3 is mostly away from the plane γs = 0. This splitting of the
wavepacket can be explained by the fact that, on its way to the
Ha + HbOD collision, it is propagating along a barrier that sepa-
rates the local minima of H2DO (which, with only regular hydro-
gen, correspond to the C3v geometries of H3O,100,108 each being
a mirror image of the other). That barrier has a height of about
1200 cm−1, i.e. much higher than that separating the C2v minima
of (HCl) · · ·(HOD) (59 cm−1).73 Thus, in contrast with the situ-
ation of (HCl) · · ·(HOD) described in section 2, the wavepacket
separates into two distinct ones.

As a result, a large part of the wavepacket associated to non-
reactive scattering does not revisit the same region of the con-
figuration space covered by the initial state: for the most, the
angle between the OHa axis and the HbOD plane is different be-
tween before and after the collision. However, since the coor-
dinates βs and γs are relative coordinates describing the geome-
try of HaHbOD, they do not tell anything about its orientation
with respect to the stationary Cl atom. In other words, the limit
cases described by the non-reactive part of this wavepacket are
(i) backscattering of Ha away from the Cl�O axis, while HbOD

retains its original orientation with respect to Cl, or (ii) rotation
of HbOD away from the initial plane of the complex, while Ha

is backscattered in the direction it came from – thus still leading
to backscattering of Ha against Cl and to multiple Ha + HbOD

collisions. Given that rotational motion of small molecules takes
usually place on time-scales of picoseconds, this second option
seems to us the least probable. As a matter of fact, the rotational
constant of water with respect to the second largest principal axis
(which is approximately the axis the HbOD molecule is rotating
about in the present situation) is B̃ = 14.5 cm−1, which roughly
corresponds to a rotational period of T = 1/2B̃c = 1.15 ps. For the
rest of this subsection, we will assume that case (i) above is what
happens. The contribution of multiple collisions – case (ii) – to
the overall dynamics is discussed in section 6.4.

The computation of time-resolved fluxes through delimiting
surfaces in the three channels gives a more quantitative descrip-
tion of the process. The time evolution of the expectation value
of the flux operators in eq. (25) are shown in fig. 6a. The neg-
ative flux across the delimiting surface at R3 = d = 3.5 a0 ob-
served at early times is due to the approaching of Ha to the HbOD

molecule: the wavefunction is flowing inside the interaction re-
gion. Shortly after, the flux across that same surface and the one
placed at the O�Hb dissociation channel sharply peak to positive
values and simultaneously with a 4 : 1 ratio. It is only 3 to 4 fs
later that the flux in the O�D dissociation channel starts increas-
ing moderately, followed by a slow decay (see inset in the figure).

These fluxes show that the non-reactive scattering is the most
probable outcome of the collision, followed by Ha /Hb exchange,
and very little Ha /D exchange is observable. This is made clear
by integrating the fluxes as in eq. (26). These integrals are shown
in fig. 6b (the negative of the integral of F3 over the entrance
phase was taken as P3(t = 0)). After the delay time needed for
Ha to reach the collision partner, the reaction probabilities P1 and
P3 steeply increase : the probability of finding the system in the
non-reactive scattering channel goes from almost zero to 90% of
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its maximal value in the timespan between t = 9 fs and t = 15 fs.
The rising of the probability of Ha/Hb exchange increases in the
same fashion. Instead, the probability of Ha/D exchange P2 starts
increasing at slightly later moment and is slower than the others:
the increase to 90% of its asymptotic value occurs in the timespan
between t = 11 fs to t = 38 fs. As time tends to infinity, the total
reaction probabilities reach P1 = 24.1%, P2 = 5.4% and P3 = 70.5%.

An insight on the contributions of the different energy compo-
nents of the wavepacket to this process can be obtained by the
evaluation of the energy-resolved fluxes at the end of each reac-
tion channel. These and the wavepacket energy distribution ∆(E)
are shown in fig. 7a. As anticipated, the energy distribution of the
wavepacket is a broad Gaussian-like function centered at 3.1 eV.
The fluxes evaluated at the ends of the three channels are also
smooth, bell-shaped functions of the collision energy, each hav-
ing its maximum at a slightly higher or lower value. It can again
clearly be seen from the values taken by φ3 that the most prob-
able outcome of the collision is the non-reactive scattering of Ha

by HbOD. On the other hand, within the fraction of successful ex-
change reactions, the one involving the dissociation of the O�Hb

bond with subsequent departure of Hb is the most favoured and
very little dissociation of the O�D bond would be observed.

A clearer comparison of these fluxes can be discussed by com-
puting the energy-resolved reaction probabilities as in eq. (30).
These are shown in fig. 7b. We see, as in the time-dependent
picture, that the non-reactive scattering is the most prominent
outcome. This becomes more and more the case as the collision
energy increases, starting from almost 50% of probability at 2 eV
and reaching 90% at 4.5 eV. Conversely, the likelihood that either
of the exchange reactions would occur decreases monotonically
with collision energy: in that same range, Π1 (Ha/Hb exchange)
goes from 40% to 4.5% and Π2 (Ha/D exchange) falls from 5% to
0.5%.

The overall reaction probabilities are evaluated by taking the
integrals of φ1, φ2 and φ3 over all the energies (the integral of ∆

is one). In total, if the experiment were to be repeated infinitely
many times, the non-reactive scattering would occur 76.5% of the
time against only 21.2% and 2.3% of exchange reactions releasing
a protium or a deuterium, respectively, which is consistent with
the values obtained from the time-resolved fluxes. The discrep-
ancy between the two sets of values is probably due to the fact
that the flux φ3 is overestimated at the tails of the energy distri-
bution, making the sum of the three fluxes larger than the latter
(which is why we performed additional propagations at lower and
higher collision energies for the calculation of energy-resolved
probabilities). The overestimation seemed to be larger with a
longer CAP in the non-reactive scattering channel ‘3’.

As Ha approaches HbOD, the regions of the H3O PES explored
by the wavepacket are characterized by the presence of a barrier
whose geometry at the saddle point is of Cs symmetry. The latter
is followed by a shallow local minimum with a geometry of C3v

symmetry. The energies of these two are, respectively, 0.888 eV
and 0.789 eV above the H + H2O asymptote.100 From that C3v

intermediate, the paths leading to the departure of either hydro-
gen atom originally bound to the oxygen are the same as the one
just described, backwards. Now, even though the collision en-

ergy here is well beyond the barrier, it appears that the exchange
would fail most of the time and non-reactive scattering would oc-
cur, in particular for the high energy components of the wavefunc-
tion. The collision is so intense that the kinetic energy stored in
the R3 degree of freedom – as Ha is quickly approaching HbOD –
seems not to have sufficient time to redistribute within the H2DO

transient. Little energy is passed to the O�Hb and O�D bonds.
The collision is dominated by the repulsion between Ha and O

and is characterized by the very short rise-time in the probability
of non-reactive scattering.

Nevertheless, a small fraction of the wavefunction succeeds
in following either exchange process as in eq. (1). Protium-to-
protium exchange is clearly preferred to protium-to-deuterium.
Yet, the direction of attack of Ha towards HbOD is along the C2

axis of the latter, so Hb and D are geometrically equivalent prior
to the collision. Hb and D being isotopes, for any position of Ha in
that axis the potential energy on either bond dissociation channel
is the same.

A possible explanation of the difference in exchange reaction
probabilities could be a manifestation of vibrational zero-point
energy effects within the HaHbOD transient. Indeed, the normal
modes of the HOD molecule alone are localized, featuring distinct
O�H and O�D stretching modes with well-separated vibrational
frequencies (3707.47 cm−1 and 2723.68 cm−1, respectively105).
Their contributions to the overall vibrational zero-point energy
are therefore substantially different. By the harmonic approxi-
mation, their difference can be estimated at 491.895 cm−1, i.e.
0.0609872 eV. This suggests that more energy is required to dis-
sociate the O�D bond than the O�H one. This analogy can be
applied to the [HaHbOD]

̸= saddle point structures on the PES.
The geometries at the saddle points of H3O with Cs symmetry are
very similar to the one at the C3v local minimum, the main differ-
ence being that one of the hydrogen atoms (the one in the sym-
metry plane) is a bit farther that the other two from the oxygen.
The imaginary frequency normal mode is essentially the stretch-
ing of the bond in that plane. The vibrational zero-point energy
at that saddle point stems from contributions of the other normal
modes. Now, the electronic barriers from the HaHbOD local mini-
mum to the [(HaOD)Hb]

̸= and [(HaOHb)D]
̸= saddle points are the

same, but the vibrational zero-point energies are different, result-
ing in an effective barrier height difference. This is supported by
inspection of harmonic frequencies calculated at the MP2/aug-
cc-pvtz level of theory with the Gaussian16 quantum chemistry
package,106 where this difference is estimated at 492.62 cm−1,
that is 0.0611 eV.

However, this difference is much smaller than the collision en-
ergies at play in the present case. As a result, if it had a role in
the selectivity between the two exchange outcomes, one would
expect the ratio Π1/Π2 to be close or at least approach unity from
above for higher and higher collision energies. This is not the ob-
served trend (that ratio is significantly larger than 1 and increases
with the collision energy).
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Fig. 8 Same as �g. 3, with initial OD-stretching mode excitation of HOD.

6.2 Propagation from vibrationally pre-excited HOD

In section 6.1 we mentioned that vibrational zero-point energy
effects may play a role in the selectivity between either reaction
channels (among what is left aside non-reactive scattering). In
order not to entirely reject this possibility, we ran an additional
propagation in the same conditions as described in section 6.1,
except that the initial state was excited to the first OD-stretching
mode vibrational state of HOD. The excitation is applied to the
relaxed ground state geometry wavefunction ψg by using a har-
monic oscillator raising ladder operator (the excitation energy is
2824.5 cm−1 in the harmonic approximation107) along the R2

coordinate (which is approximately the same as the actual OD-
stretching normal mode coordinate). The time evolution of the
marginal probability densities for this propagation are shown in
fig. 8. Initially, the wavepacket is located in the same region as
before, in the entrance channel, but it now features a node and a
larger spread along the R2 coordinate as a result of the vibrational
excitation. The collision occurs in the same way as in the previous
case with the exception that there is now a much larger fraction
of the wavepacket that goes into the O�D bond dissociation reac-
tion channel (see fig. 8a at t = 12 fs and compare the tails of the
marginal probability densities in fig. 8b and fig. 8c). Non-reactive
scattering is still predominant and the O�H bond dissociation is

again observable, yet in minor proportion compared to the O�D

bond dissociation.

By the look of the time-resolved fluxes and reaction probabili-
ties (fig. 9) it is clear that non-reactive scattering is still the main
observed outcome, with a steep rise of P3, the time-integrated
flux in the non-reactive scattering channel, from nearly zero to
90% of its asymptotic value (63.2%) within the timespan between
8 fs to 16 fs. The selectivity between Ha/Hb and Ha/D exchange
reactions is reversed. The flux F1 in the O�Hb bond dissociation
channel peaks at the same time as the one along the non-reactive
scattering channel. The flux F2 along the O�D bond dissociation
channel increases again 3 to 4 fs later but is now more prominent
than in the previous propagation. The integrals P1 and P2 of the
fluxes F1 and F2 increase with the same time constants as in the
previous propagation. The final values are respectively 12.0% and
24.8%.

The energy-resolved data is shown in fig. 10. The tails of the
reaction probabilities in fig. 10a are obtained by the same tech-
nique as explained in the previous section, by setting p′exc to
17.5 a.u. and 20.5 a.u., and choosing the junction points to be
(ε⊖,ε⊕) = (2.7,3.9) eV. The collision energy distribution ∆ is es-
sentially unchanged from the previous propagation and the fluxes
preserve the same bell-shaped feature, though the magnitude of
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Fig. 9 Time-resolved (a) �uxes and (b) reaction probabilities as in �g. 6,

with initial OD-stretching mode excitation of HOD.

φ2 is now larger than φ1 over the whole relevant energy range (see
fig. 10a). The resulting reaction probabilities (fig. 10b) show the
same energy dependence, i.e. the probability of non-reactive scat-
tering Π3 increases with energy (from 44% to 87.5% in the shown
range) and the probabilities of both exchange reaction success Π1

or Π2 decrease monotonically (from 21% to 6.5% for the former
and from 35% to 9% for the latter). A noteworthy difference with
the situation with the vibrational ground state of HOD, apart from
the fact that now Π1 and Π2 are reversed, is that the ratio Π1/Π2

does tend to one (from below). The overall energy-integrated re-
action probabilities are 69% for the non-reactive scattering, 11.5%
for the Ha/Hb exchange and 19.5% for the Ha/D exchange, again
fairly close to the values calculated in the time-dependent picture,
given the uncertainty explained earlier.

By exciting the OD-stretching mode, the vibrational energy of
HOD, thus that of the HaHbOD transient, are increased by one
quantum carried by the OD bond. As a result, the effective barrier
height at the [(HaOD)Hb ]̸

= saddle point is increased and is now
larger than at the other [(HaOHb)D]

̸= point. This fact eventually
makes the O�Hb bond harder to break. Moreover, this propa-
gation matches better the expectation that the vibrational energy
within the HaHbOD transient plays less and less a role as the col-
lision energy increases, since the difference in effective barrier
height becomes negligible. One last point about this propagation
is that it is an interesting illustration of how one could control the
selectivity of the reaction by changing the quantum state of its
colliding moieties, also known as mode-selective chemistry.40–42
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Fig. 10 Energy-resolved (a) �uxes and wavepacket energy distribution ∆

and (b) reaction probabilities, with initial OD-stretching mode excitation

of HOD. The dotted lines represent the original data around the junction

points which has been smoothed with switching functions.

6.3 Propagation at lower collision energy
In order to connect our study to pre-existing work on these ex-
change reactions,32 another propagation, this time at lower col-
lision energy, was carried out. The value of p′exc was lowered
to 11 atomic units so that the collision energy distribution of the
wavepacket would cover a range centered at the exchange reac-
tion barrier height. The time-resolved fluxes and reaction prob-
abilities are shown in fig. 11. The time-scale of the reaction is
visibly longer, as there is still 5% of chances of finding the system
inside the interaction region at t = 100 fs (see fig. 11b). The non-
reactive scattering probability P3 evolves in two steps: a neat in-
crease between 15 and 22 fs and another slower one at later times.
These correspond respectively to the first peak in flux F3 at 19 fs
and the following slow undulating decrease which matches with
the flux F1 on the O�H bond dissociation channel (see fig. 11a).
This suggests that the first fast phase corresponds to the portion
of the wavepacket that is immediately reflected by the potential
barrier and that the second one is due to the other portion which
is retained in the interaction region and eventually splits into two
parts which mainly go either towards the non-reactive scattering
channel or the O�Hb bond dissociation channel. This splitting
is confirmed by inspection of the wavepacket (not shown). Fur-
thermore, we do not observe abstraction reactions. The energy-
resolved fluxes are richer in features than in the propagations
carried out above (fig. 12a). The reaction probabilities shown
in fig. 12b support the previous argument, as most of the compo-
nents of the wavepacket with energies below the barrier height
are reflected with certainty and, for the ones above it, there is
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Fig. 11 Time-resolved (a) �uxes and (b) reaction probabilities for the

exchange reaction at low collision energy.

a competition mostly between non-reactive scattering and O�Hb

bond dissociation. The shift in the onset of Π2 relative to that of
Π1 is consistent with the higher barrier for O�D dissociation.

The positions of the features at 0.92, 0.96 and 1.0 eV in fig. 12b
are close to the ones found by Fu and Zhang 32 on a similar
PES108 and are ascribed to shape resonances109 due to the shape
of the potential around the C3v local minimum after the barrier.
The differences in the magnitudes between our propagation and
their study is due to the fact that their results are obtained by
averaging over different orientations, whereas our study involves
a well-defined initial wavefunction describing a specific geomet-
rical arrangement of the atoms. The latter is favourable for a
backside attack of the Ha against the oxygen, which explains why
both Ha/Hb and Ha/D exchange reaction probabilities obtained
here are overall twice as large as in their full-collision study. The
ratio between reaction probabilities of either exchange processes
(channels ‘1’ vs. ‘2’) is consistent with their results.

6.4 The effect of multiple collisions
As in section 6.1 we could not exclude completely that more than
one collision between Ha against HbOD would occur, we looked
at the opposite limit situation (case (ii) mentioned in section 6.1):
the Ha atom remains in the Cl�O axis after the first collision
and is thus pushed back again by the Cl atom towards HbOD.
This model is simply implemented by replacing the CAP ‘3’ by a
1-D repulsive potential, depending on R3 only, which forces the
wavepacket to return towards the reaction region. Here, this re-
pulsive potential is an adapted form of that of HaCl in the A1Π

state (see appendix C). The same initial conditions as in section 4
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Fig. 12 Energy-resolved (a) �uxes and wavepacket energy distribution ∆

and (b) reaction probabilities for the low collision energy propagation.

were kept and this repulsive potential was activated at t = 6 fs, as
was done for CAP ‘3’ in section 6.1. The resulting time-evolution
of the reduced densities as functions of R1, R2 and R3 is shown in
fig. 13.

By construction, the propagation up to t = 6 fs is identical to
that discussed in section 6.1. Shortly after, the wavepacket fol-
lows the same path as in section 6.1, i.e. it mainly enters chan-
nel ‘3’, corresponding to non-reactive scattering, although a small
fraction enters channel ‘1’, corresponding to Ha /Hb exchange.
However, here, the wavepacket moves back to the reaction region
(see figs. 13b and 13c at t = 20 fs) and a second Ha+HbOD colli-
sion occurs around t = 24 fs. From this, a significant portion goes
to channel ‘2’, corresponding to Ha /D exchange (see figs. 13a
and 13c at t > 28 fs), while only little Ha /Hb exchange can be
noticed. The remaining part of the wavepacket keeps oscillating
along the R3 coordinate in and out of the reaction region. The
behaviour with respect to the angular coordinates βs and γs (not
shown) is similar to that displayed in figs. 4 and 5 up to t = 16 fs
and the reduced densities hardly change at later times.

The time-resolved fluxes and their integrated forms, shown in
fig. 14, confirm these observations. Right after the first collision
occurring at 6 fs, the fluxes across the boundaries of the reaction
region behave like those in fig. 6, i.e. a strong increase of the flux
F3 (corresponding to non-reactive scattering), a weaker increase
of F1 (Ha /Hb exchange) reaching a local maximum at 13 fs and
a barely noticeable increase of F2 (Ha /D exchange). However,
since now CAP ‘3’ is replaced by the repulsive confining potential,
the wavepacket comes back inside the reaction region, the flux F3

across its boundary at R3 = d changes sign and its integrated form
P3 goes back to zero (up to an integration error of 0.02). Next, F1
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Fig. 13 Same as �g. 3, but CAP `3' is replaced by a repulsive potential at the end of the grid in R3 (not represented, see appendix C for details). The

densities at t = 0 and t = 6 fs are identical to those shown in �g. 3. The dashed lines indicates the beginning of either CAP `1' or CAP `2'.
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Fig. 14 Time-resolved (a) �uxes and (b) reaction probabilities as in �g. 6,

but CAP `3' is replaced by a repulsive potential at the end of the grid in

R3 (see appendix C for details).

reaches another local maximum at 26 fs and F2 does too at 32 fs,
while F3 features another oscillation. The time-integrated quanti-
ties P1, P2 and P3 show that it is now the Ha /D exchange process
which is predominant. More importantly, because of this second
collision, the overall selectivity between Ha /Hb and Ha /D ex-
changes is lost. As further collisions unfold for the remainder of
wavepacket, the latter reaction ends up to be slightly more prob-
able than the former. A measure of the time-scale of the whole
process in this particular case can be given by the timespan over
which P1 +P2 increases up to 90% of its asymptotic value, which
is 84 fs (between t = 10 fs and t = 94 fs). Note though that the
increase occurs in successive steps rather than following a smooth
exponentially convergent curve. This time-scale is much longer,
by one order of magnitude, than in the previous propagation (sec-
tion 6.1) i.e. without the confining repulsive potential cast by Cl.
This elongation is the result of repeated collisions between Ha and
HbOD forced by the presence of this potential, eventually leading
a larger fraction of the wavepacket to enter either exchange reac-
tion channel.

Hence, if Cl had to play a role in the dynamics of the collision
between Ha and HbOD, by confining the former in the vicinity
of the latter, two main effects would be noticeable: (a) loss of
selectivity between Ha /Hb and Ha /D exchange reactions and (b)
step-wise increase of the exchange reaction probabilities with a
resulting stretching of the overall reaction time-scale.

7 Conclusion

Femtochemistry experiments of bimolecular reactions initiated by
intramolecular photolysis of weakly bound complexes are now
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between twenty and thirty years old and have not further been
studied in detail. In this attempt of reviving the interest in
these, we studied the selectivity of the exchange reactions H +

H′OD −−→ HOD + H′ /H′OH + D initiated by preforming the
(HCl) · · ·(HOD) hydrogen-bound complex and photodissociating
the HCl moiety.

The photodissociation of HCl causes a release of a considerable
amount of energy in the form of translational collision energy be-
tween its hydrogen atom and the HOD partner. Because of the
magnitude of that energy, the repulsion between the approach-
ing hydrogen and the oxygen belonging to the latter dominates
in this collisional process, mainly leading to non-reactive scatter-
ing. It is shown that, after the collision, the hydrogen atom of
HCl does most likely not encounter the Cl atom again, indicating
that additional multiple collisions between H and H′OD are not
expected. However, H-to-H′ and H-to-D exchange processes can
still be observed, with a distinguishable preference of the former
to the latter. This selectivity can be controlled by changing the
vibrational state of HOD. We tentatively ascribe the selectivity to
vibrational effects in virtue of the fact that O�H and O�D vibra-
tions contribute in different amounts to the vibrational zero-point
energy of the H2DO transient. The time-scales of the non-reactive
scattering and exchange processes are very short: less than 6 fs
for non-reactive scattering and H-to-H′ exchange and less than
27 fs for H-to-D exchange. Our results were also compared to
previous full-collision studies of the title reaction at lower colli-
sion energies. We find, in particular, that the probability for the
exchange reactions to occur is enhanced.

Due to the assumption of a fully dissociated HCl prior to the
bimolecular collision, the time-scales given above are lower-limit
estimates. Indeed, by forcing the incoming H atom to collide mul-
tiple times against H′OD, with the addition of the repulsive po-
tential stemming from the presence of the stationary Cl atom (see
section 6.4 and appendix C), the overall probability of occurrence
of either exchange reaction increases. The resulting overall time-
scale of the process is then one order of magnitude longer than if
it is limited to only one collision. Moreover, if multiple collisions
occur, the selectivity between H-to-H′ and H-to-D exchanges be-
comes less pronounced. Although the additional collisions are not
expected to occur in this specific system, further studies which ex-
plicitly include the chlorine atom and make use of the full excited
state PES are needed to clarify this aspect. On the other hand,
the interesting results shown in section 6.4 suggest that these
multiple collisions may strongly impact the outcome of precursor-
initiated reactions in other similar weakly bound systems.
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A Calculation of the initial momentum p′exc
In this appendix we refer to fig. 15. For convenience, we replace
the atoms Cl and Ha by two points A and B as well as the center of
mass of HbOD by a point C. These points carry masses mA = mCl,
mB = mHa

and mC = mHbOD, respectively. We call G0, G1 and G2

the centers of masses of the groups of points {A,B,C}, {A,B} and
{B,C}, respectively, and define the space-fixed frames of reference
F0, F1 and F2 centered at these points. We recall the definitions
of the points: for any arbitrary point X in space, we have

−−→
G0X =

mA
−→
AX +mB

−→
BX +mC

−→
CX

mA +mB +mC
(32)

−−→
G1X =

mA
−→
AX +mB

−→
BX

mA +mB
(33)

−−→
G2X =

mB
−→
BX +mC

−→
CX

mB +mC
(34)

We denote by p⃗(n)
X the classical momentum of the point X in the

frame Fn, that is:

p⃗(n)
X = mX

d
−−→
GnX
dt

(35)

We assume, on the one hand, that the whole system is initially
at rest in F0 (and therefore also in F1 and F2) and, on the other
hand, that the interaction between HaCl and HbOD (hence be-
tween {A,B} and C) does not play a role in the dissociation and
the dynamics (except for their placement with respect to each
other). Thus, the subsequent dissociation of {A,B} at total zero
momentum in F1 implies p⃗(1)

A = −p⃗(1)
B . Moreover, the conver-

sion of the excess potential energy ∆Vexc (see section 2) in kinetic
energy yields:

∆Vexc =

(
p⃗(1)

A

)2

2mA
+

(
p⃗(1)

B

)2

2mB
=

(
p⃗(1)

B

)2

2

(
1

mA
+

1
mB

)
(36)

As a consequence:

pexc :=
∥∥∥p⃗(1)

B

∥∥∥ =
√

2µAB∆Vexc (37)
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with µ
−1
AB = m−1

A +m−1
B . Again, since we assume that {A,B} and C

do not interact, the momenta of G1 and C are zero in F0, that is:

p⃗(0)
G1

= p⃗(0)
C =

−→
0 i.e.

d
−−−→
G0G1

dt
=

d
−−→
G0C
dt

=
−→
0 (38)

We are now in the position of calculating the translational col-
lision energy between B and C in the frame of reference F2. The
latter is given by:

Ecoll =

(
p⃗(2)

B

)2

2mB
+

(
p⃗(2)

C

)2

2mC
=

1
2

mB

(
d
−−→
G2B
dt

)2

+
1
2

mC

(
d
−−→
G2C
dt

)2

(39)
The two derivatives can be expressed in terms of p⃗(1)

B by using
eqs. (34), (35) and (38):

d
−−→
G2B
dt

=
d
dt

(−−−→
G2G1 +

−−→
G1B

)

=
d
dt

(
1

mB +mC

(
mB
−−→
BG1 +mC

−−→
CG1

))
+

p⃗(1)
B

mB

=
mB

mB +mC

d
−−→
BG1

dt
+

mC

mB +mC

d
−−→
CG1

dt
+

p⃗(1)
B

mB

=− p⃗(1)
B

mB +mC
+

mC

mB +mC

d
dt

(−−→
CG0 +

−−−→
G0G1

)
︸ ︷︷ ︸

=
−→
0

+
p⃗(1)

B
mB

= p⃗(1)
B

(
1

mB
− 1

mB +mC

)
and

d
−−→
G2C
dt

=
d
dt

(−−−→
G2G1 +

−−→
G1C

)
=

d
dt

(
1

mB +mC

(
mB
−−→
BG1 +mC

−−→
CG1

))
+

d
dt

(−−−→
G1G0 +

−−→
G0C

)
︸ ︷︷ ︸

=
−→
0

=− p⃗(1)
B

mB +mC
+

mC

mB +mC

d
dt

(−−→
CG0 +

−−−→
G0G1

)
︸ ︷︷ ︸

=
−→
0

=− p⃗(1)
B

mB +mC

Plugging these relations back into eq. (39) and by using eq. (37):

Ecoll =
1
2

mB

(
p⃗(1)

B

(
1

mB
− 1

mB +mC

))2
+

1
2

mC

(
− p⃗(1)

B
mB +mC

)2

=

∥∥∥p⃗(1)
B

∥∥∥2

2

(
mB

(
1

mB
− 1

mB +mC

)2
+mC

(
1

mB +mC

)2
)

=
p2

exc
2

(
mB

(
mC

mB(mB +mC)

)2
+mC

(
1

mB +mC

)2
)

= ∆Vexc ·µAB ·
(

mC

mB +mC

)2
·
(

1
mB

+
1

mC

)

= ∆Vexc ·
mAmB

mA +mB
· m2

C
(mB +mC)2 ·

mB +mC

mBmC

that is
Ecoll = ∆Vexc ·

mA

mA +mB
· mC

mB +mC
(40)

Finally, we need to determine the initial conjugated momentum
p⃗3 associated to the orthogonal vector R⃗3. Since we have simply
R⃗3 =

−→
CB, then by eqs. (32) and (33):

R⃗3 =
1

mC

(
(mA +mB +mC)

−−→
G0B− (mA +mB)

−−→
G1B

)
(41)

Therefore,

p⃗3 = µ3
dR⃗3

dt

= µ3 ·
1

mC

(
(mA +mB +mC)

d
−−→
G0B
dt
− (mA +mB)

d
−−→
G1B
dt

)

=
µ3

mC

(
(mA +mB +mC)

(
d
−−−→
G0G1

dt︸ ︷︷ ︸
=
−→
0

+
d
−−→
G1B
dt

)
− (mA +mB)

d
−−→
G1B
dt

)

=
mBmC

mB +mC
· d
−−→
G1B
dt

=
mC

mB +mC
· p⃗(1)

B

and finally we obtain:

p′exc := ∥ p⃗3∥ =
mC

mB +mC
· pexc (42)

B Correctness of the kinetic energy operator and

calculation of the zero-point energy of HOD

Before proceeding to any of the simulations that are presented
in this article, we made sure that the (not self-evident) kinetic
energy operator T̂HOD in eq. (12) and its implementation in the
MCTDH package was correct by preliminary numerical tests on
HOD. To that end, we modified the PES of the system H3O by
Chen et al. 100 by fixing the R3, βs and γs coordinates such that
Ha would be far from HOD. The resulting effective surface is,
in fact, the one of regular water expressed as a function of R1,
R2 and u. This surface was adapted in the MCTDH format with
POTFIT on a grid with the same specifications as in table 1 for
these coordinates, without mode combinations and by including
all possible natural potentials. The Hamiltonian of HOD was then
taken as the sum of this potential and the kinetic energy operator
T̂HOD. A block relaxation was carried out in order to calculate
the first 11 rotational excited states of HOD. The rotational lines
listed in the MARVEL database110–112, taken as an experimental
reference, could unequivocally be assigned to energy differences
between the calculated eigenstates.

The vibrational zero-point energy of HOD could be calculated
by an improved relaxation on that same modified surface and by
keeping only the terms of T̂HOD depending on R1, R2 and u (thus
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Fig. 16 Ground (blue) and excited (red) states potentials of HCl,77 cut of

the potential of H3O (green) and the reduced density of the wavepacket

along R3 at t = 0 fs (yellow) and t = 6 fs (purple) in the main propagation.

The zero in abscissa is the Franck-Condon point of HaCl. The cut of
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values of the other coordinates (expectation values at t = 0 fs), has been

�ipped and shifted horizontally by the expectation value of R3 at t = 0 fs.

The zero in the ordinate corresponds to the asymptotic values of the

potentials at RHCl → ∞ and in�nitely separated H + H2O. Dashed lines

mark the Franck-Condon point and the �turning point�.

forcing the molecule to be in its rotational ground state). The
obtained value is 0.498389 eV.

C Acceleration of Ha during the photodissociation

of HaCl

In the initial state of the main propagation (eq. (14)), the accel-
eration of the Ha atom via the photodissociation of HaCl is repre-
sented by the factor exp(−ip′excR3/h̄), with p′exc being the (classi-
cal) linear momentum of Ha in the space-fixed frame of reference
of HaHbOD calculated as in appendix A. The computed value is
given by considering that HaCl has fully dissociated before Ha en-
counters HbOD. In other words, the used value is an upper bound
of the “true” one. However, this does not affect significantly the
outcome of the propagations described in this work.

Assuming that Cl, Ha, and O are aligned, that R3 ≈ ROHa

and that RHaCl+ROHa = constant, fig. 16 illustrates how far the
Ha atom goes in the HaCl dissociation curve while approaching
HbOD. The wavepacket indeed reaches the HaHbOD transition
state barrier before HaCl has fully dissociated. However, because
of the large initial potential energy at the Franck-Condon geome-
try, the wavepacket easily overcomes the barrier and reaches the
turning point on the HaHbOD potential which corresponds to al-
most full dissociation of HaCl. Hence, by the definition of the
initial state as in eq. (14), we are introducing only marginal er-
rors concerning the accessible regions on the HaHbOD PES. The
energy-resolved reaction probabilities are thus not expected to be
much different from those shown in fig. 7.

In eq. (14) we are omitting the actual acceleration of Ha from

the Franck-Condon geometry of HaCl, that is, the increase of mo-
mentum of Ha over time. Nevertheless, we expect that only the
initial delay time before Ha and HbOD collide will be impacted,
namely, it will take longer for Ha to reach HbOD than shown in
fig. 6.

Note that the repulsive potential used in the propagation dis-
cussed in section 6.4 was implemented in a way equivalent to
what is depicted in fig. 16. Namely, it is the potential of HCl in
the A1Π excited state turned into a function of R3. By using again
R3 ≈ ROHa and RHaCl+ROHa = constant, the A1Π state potential
was flipped (so that it decreases when R3 decreases) and trans-
lated in such a way that the Frank-Condon point corresponds to
the expectation value ⟨R3⟩0 = 4.0 a0 in the initial state. As was
done for CAP ‘3’ for the other propagations, this repulsive poten-
tial was not activated until t = 6 fs. This enables direct comparison
with the main propagation discussed in section 6.1, as the initial
conditions are identical.
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