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Large ranking games with diffusion
control

S. Ankirchner ∗ N. Kazi-Tani † J. Wendt ‡ C. Zhou §

April 7, 2023

We consider a symmetric stochastic differential game where each player
can control the diffusion intensity of an individual dynamic state process,
and the players whose states at a deterministic finite time horizon are among
the best α ∈ (0, 1) of all states receive a fixed prize. Within the mean field
limit version of the game we compute an explicit equilibrium, a threshold
strategy that consists in choosing the maximal fluctuation intensity when the
state is below a given threshold, and the minimal intensity else. We show
that for large n the symmetric n-tuple of the threshold strategy provides
an approximate Nash equilibrium of the n-player game. We also derive the
rate at which the approximate equilibrium reward and the best response
reward converge to each other, as the number of players n tends to infinity.
Finally, we compare the approximate equilibrium for large games with the
equilibrium of the two player case.
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Keywords : Diffusion control; game; rank-based reward; mean field limit; os-

cillating Brownian motion.

1 Introduction

We start by describing a game that models, in a stylized form, the competition among
many agents who can each control the fluctuation intensity of an individual state until

∗Stefan Ankirchner, Institute for Mathematics, University of Jena, Ernst-Abbe-Platz 2, 07743 Jena,
Germany. Email: s.ankirchner@uni-jena.de.

†Nabil Kazi-Tani, Institut Elie Cartan de Lorraine, Université de Lorraine, UFR MIM, 3 rue Augustin
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a fixed time horizon T ∈ (0,∞) and who receive some benefit if their final state is
among the highest α ∈ (0, 1). We first consider the case where the players’ states are
martingales driven by independent Brownian motions. Later we also allow for a drift
coefficient and added common noise (see Section 5).

Throughout let n be a large natural number representing the number of players. Let
0 < σ1 < σ2. The set of strategies for each player i is denoted by An and consists of the
set of measurable functions a : [0, T ]×Rn → [σ1, σ2]. We write Ann := An× . . .×An for
the set of all strategy tuples.

We denote the state process of player i by X i. Given that each player chooses a
strategy aj ∈ An, j ∈ {1, . . . , n}, we assume that the state process of player i satisfies

dX i,a
t = ai(t,X

i,a
t , X−i,at )dW i

t , X i,a
0 = 0, (1)

where X−i,a denotes the n−1-dimensional process of the states of all players other than
i. Moreover, W = (W 1, . . . ,W n) denotes a n-dimensional Brownian motion on some
filtered probability space. Note that the n-dimensional process Xa = (X1,a, . . . , Xn,a)
satisfies the n-dimensional SDE

dXt = D(t,Xt)dWt, X0 = 0, (2)

where D(t, x) is the diagonal matrix with the entries a1(t, x), . . . , an(t, x) on the di-
agonal. The existence of a weak solution of (2) follows from Theorem 2.6.1 in [22]
since D(t, x) is uniformly elliptic. Recall that a weak solution consists of a 6-tuple
(Ωa,Fa, (Fat )t≥0, P

a,W a, Xa), where the first four components build a filtered probabil-
ity space, W a is a Brownian motion with respect to the filtration (Fat ), and Xa is a
continuous (Fat )-adapted process such that the pair (Xa,W a) satisfies (2) (see e.g. [19],
Section 5.3, for more details). We add the superscript a to the elements of the weak
solution in order stress the dependence on the strategy tuple. Note that for different
strategy tuples we may need to consider different probability spaces.

We suppose that each player aims at maximizing the probability of her own state to
be greater than the empirical (1−α)-quantile of all states at time T . More precisely, let

µn,a =
1

n

n∑
i=1

δXi,a
T

be the empirical distribution of the players’ states at time T . We define q(µn,a, 1−α) =
inf{r ∈ R : µn,a((−∞, r]) ≥ 1 − α}. Note that X i,a

T > q(µn,a, 1 − α) if and only if the
state of player i is among the best bnαc players at time T (see Remark 1.1 below).

We now briefly comment on the assumptions of the game. First notice that the
expectation of any player’s terminal state is always zero, whatever control is chosen.
However, other distributional properties such as the variance, the skewness and the
position of quantiles do depend on the strategy. For example, a larger ai leads to a larger
variance of the final outcome X i

T . Moreover, if player i chooses large values for ai when
her state is small and small values when her state is large, then the distribution of X i

T
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has a negative skew. In particular, a state-dependent choice of the fluctuation intensity
allows to influence the position of quantiles, and hence the probability of receiving the
reward. So the game helps in understanding how a rank-based reward determines the
distributional properties of the players’ states and by which dynamic strategies they can
be implemented.

In the following remark we relate the reward condition to the order statistics of the
terminal states.

Remark 1.1. Let a ∈ Ann. We can relate the quantile q(µn,a, 1 − α) with the order

statistics X
(1:n),a
T ≤ . . . ≤ X

(n:n),a
T of the states X1,a

T , . . . , Xn,a
T . We have q(µn,a, 1− α) =

X
(dn(1−α)e:n),a
T , and hence

1. if nα ∈ N, then X i
T > q(µn,a, 1 − α) is equivalent to being under the best nα

players at time T , and

2. if nα 6∈ N, then X i
T > q(µn,a, 1 − α) is equivalent to being under the best bnαc

players at time T .

Consequently, X i
T > q(µn,a, 1 − α) is always equivalent to being under the best bnαc

players at time T .

The aim of the present article is to predict and analyze the players’ behavior in the
game. As usual, for this purpose we resort to Nash equilibria, which here are defined as
follows.

Definition 1.2. A tuple a = (a1, . . . , an) ∈ Ann is called Nash equilibrium of the n-player
game if for all i ∈ {1, . . . , n}, c ∈ An and weak solutions (Ωa,Fa, (Fat ), P a,W a, Xa),

(Ω(a−i,c),F (a−i,c), (F (a−i,c)
t ), P (a−i,c),W (a−i,c), X(a−i,c)) we have

P a(X i,a
T > q(µn,a, 1− α)) ≥ P (a−i,c)(X

i,(a−i,c)
T > q(µn,(a−i,c), 1− α)), (3)

where (a−i, c) = (a1, . . . , ai−1, c, ai+1, . . . , an).

Note that we do not assume that the weak solutions are unique in law and hence
that the probabilities appearing in (3) are independent of the weak solution chosen1.
Thus one can interpret (3) as follows: whatever weak solutions come up, with whatever
distributions, no player has an incentive to deviate. However, we will see that for the
Nash equilibria derived in this article uniqueness in law is always satisfied.

For the two player case with α = 1
2

one can show (see Section 6 below) that a Nash
equilibrium is given when each player chooses, at any time t < T , the minimal volatility
σ1 if her current state value is larger than the opponent’s state, and the maximal volatility
σ2 if her current state value is smaller.

We believe that for more than two players it is difficult to obtain a Nash equilibrium
in closed form. To circumvent this difficulty, our idea is to compute an approximate

1It is still an open problem to find conditions, sufficient and necessary at the same time, guaranteeing
uniqueness in law of weak solutions of (2) in dimensions greater than 2 (see e.g. abstract of [23]).
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Nash equilibrium for large games by considering the mean field limit of the game. The
mean field game approach, introduced by [27], [28], [29] and [17], [16], is based on the
observation that in a symmetric game with many similar players, the empirical distri-
bution of the realized players’ states can be approximated with the state distribution
of a single player. Thus, the Nash equilibrium for the game with many players can be
approximated by solving a single agent control problem where the reward depends on
the distribution of the state.

We obtain that, within the mean field limit version of the game, there exists an
equilibrium that consists in choosing the maximal fluctuation intensity when the state
is below a given threshold, and the minimal intensity else (see Section 3). We refer to
such a strategy as a threshold strategy.

The threshold of the mean field equilibrium strategy is chosen such that it coincides
with the (1 − α)-quantile of the resulting final state distribution. The threshold can
be identified as a fixed point of a mapping from the set of threshold strategies to itself.
Fixed point arguments are a common tool for determining equilibria in mean field games
(see, e.g., [7] and [8]).

Controlling the state with a threshold strategy entails that the state dynamics are a
so-called oscillating Brownian motion (OBM), a process introduced in [20] and studied
in [31] from a control theory perspective without interaction. The distribution of OBM
is explicitly known at deterministic times. This allows us to compute the threshold of
the mean field equilibrium in closed form.

We further show that the symmetric n-tuple of the mean field equilibrium is an ap-
proximate Nash equilibrium of the n-player game (see Section 4). More precisely, the
difference of the expected payoff under the approximate equilibrium strategies and the
best response payoff converges to zero as the number of players n tends to infinity. We
show that the convergence is of the order n−1/2.

In the approximate equilibrium the distribution of the final states is negatively skewed
and the (1−α)-quantile is further to the right than when using a strategy with constant
fluctuations. Choosing the maximal fluctuation intensity below the threshold increases
risk, measured, e.g., in terms of the variance of the final state. Thus, the results show
that the rank-based reward incentivizes players to introduce a negative skew, and a high
variance.

For implementing the threshold strategy of the approximate Nash equilibrium each
player only needs to observe her own state process, but not the other players’ states.
This is a difference to the two player equilibrium, where each player chooses a high
volatility if and only if her state is smaller than the opponent’s state. In the two player
equilibrium the relative position of the own state with respect to the opponent’s state
determines the choice of volatility. In contrast, in the mean field equilibrium, and
hence in the approximate equilibrium for large games, the chosen volatility depends
only on the absolute position of the own state, namely whether it is above or below
the fixed equilibrium threshold (see Remark 4.3). The results indicate that in an exact
equilibrium in games with n ≥ 3 players, each player makes her control dependent on
both the absolute position of the own state and the relative position with respect to
other players’ states.
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We remark that for the game with n ≥ 3 players it is already difficult to prove, by
using abstract arguments, existence of an exact equilibrium in the first place, because of
the discontinuity in the reward function. This applies to any game with discontinuous
rank-based rewards. A workaround is to consider rewards depending continuously on
the average state of all players. Espinosa and Touzi [13] consider a game where each
player aims at maximizing the expected utility of her income depending on the deviation
of the player’s state from the average state. They characterize a Nash equilibrium in
terms of a system of coupled backward stochastic differential equations (BSDEs). [10]
establishes a Nash equilibrium in a market with N agents with the performance criteria
of relative wealth level when the mean return rate is unobservable. Each investor has a
heterogeneous prior belief on the return rate of the risky asset. By a separation result
and a martingale argument, they show that the optimal investment strategy under this
setting can be characterized by a fully-coupled linear FBSDE system. Two sets of deep
neural networks are used for first computing each investor’s estimate of the mean return
rate and then numerically solving the FBSDEs. [14] uses a probabilistic approach to
study an N -player exponential utility game and a mean field exponential utility game.
Each player manages two stocks; one is driven by an individual shock and the other
is driven by a common shock. Moreover, each player is concerned not only with her
own terminal wealth but also with the relative performance of her competitors. A
multi-dimensional FBSDE with quadratic growth (a mean field FBSDEs, respectively)
is derived to characterize an equilibrium of the N -player game (of the mean field game,
respectively). In [12], the authors solve a sequential game between a principal and
several agents in competition with relative performance concerns. In particular, they
connect the issue of existence of a Nash equilibrium between the competing agents to the
existence of a solution to a multidimensional quadratic BSDE. In the present paper, we
avoid BSDE arguments and solve our problem in a more direct way, by relying instead
on the knowledge of the oscillating Brownian motion’s marginal distributions.

As already mentioned above, when the agents are numerous and homogeneous, it is
tempting to assume that one particular agent does not affect the empirical distribution
of players. The symmetry in the game allows to focus on only one representative agent,
with a fixed distribution of other players’ states. This idea has been made precise in
the theory of stochastic differential games with mean field interactions, that have been
introduced independently in [17] and [29] and then received a sustained attention in the
stochastic control and differential games communities. For an overview of the theory,
we refer the reader to the monographs [7, 8].

On the one hand, the fact that Nash equilibria in finite n-player games converge to the
corresponding mean field limit justifies the use of mean field games (MFG). It has been
proved under different sets of assumptions, using probabilistic weak formulations and
compactness arguments [24, 25], or via a partial differential equation (PDE) approach [6].
In [6], the authors rely on the so called master equation, which is an infinite dimensional
PDE describing the value function of the game, to prove that the empirical distribution
of the players converges to the mean field equilibrium measure, which is unique given
the monotonicity condition made in [6].

On the other hand, a MFG solution can be used to construct an approximate Nash
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equilibrium for the corresponding finite n-player game: this is the approach that we
follow in Section 4 of the present paper.

One particular feature of our framework is the control of the diffusion coefficient in (1).
Specific examples of both standard and mean field games with volatility control include
optimal energy consumption [11], green bonds investments [1], or optimal contracting
between hierarchized players [18].

The idea to use mean field limits for analyzing differential games with rank-based
rewards has been employed already in the articles [3],[4],[5] and [35]. All these articles
consider versions of a rank-based mean field game, where agents influence the drift rate
of the state, but not the diffusion rate.

The articles [3], [4], [35] provide conditions guaranteeing that the mean field games
approximate the corresponding n-player game for large n; and they also determine the
rate at which the expected reward of the mean field approximation and the best response
converge to each other, as n → ∞. Motivated by these articles, in Section 4 we also
compute a convergence rate for the game at hand. In the recent paper [2], the authors
analyze a mean field game where the diffusion coefficient can be controlled and show that
the solution of the problem is characterized by a McKean-Vlasov second order backward
SDE. Note that it is not possible to directly apply the results of [2] to our setting, since
the particular form of our criteria given as a probability in Definition 1.2 would make
the terminal condition of the related second order BSDE discontinuous, which is not
allowed in [2].

The rest of the paper is organized as follows: In Section 2 we provide some results on
oscillating Brownian motion, that will be used in Section 3 to explicitly solve the game
in the mean field regime. In Section 4, we construct approximate Nash equilibria for
the finite n-player game, based on the mean field optimal strategies. In Section 5 we
generalize these results to the case where the players’ states are driven by an SDE with
an additional drift component and with added common noise. In Section 6, we solve the
2-player game by explicitly solving the associated dynamic programming PDE, and give
some comparison with the mean field equilibrium. The game considered in this paper is
formulated in a generic way and thus allows for multiple interpretations. In Section 7
we illustrate our results within a specific application to the competition among mutual
fund managers.

2 Oscillating Brownian motion

In this section we define the oscillating Brownian motion (OBM) introduced in [20]. We
summarize important facts about OBMs that we will need in the course of this paper.

Let B be a Brownian motion on a complete probability space (Ω,F , P ). Furthermore,
let (Ft)t≥0 be the augmented Brownian filtration, generated by B and augmented by
the P -null sets in F . Let 0 < σ1 < σ2 and define for any b ∈ R the threshold function

6



mb : R→ [σ1, σ2] by

mb(x) =

{
σ1, if x ≥ b,

σ2, if x < b.
(4)

Definition 2.1. Let b ∈ R. We call the solution Y x,b of the SDE

dYt = mb(Yt)dBt, Y0 = x, (5)

oscillating Brownian motion (OBM) with threshold b.

Remark 2.2. Note that there exists a unique strong solution of (5), since there exists
a weak solution according to Theorem 2.6.1 in [22] and pathwise uniqueness applies due
to [34]. For further details see Remark 3.1 below.

For the reader’s convenience we recall the following result.

Proposition 2.3. For all x ∈ R let Y x be an OBM with threshold 0 and initial value x.
Then, for all t > 0, the random variable Y x

t has a density p(t, x, y) with respect to the
Lebesgue measure, given by

p(t, x, y) =



2σ1
σ2(σ1+σ2)

1√
2πt
e
−( x

σ1
− y
σ2

)2 1
2t , if x ≥ 0, y < 0,

2σ2
σ1(σ1+σ2)

1√
2πt
e
−( y

σ1
− x
σ2

)2 1
2t , if x < 0, y ≥ 0,

1
σ1
√
2πt

(
e
− (y−x)2

2σ21t + σ2−σ1
σ1+σ2

e
− (y+x)2

2σ21t

)
, if x ≥ 0, y ≥ 0,

1
σ2
√
2πt

(
e
− (y−x)2

2σ22t + σ1−σ2
σ1+σ2

e
− (y+x)2

2σ22t

)
, if x < 0, y < 0.

Proof. This follows from Theorem 1 in Keilson, Wellner [20]; see also Theorem 4 in [31]
and Section 2 in Lejay, Pigato [30] (beware of the typo in the last case).

Corollary 2.4. For x, b ∈ R let Y x,b be an OBM with threshold b. Then, for all t > 0,
the random variable Y x,b

t has the probability density function p(t, x−b, y−b) with respect
to the Lebesgue measure, where p is defined as in Proposition 2.3.

For the remainder of this section we denote by F b the probability distribution function
of the OBM Y 0,b at time T > 0 for some b ∈ R, i.e. F b(x) = P (Y 0,b

T ≤ x), x ∈ R. Note
that using Corollary 2.4 we observe that F b is given by

F b(x) =



Φ
(

x
σ2
√
T

)
− σ2−σ1

σ1+σ2
Φ
(
x−2b
σ2
√
T

)
, if x < b, b ≥ 0,

2σ2
σ1+σ2

Φ

(
x−b

(
1−σ1

σ2

)
σ1
√
T

)
− σ2−σ1

σ1+σ2
, if x ≥ b, b ≥ 0,

2σ1
σ1+σ2

Φ

(
x−b

(
1−σ2

σ1

)
σ2
√
T

)
, if x < b, b < 0,

Φ
(

x
σ1
√
T

)
− σ2−σ1

σ1+σ2
Φ
(

2b−x
σ1
√
T

)
, if x ≥ b, b < 0.

(6)
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Lemma 2.5. Let b ∈ R. Then F b is Lipschitz continuous. Moreover, for M > 0 there
exists a constant C > 0 such that for all x ∈ R with |x− b| < M

|F b(x)− F b(b)| ≥ C|x− b|.

Proof. The Lipschitz continuity of F b follows since F b is absolutely continuous and its
derivative is bounded. The second statement basically follows from the fact that the
derivative is locally bounded from below.

We first consider the case b ≥ 0. Note that F b is given by

F b(x) =


Φ
(

x
σ2
√
T

)
− σ2−σ1

σ1+σ2
Φ
(
x−2b
σ2
√
T

)
, if x < b,

2σ2
σ1+σ2

Φ

(
x−b

(
1−σ1

σ2

)
σ1
√
T

)
− σ2−σ1

σ1+σ2
, if x ≥ b.

1. If x ∈ (b−M, b) there exists a ξ ∈ (x, b) such that

|F b(x)− F b(b)| = F b(b)− F b(x)

=
1

σ2
√

2πT
e
− ξ2

2σ22T

(
1− σ2 − σ1

σ1 + σ2
e
− 4b(b−ξ)

2σ22T

)
|x− b|

≥ 1

σ2
√

2πT
e
− (b−M)2∨b2

2σ22T

(
1− σ2 − σ1

σ1 + σ2

)
|x− b|

≥ 1√
2πT

2σ1
σ2(σ1 + σ2)

e
− (b+M)2

2σ21T |x− b|.

2. If b < x < b+M we obtain by the mean-value theorem for some ξ ∈ (b, x) that

|F b(b)− F b(x)| = F b(x)− F b(b)

=
2σ2

σ1 + σ2

Φ

x− b
(

1− σ1
σ2

)
σ1
√
T

− Φ

(
b

σ2
√
T

)
=

1

σ1
√

2πT

2σ2
σ1 + σ2

e
−

(ξ−b(1−σ1σ2 ))
2

2σ21T (x− b)

≥ 1√
2πT

2σ1
σ2(σ1 + σ2)

e
− (b+M)2

2σ21T (x− b).

The case b < 0 can be shown in the same way. Finally, for any b ∈ R the result follows

with C := 1√
2πT

2σ1
σ2(σ1+σ2)

e
− (|b|+M)2

2σ21T .

Lemma 2.6. There exists a C > 0 such that for all b1, b2 ∈ R

sup
x∈R
|F b1(x)− F b2(x)| ≤ C|b1 − b2|.

8



Proof. Let 0 ≤ b1 < b2. Then for x < b1 we see that

|F b1(x)− F b2(x)| = σ2 − σ1
σ1 + σ2

∣∣∣∣Φ(x− 2b2

σ2
√
T

)
− Φ

(
x− 2b1

σ2
√
T

)∣∣∣∣
≤ 1√

2π

σ2 − σ1
σ1 + σ2

∣∣∣∣x− 2b2

σ2
√
T
− x− 2b1

σ2
√
T

∣∣∣∣
=

2√
2πσ2

2T

σ2 − σ1
σ1 + σ2

|b2 − b1|

≤ 2√
2πσ2

1T

σ2 − σ1
σ1 + σ2

|b2 − b1|.

Similarly, for x > b2 we have

|F b1(x)− F b2(x)| = 2σ2
σ1 + σ2

∣∣∣∣∣∣Φ
x− b1

(
1− σ1

σ2

)
σ1
√
T

− Φ

x− b2
(

1− σ1
σ2

)
σ1
√
T

∣∣∣∣∣∣
≤ 2σ2
σ1 + σ2

1√
2π

∣∣∣∣∣∣
x− b1

(
1− σ1

σ2

)
σ1
√
T

−
x− b2

(
1− σ1

σ2

)
σ1
√
T

∣∣∣∣∣∣
=

2σ2
σ1 + σ2

1√
2πσ2

1T

(
1− σ1

σ2

)
|b2 − b1|

=
2√

2πσ2
1T

σ2 − σ1
σ1 + σ2

|b2 − b1| .

Now it remains to consider the case x ∈ [b1, b2]: We have

|F b1(x)− F b2(x)|

=

∣∣∣∣∣∣ 2σ2
σ1 + σ2

Φ

x− b1
(

1− σ1
σ2

)
σ1
√
T

− σ2 − σ1
σ1 + σ2

− Φ

(
x

σ2
√
T

)
+
σ2 − σ1
σ1 + σ2

Φ

(
x− 2b2

σ2
√
T

)∣∣∣∣∣∣
=

∣∣∣∣∣∣ 2σ2
σ1 + σ2

Φ

x− b1
(

1− σ1
σ2

)
σ1
√
T

− Φ

(
x

σ2
√
T

)
− σ2 − σ1
σ1 + σ2

Φ

(
2b2 − x
σ2
√
T

)∣∣∣∣∣∣
=

∣∣∣∣∣ 2σ2
σ1 + σ2

Φ

x− b1
(

1− σ1
σ2

)
σ1
√
T

− (1 +
σ2 − σ1
σ1 + σ2

)
Φ

(
2b2 − x
σ2
√
T

)

+ Φ

(
2b2 − x
σ2
√
T

)
− Φ

(
x

σ2
√
T

) ∣∣∣∣∣
≤ 2σ2
σ1 + σ2

∣∣∣∣∣∣Φ
x− b1

(
1− σ1

σ2

)
σ1
√
T

− Φ

(
2b2 − x
σ2
√
T

)∣∣∣∣∣∣+

∣∣∣∣Φ(2b2 − x
σ2
√
T

)
− Φ

(
x

σ2
√
T

)∣∣∣∣
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≤ 2σ2
σ1 + σ2

1√
2π

∣∣∣∣∣∣
x− b1

(
1− σ1

σ2

)
σ1
√
T

− 2b2 − x
σ2
√
T

∣∣∣∣∣∣+
1√
2π

∣∣∣∣2b2 − xσ2
√
T
− x

σ2
√
T

∣∣∣∣
≤ 2σ2
σ1 + σ2

1√
2πT

∣∣∣∣ 2

σ2
(x− b2) +

(
1

σ1
− 1

σ2

)
(x− b1)

∣∣∣∣+
2√

2πσ2
2T
|b2 − b1|

≤ 2σ2
σ1 + σ2

1√
2πT

(
2

σ2
|b2 − b1|+

(
1

σ1
− 1

σ2

)
|b2 − b1|

)
+

2√
2πσ2

2T
|b2 − b1|

≤ 4σ2
σ1 + σ2

1√
2πσ2

1T
|b2 − b1|+

2√
2πσ2

2T
|b2 − b1|

≤ 6√
2πσ2

1T
|b2 − b1|.

The case b1 < b2 ≤ 0 can be shown similarly and all the remaining cases follow from an
application of the triangle inequality.

3 The mean field approximation

Let B be a Brownian motion on a complete probability space (Ω,F , P ). Furthermore, let
(Ft)t≥0 be the augmented Brownian filtration, generated by B and augmented by the P -
null sets in F . We denote byM the set of all progressively measurable control processes
(βt)t≥0 taking values in [σ1, σ2]. Given that an agent chooses the control function β ∈M,
her state process is given by

Xβ
t :=

∫ t

0

βs dBs.

Remark 3.1. All feedback controls with a feedback function m : R → [σ1, σ2] of
bounded variation are contained in M. Indeed, since m is uniformly bounded away
from zero there exists a weak solution to the SDE

dXt = m(Xt)dBt, X0 = 0, (7)

according to Theorem 2.6.1 in [22], and pathwise uniqueness applies according to results
in [34]. Hence, there exists a unique strong solution Xm to (7) (cf. Section 5.3 in [19]),
and (m(Xm

t ))t≥0 belongs to M.

Let α ∈ (0, 1) and denote by q(Xβ
T , 1−α) the (1−α)-quantile of the random variable

Xβ
T , i.e. q(Xβ

T , 1− α) = inf{r ∈ R : P (Xβ
T ≤ r) ≥ 1− α}.

Definition 3.2. We call β∗ ∈M an equilibrium strategy of the mean field game if

P (Xβ∗

T > q(Xβ∗

T , 1− α)) = max
β∈M

P (Xβ
T > q(Xβ∗

T , 1− α)) (8)

Remark 3.3. Notice that β∗ is an equilibrium strategy if and only if it maximizes the
quantile q(Xβ

T , 1− α) among all β ∈M. Therefore, the mean field game coincides with
the control problem of maximizing the (1− α)-quantile. We define β∗ via the equation
(8) since the equation can be interpreted as the mean field limit of (3).
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Before proving that there exists an equilibrium strategy, we first show that it is enough
to consider control processes of feedback type, that are constant equal to the minimal
volatility σ1 if the state is greater than or equal to a given threshold b, and that are
constant equal to the maximal volatility σ2 else. We refer to such controls as threshold
controls. More precisely, the threshold control with barrier b ∈ R is the control with
feedback function mb, given in (4). In the following we simply write Xb for the state
process Xmb .

Lemma 3.4. Let b ∈ R. Then

P (Xb
T > b) = max

β∈M
P (Xβ

T > b). (9)

Proof. Follows from [31], Remark 8.

Lemma 3.4 shows that the strategy maximizing the probability of being above the
quantile q(Xm

T , 1 − α) at time T is the threshold control with threshold q(Xm
T , 1 − α).

The following theorem provides an explicit equilibrium strategy.

Theorem 3.5. The threshold strategy mb∗ with threshold

b∗ =

 −σ2
√
TΦ−1

(
α(σ1+σ2)

2σ2

)
, if α ≤ σ2

σ1+σ2
,

σ1
√
TΦ−1

(
(1−α)(σ1+σ2)

2σ1

)
, if α > σ2

σ1+σ2
,

(10)

is an equilibrium strategy for the mean field game. mb∗ is the unique equilibrium strategy
in the set of threshold strategies.

The standard approach to solve mean field games is to consider mappings from proba-
bility distributions to the distributions of optimally controlled states and find their fixed
points, the so-called equilibrium measures (see e.g. [7] and [8]). However, the setting of
our paper allows to study the distributions of OBMs only, which can be parameterized
by the real-valued threshold b ∈ R. Hence it is enough to show that the function

f : R→ R, b 7→ q(Xb
T , 1− α)

has a unique fixed point in order to prove Theorem 3.5. Indeed, if f(b) = b, then b =
q(Xb

T , 1−α). Lemma 3.4 further implies that P (Xb
T > q(Xb

T , 1−α)) = maxβ∈M P (Xβ
T >

q(Xb
T , 1− α)), and hence that mb is an equilibrium strategy.

Moreover, for any threshold control mb, b ∈ R, the controlled state process Xb is a
so-called oscillating Brownian motion (OBM), introduced in Section 2. The transition
densities of an OBM are explicitly known (see Proposition 2.3), and in particular, Xb

T

possesses the probability density function p(T,−b, x− b) (Corollary 2.4). As in Section
2 we denote the probability distribution function of Xb

T by F b and emphasize that F b is
explicitly given by (6).

11



Proof of Theorem 3.5. We want to determine the unique fixed point b ∈ R of the func-
tion f , i.e. we solve the equation P (Xb

T > b) = α. Suppose first that α ∈ (0, σ2
σ1+σ2

]. We

observe by (6) that P (Xb
T > b) = 1−F b(b) ≤ σ2

σ1+σ2
if and only if b ≥ 0, and in this case

P (Xb
T > b) =

2σ2
σ1 + σ2

Φ

(
−b

σ2
√
T

)
.

Moreover, P (Xb
T > b) = α if and only if b = −σ2

√
TΦ−1

(
α(σ1+σ2)

2σ2

)
. In this case,

q(Xb
T , 1− α) = b; in other words b is the unique fixed point of the mapping f .

Now suppose that α ∈ ( σ2
σ1+σ2

, 1). Again with (6) we observe that P (Xb
T > b) > σ2

σ1+σ2
if and only if b < 0, and

P (Xb
T > b) = 1− 2σ1

σ1 + σ2
Φ

(
b

σ1
√
T

)
.

As above P (Xb
T > b) = α if and only if b = σ1

√
TΦ−1

(
(1−α)(σ1+σ2)

2σ1

)
. In this case, b is

the unique fixed point of the function f and b = q(Xb
T , 1− α).

Remark 3.6. Theorem 3.5 only provides uniqueness of the equilibrium mb∗ in the set
of threshold strategies. It is not clear whether mb∗ is also unique in the larger class M.
Even for the control problem (9) there are no results on uniqueness of optimal controls
to the best of our knowledge.

Remark 3.7. One can apply the results of McNamara [31] to generalize the terminal
reward 1(q(µ,1−α),∞)(x) to functions g(x, q(µ, 1 − α)) that depend on the player’s state
and the population (1 − α)-quantile. Theorem 6 in [31] characterizes terminal reward
functions for which threshold controls are optimal and it states necessary and sufficient
conditions on these functions. This implies for the mean field game that if g : R×R→ R
is measurable and satisfies

(i) g(·, q) is continuous and has at most exponential growth for any q ∈ R,

(ii) g(·, q) is convex on (−∞, q] and concave on [q,∞) for any q ∈ R,

(iii) for any x ≥ 0 and q ∈ R it holds

σ2g(σ1x+ q, q) + σ1g(−σ2x+ q, q) = (σ1 + σ2)g(q, q),

then one can show along the same lines as for the terminal reward 1(q(µ,1−α),∞)(x) that
the threshold control mb∗ is an equilibrium strategy.

Note that the function 1(q(µ,1−α),∞)(x) does not satisfy the conditions on g above
because it is not continuous. However, one can approximate the function 1(q(µ,1−α),∞)(x)
by functions satisfying the assumptions (i)-(iii).
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Comparative statics

In this section we analyze how the equilibrium strategy of the mean field game depends
on the model parameters and how a change of the model parameters affects the player’s
behavior in the equilibrium. We start by studying the threshold b∗.

Lemma 3.8. b∗ is monotonically decreasing in α and σ1, and monotonically increasing
in σ2. Moreover, limα↓0 b

∗ =∞ and limα↑1 b
∗ = −∞.

Proof. Follows directly from the explicit representation of b∗ in (10).

The dependence of the threshold b∗ on the parameter α is illustrated in Figure 1a.

Corollary 3.9. The variance of the terminal state Xb∗
T is given by

Var
(
Xb∗

T

)
=
(
ασ2

1 + (1− α)σ2
2

)
T, (11)

i.e. it is monotonically decreasing in α, and monotonically increasing in σ1 and σ2.

Proof. It holds

Var
(
Xb∗

T

)
= E

[(
Xb∗

T

)2]
=

∫ ∞
−∞

x2p(T,−b∗, x− b∗) dx,

with the probability density function p given by Proposition 2.3. The integral can be
simplified to the right-hand side of (11) using the definition of b∗ in (10).

To further analyze the behavior of the players in the equilibrium we introduce the
quantity

R :=
1

T

∫ T

0

P (mb∗(X
b∗

t ) = σ2) dt. (12)

Note that R represents the average time where a single player, using the equilibrium
strategy, chooses the maximal volatility σ2. One can show that R only depends on α
and on σ1 and σ2 through their ratio σ1

σ2
.

For the rest of the section we focus on the case where α is small, i.e. we assume that
α < 1

2
≤ σ2

σ1+σ2
. The other case, namely α > 1

2
or α ≥ σ2

σ1+σ2
, can be treated similarly.

Note that since α < σ2
σ1+σ2

the threshold b∗ is positive.

Proposition 3.10. Let α < 1
2
. Then

(i) R only depends on α and γ := σ1
σ2

, and the definition of R is independent of T .
Moreover,

R (α, γ) = 1− α− q(α, γ)

(
αq(α, γ) +

2

γ + 1
ϕ (q(α, γ))

)
, (13)

where q(α, γ) := Φ−1
(
α
2

(γ + 1)
)
.

(ii) R is monotonically decreasing in γ and α.

13



Proof. (i): Using (6) we see that

R =
1

T

∫ T

0

P (Xb∗

t < b∗) dt

=
1

T

∫ T

0

(
2σ2

σ1 + σ2
Φ

(
b∗

σ2
√
t

)
− σ2 − σ1
σ1 + σ2

)
dt

=
2σ2

σ1 + σ2

∫ 1

0

Φ

(
b∗

σ2
√
Ts

)
ds− σ2 − σ1

σ1 + σ2

=
2σ2

σ1 + σ2

∫ 1

0

Φ

(
− 1√

s
Φ−1

(
α(σ1 + σ2)

2σ2

))
ds− σ2 − σ1

σ1 + σ2

=
2

γ + 1

∫ 1

0

Φ

(
− 1√

s
Φ−1

(α
2

(γ + 1)
))

ds− 1− γ
1 + γ

,

where γ = σ1
σ2

Hence, R depends on α and γ, but does not depend on T . To obtain an

explicit formula for R note that a primitive function of (0,∞) → R, s 7→ Φ
(

1√
s

)
is

given by

(0,∞)→ R, s 7→ −Φ

(
− 1√

s

)
+ sΦ

(
1√
s

)
+
√
sϕ

(
1√
s

)
,

where ϕ(x) := 1√
2π
e−

x2

2 , x ∈ R. Moreover, q = q(α, γ) = Φ−1
(
α
2

(γ + 1)
)
< 0 since

α
2

(γ + 1) < 1
2
. With this we can further simplify the formula for R:

R =
2

γ + 1

∫ 1

0

Φ

(
− 1√

s
q

)
ds− 1− γ

1 + γ

=
2

γ + 1
q2
∫ q−2

0

Φ

(
1√
t

)
dt− 1− γ

1 + γ

=
2

γ + 1
q2
(
−Φ (−|q|) +

1

q2
Φ (|q|) +

1

|q|
ϕ (|q|)

)
− 1− γ

1 + γ

=
2

γ + 1
q2
(
−Φ (q) +

1

q2
Φ (−q) +

1

|q|
ϕ (−q)

)
− 1− γ

1 + γ

=
2

γ + 1
q2
(
−1− 1

q2

)
Φ(q) +

2

γ + 1
q2
(

1

q2
+

1

|q|
ϕ (q)

)
− 1− γ

1 + γ

= −α
(
q2 + 1

)
+

2

γ + 1
(1 + |q|ϕ (q))− 1− γ

1 + γ

= −α
(
q2 + 1

)
+

2

γ + 1
|q|ϕ (q) + 1

= 1− α− q(α, γ)

(
αq(α, γ) +

2

γ + 1
ϕ (q(α, γ))

)
.

(ii): We prove the statement by examining the monotonicity of the integrand in (12).
Note that P (mb∗(X

b∗
t ) = σ2) = P (Xb∗

t < b∗) and P (Xb
t < b) is differentiable in b > 0
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with

∂bP (Xb
t < b) = ∂b

(
2σ2

σ1 + σ2
Φ

(
b

σ2
√
t

)
− σ2 − σ1
σ1 + σ2

)
=

2

σ1 + σ2

1√
t
ϕ

(
b

σ2
√
t

)
> 0,

for any b > 0 and t > 0. Hence, P (Xb
t < b) is monotonically increasing in b and

consequently R is monotonically increasing in b∗. Then the monotonicity of b∗ implies
the result. In more detail, for 0 < α1 < α2 we have b∗(α1) > b∗(α2) and thus R(α1, γ) >
R(α2, γ) for any γ ∈ (0, 1), i.e. R is monotonically decreasing in α. For the monotonicity
in γ note that one can without loss of generality assume that σ2 is fixed. We observe that
b∗ = −σ2

√
TΦ−1

(
α
2
(γ + 1)

)
is monotonically decreasing in γ, and hence also P (Xb∗

t <
b∗) and R are monotonically decreasing in γ.

Corollary 3.9 and Proposition 3.10 show that if the proportion α of best players who
receive a reward is reduced, then the players choose more often the maximal volatility σ2
and the variance of the terminal state increases. In other words, intensifying competition
leads to riskier strategies. This observation is in line with results in [36] and [37], obtained
within models, where agents can control the time horizon of comparison. It is shown
that as the number of agents increases and hence the proportion of agents receiving
a reward decreases, the agents choose in expectation larger stopping rules and hence
increase the standard deviation of the states at the comparison time.

Moreover, Proposition 3.10 implies that R increases as γ decreases, which is equivalent
to decreasing σ1 or increasing σ2 (see Figure 1b). This means, the smaller γ the more
time a generic player in the equilibrium chooses the maximal volatility σ2. The quantity
1
γ

can be seen as a measure of a single player’s leeway for choosing an action. A small
value for γ implies a large leeway since it corresponds to either a small value for σ1 or a
large value for σ2 (or both).

Proposition 3.10 implies that in the equilibrium agents play in average riskier when
the leeway increases. This can be explained as follows: the larger the leeway, the bigger

0.0 0.2 0.4 0.6 0.8 1.0

α

−4

−2

0

2

4

6

8

b∗
(α
)

(a) T = 1, σ1 = 1, σ2 = 2

0.0 0.2 0.4 0.6 0.8 1.0

γ
0.50

0.55

0.60

0.65

0.70

R
(α
,γ

)

(b) α = 0.5

Figure 1: Dependence of b∗ on α and R on γ.
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is the opportunity for players choosing σ2 to establish a lead over players choosing σ1.
Thus, to preserve the chance to be among the best performing, the players need to
choose a riskier strategy when the leeway of all players increases.

4 Approximate Nash equilibrium of the n-player game

We now come back to the n-player game introduced in Section 1. We show that the
n-tuple consisting of the mean field equilibrium threshold strategies is an ε-Nash equi-
librium in the n-player game, with ε converging to zero as n tends to infinity. Moreover,
we determine a rate of convergence.

We first rigorously define what we mean by an ε-Nash equilibrium for the game at
hand (cf., e.g., the similar definition in [4]).

Definition 4.1. Let ε > 0. A tuple a = (a1, . . . , an) ∈ Ann is called ε-Nash equi-
librium of the n-player game if for all i ∈ {1, . . . , n}, c ∈ An and weak solutions

(Ωa,Fa, (Fat ), P a,W a, Xa), (Ω(a−i,c),F (a−i,c), (F (a−i,c)
t ), P (a−i,c),W (a−i,c), X(a−i,c)) we have

P a(X i,a
T > q(µn,a, 1− α)) + ε ≥ P (a−i,c)(X

i,(a−i,c)
T > q(µn,(a−i,c), 1− α)),

where (a−i, c) = (a1, . . . , ai−1, c, ai+1, . . . , an), and µn,a, µn,(a−i,c) are defined as in Sec-
tion 1.

Our main result of this section is as follows:

Theorem 4.2. Let n ≥ 2 and a = (a1, . . . , an) be the tuple of strategies in Ann, defined
by

ai(x) :=

{
σ1, if xi ≥ b∗,

σ2, if xi < b∗,
(14)

for x ∈ Rn and

b∗ :=

 −σ2
√
TΦ−1

(
α(σ1+σ2)

2σ2

)
, if α ≤ σ2

σ1+σ2
,

σ1
√
TΦ−1

(
(1−α)(σ1+σ2)

2σ1

)
, if α > σ2

σ1+σ2
.

Then there exists a sequence εn ≥ 0 with limn εn = 0 such that a = (a1, . . . , an) is an
εn-Nash equilibrium of the n-player game. We can choose εn ∈ O

(
n−1/2

)
.

Note that O
(
n−1/2

)
denotes the set of sequences (un)n∈N such that there exists a

constant C > 0 with lim supn→+∞ n
1/2|un| ≤ C.

Remark 4.3. Notice that for implementing the strategy (14) player i only needs to
observe her own state. Therefore, the tuple of strategies (14) is also an approximate
Nash equilibrium for the game version, where the players cannot observe each other.
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Within the game version without observability the strategies can be assumed to be of
open-loop type. In the game with observability closed-loop strategies are more appro-
priate, and therefore in Definition 4.1 we allow only for closed-loop equilibria. Notice,
however, that the approximate equilibrium strategies (14) can be interpreted also as
open-loop controls. We refer to Chapter 2 of [7] for more details on open- and closed-
loop Nash equilibria.

In order to prove Theorem 4.2 we first state two lemmas. The first is due to results of
Hoeffding and we state it in a version suitable for our setting. This result can be found,
e.g., in Theorem 1 and Theorem 2 of [15] in a slightly more general form.

Lemma 4.4. Let X1, . . . , Xn be independent random variables with 0 ≤ Xi ≤ 1 for
i = 1, . . . , n, defined on a probability space (Ω,F , P ). Then we have for t > 0

P

(
n∑
i=1

(Xi − EXi) ≥ nt

)
≤ e−2nt

2

.

Lemma 4.4 yields the next result for empirical quantiles.

Lemma 4.5. Let X1, . . . , Xn be i.i.d. random variables on a probability space (Ω,F , P )
and µ := PX1. Define µn = 1

n

∑n
i=1 δXi and let (αn)n∈N be a sequence in (0, 1). Then for

all ε > 0 we have

P (|q(µn, 1− αn)− q(µ, 1− αn)| > ε) ≤ 2e−2nδ
2
ε ,

where δε := min{(1 − αn) − Fµ(q(µ, 1 − αn) − ε), Fµ(q(µ, 1 − αn) + ε) − (1 − αn)} and
where Fµ denotes the distribution function of µ.

Proof. Let ε > 0. Note that

P (q(µn, 1− αn) > q(µ, 1− αn) + ε)

= P

(
n∑
j=1

(
1(q(µ,1−αn)+ε,∞)(Xj)− (1− Fµ(q(µ, 1− αn) + ε))

)
> n (Fµ(q(µ, 1− αn) + ε)− (1− αn))

)
,

P (q(µn, 1− αn) < q(µ, 1− αn)− ε)

= P

(
n∑
j=1

(
1(−∞,q(µ,1−αn)+ε](Xj)− Fµ(q(µ, 1− αn) + ε)

)
> n ((1− αn)− Fµ(q(µ, 1− αn)− ε))

)
.

Now using Lemma 4.4 we obtain that

P (|q(µn, 1− αn)− q(µ, 1− αn)| > ε) ≤ 2 exp
(
−2nδ2ε

)
.
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Corollary 4.6. Let (Ωa,Fa, (Fat ), P a,W a, Xa) be a weak solution of (1) for the control
a defined in Theorem 4.2, and let (αn)n∈N be a sequence in (0, 1). Moreover, let µn,a =
1
n

∑n
i=1 δXi,a

T
and µ := P a

X1,a
T

. If 0 < ε < M , then there exists a constant C > 0 such that

P a (|q(µn,a, 1− αn)− q(µ, 1− αn)| > ε) ≤ 2e−2nCε
2

.

Proof. Note that X i,a has the same distribution as the OBM Y 0,b∗ with threshold b∗.
Hence, if 0 < ε < M , we can apply Lemma 4.5 and Lemma 2.5, and thus there exists a
constant C > 0 such that δε ≥ Cε. We obtain

P a (|q(µn,a, 1− αn)− q(µ, 1− αn)| > ε) ≤ 2 exp
(
−2nC2ε2

)
.

Proof of Theorem 4.2. Let i ∈ {1, . . . , n}. We compare a = (a1, . . . , an) with the tuple
where player i deviates from mb∗ by choosing a strategy c ∈ An. To this end we write
(a−i, c) = (a1, . . . , ai−1, c, ai+1, . . . , an). Note that for the control (a−i, c) there exists a
weak solution (Ω,F , (Ft), P,W,X(a−i,c)) of (2). For simplicity we omit the dependence
on the strategy in the notation. Moreover, we can find a strong solution Xa of (2) for
the control a on the same probability space and with the same Brownian motion: The
controls aj only depend on the j-th state and are uniformly bounded away from zero,
which implies weak solvability. In addition, they are of bounded variation implying
pathwise uniqueness. Hence, there is a unique strong solution (see also Remark 3.1).
We emphasize that the distribution of Xj,a is same as the distribution of the OBM Y 0,b∗

with threshold b∗. We set µ := PX1,a
T

.

We need to show that

P (X
i,(a−i,c)
T > q(µn,(a−i,c), 1− α))− P (X i,a

T > q(µn,a, 1− α)) ≤ C√
n
, (15)

for some constant C > 0 independent of the control c. We denote by F b the distribution
function of an OBM with threshold level b at time T .

1. We first estimate P (X i,a
T > q(µn,a, 1 − α)) from below. Notice that X i,a

T and the
empirical quantile q(µn,a, 1−α) are not independent. We therefore consider the empirical
measure µn−1,a = 1

n−1
∑

j 6=i δXj,a
T

and define

A(n) := q

(
µn−1,a,

n

n− 1
(1− α)

)
. (16)

Notice that A(n) is independent of X i,a
T and

A(n) ≥ q(µn,a, 1− α). (17)

Thus,

P
(
X i,a
T > q(µn,a, 1− α)

)
≥ P

(
X i,a
T > A(n)

)
= E

[
1− F b∗(A(n))

]
, (18)
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2. Next we estimate the first term in (15) from above: We replace in (15) the quantile
q(µn,(a−i,c), 1− α) with a quantile that does not depend on c. To this end observe that

D(n) := q

(
µn−1,a, 1− n

n− 1
α

)
≤ q(µn,(a−i,c), 1− α). (19)

Indeed, we have since (n− 1)(1− n
n−1α) = n(1− α)− 1 < n(1− α)

q

(
µn−1,a, 1− n

n− 1
α

)
= X

(b(n−1)(1− n
n−1

α)c:n−1),a−i
T

≤ X
(bn(1−α)c:n),(a−i,c)
T = q(µn,(a−i,c), 1− α),

where X
(b(n−1)(1− n

n−1
α)c:n−1),a−i

T denotes the b(n− 1)(1− n
n−1α)c-th order statistics of the

(n−1) states Xj,a
T , j 6= i, and X

(bn(1−α)c:n),(a−i,c)
T denotes the bn(1−α)c-th order statistics

of the n states X
1,(a−i,c)
T , . . . , X

n,(a−i,c)
T . In other words, suppose that r is greater than or

equal to the right-hand side of (19). Then at most bnαc players are better than r. In
the n− 1 game without player i then also at most bnαc players are better than r. This
means µn−1,a−i((−∞, r]) ≥ 1− n

n−1α. Hence we have shown (19).
From (19) we obtain

P
(
X
i,(a−i,c)
T > q(µn,(a−i,c), 1− α)

)
≤ P

(
X
i,(a−i,c)
T > D(n)

)
= E

[
P
(
X
i,(a−i,c)
T > D(n)|D(n)

)]
.

(20)

If player i knew from the very beginning the value D(n), then mD(n) would be the control
maximizing the probability for player i’s state to be greater than D(n) at time T : Note
that we can assume, without loss of generality, that Ω is a complete, separable metric
space and F is its Borel-σ-algebra. Then Theorem 5.3.18 in [19] implies that there exists
a regular conditional probability Q : Ω×F → [0, 1] for F given σ(D(n)) and Q satisfies

Q
(
ω,
{
X
i,(a−i,c)
T > D(n)

})
= Q

(
ω,
{
X
i,(a−i,c)
T > b

}) ∣∣∣
b=D(ω,n)

, (21)

for a.e. ω ∈ Ω. Since W i is also a Brownian motion under Q(ω, ·), because W i and D(n)
are independent, Lemma 3.4 implies that for any b ∈ R we have

Q
(
ω,
{
X
i,(a−i,c)
T > b

})
≤ Q

(
ω,
{
X
i,(a−i,mb)
T > b

})
, for P -a.e. ω ∈ Ω. (22)

Hence, with (21) and (22)

P
(
X
i,(a−i,c)
T > D(n)|D(n)

)
(ω) = Q

(
ω,
{
X
i,(a−i,c)
T > D(n)

})
≤ Q

(
ω,
{
X
i,(a−i,mb)
T > b

}) ∣∣∣
b=D(ω,n)

,
(23)
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for a.e. ω ∈ Ω. The random variable X
i,(a−i,mb)
T has the same distribution as the OBM

with threshold level b at time T , and therefore with (23) we have

P
(
X
i,(a−i,c)
T > D(n)|D(n)

)
≤ 1− F b(b)|b=D(n), a.s.

This implies using (20)

P
(
X
i,(a−i,c)
T > q(µn,(a−i,c), 1− α)

)
≤ E[1− F b(b)|b=D(n)]. (24)

3. We can now combine the estimates in (18) and (24) above leading to

P
(
X
i,(a−i,c)
T > q(µn,(a−i,c), 1− α)

)
− P

(
X i,a
T > q(µn,a, 1− α)

)
≤ E[F b∗(A(n))− FD(n)(D(n))]

≤ E
∣∣F b∗(A(n))− F b∗

(
q
(
µ, n

n−1(1− α)
))∣∣ (25)

+
∣∣F b∗

(
q
(
µ, n

n−1(1− α)
))
− F b∗

(
q
(
µ, 1− n

n−1α
))∣∣ (26)

+ E
∣∣F b∗

(
q
(
µ, 1− n

n−1α
))
− F b∗(D(n))

∣∣ (27)

+ E
∣∣F b∗ (D(n))− FD(n)(D(n))

∣∣ . (28)

Using the Lipschitz continuity of F b∗ (see Lemma 2.5) we can estimate the term (25) as
follows

E
∣∣F b∗(A(n))− F b∗

(
q
(
µ, n

n−1(1− α)
))∣∣

≤ C1E
[∣∣A(n)− q

(
µ, n

n−1(1− α)
)∣∣ ∧ 2

]
= C1

∫ ∞
0

P
(∣∣A(n)− q

(
µ, n

n−1(1− α)
)∣∣ ∧ 2 > ε

)
dε

= C1

∫ 2

0

P
(∣∣A(n)− q

(
µ, n

n−1(1− α)
)∣∣ > ε

)
dε

for some constant C1 > 0. Moreover, Corollary 4.6 yields that for some C2 > 0 we have

P
(∣∣A(n)− q

(
µ, n

n−1(1− α)
)∣∣ > ε

)
≤ 2e−2(n−1)C2ε2 , 0 < ε ≤ 2,

and thus we obtain

E
∣∣F b∗(A(n))− F b∗

(
q
(
µ, n

n−1(1− α)
))∣∣

≤ C1

∫ 2

0

2e−2(n−1)C2ε2 dε ≤
√

2πC1√
C2

1√
(n− 1)

∈ O
(

1√
n

)
.

(29)

In exactly the same way one can estimate the term (27) and hence we have for some
constant C3 > 0

E
∣∣F b∗

(
q
(
µ, 1− n

n−1α
))
− F b∗(D(n))

∣∣ ≤ C3√
n− 1

∈ O
(

1√
n

)
. (30)
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For the term (28) we obtain, using Lemma 2.6,

E
∣∣F b∗ (D(n))− FD(n)(D(n))

∣∣
≤ E [C4|b∗ −D(n)| ∧ 2]

≤ C4

∣∣b∗ − q (µ, 1− n
n−1α

)∣∣+ C4E
[∣∣q (µ, 1− n

n−1α
)
−D(n)

∣∣ ∧ 2
]

for some constants C4 > 0. The second term can be estimated using Corollary 4.6

E
[∣∣q (µ, 1− n

n−1α
)
−D(n)

∣∣ ∧ 2
]

=

∫ 2

0

P
(∣∣q (µ, 1− n

n−1α
)
−D(n)

∣∣ > ε
)
dε

≤
∫ 2

0

2e−2(n−1)C5ε2 dε ≤
√

2π√
C5

1√
n− 1

,

for some constant C5 > 0. For the first term it holds that∣∣b∗ − q (µ, 1− n
n−1α

)∣∣ =
∣∣∣(F b∗

)−1
(1− α)−

(
F b∗
)−1 (

1− n
n−1α

)∣∣∣
≤ C6

∣∣(1− α)−
(
1− n

n−1α
)∣∣ =

C6α

n− 1
,

for some constant C6 > 0, because limn→∞ q
(
µ, 1− n

n−1α
)

= q(µ, 1 − α) = b∗, and
because the probability density function of the OBM with threshold b∗ is locally uni-
formly bounded away from zero, e.g., on the interval (b∗ − ε, b∗ + ε) for some fixed ε > 0.
Therefore,

E
∣∣F b∗ (D(n))− FD(n)(D(n))

∣∣ ≤ (C4C6α +

√
2πC4√
C5

)
1√
n− 1

. (31)

Recall that F b∗(x) = µ((−∞, x]), x ∈ R, and hence the term (26) can be rewritten as
follows ∣∣F b∗

(
q
(
µ, n

n−1(1− α)
))
− F b∗

(
q
(
µ, 1− n

n−1α
))∣∣

=
∣∣ n
n−1(1− α)−

(
1− n

n−1α
)∣∣ =

1

n− 1
∈ O

(
1

n

)
.

(32)

Finally, equations (29)-(32) imply that

P
(
X
i,(a−i,c)
T > q(µn,(a−i,c), 1− α)

)
− P

(
X i,a
T > q(µn,a, 1− α)

)
≤ C√

n− 1
∈ O

(
1√
n

)
,

for an appropriate constant C > 0 independent of c. Thus, the feedback strategy
a = (mb∗ , . . . ,mb∗) is an O(n−

1
2 )-Nash equilibrium.

Remark 4.7. Remark 3.7 presents a generalization of the mean field game to a more
general reward function g. Under additional assumptions on g one can show that the
strategy a, defined in (14), yields also an approximate Nash equilibrium in the n-player
game with reward function g. Sufficient conditions for this result to hold true are, e.g.,
that g satisfies all the assumptions (i)-(iii) from Remark 3.7, g is uniformly bounded and
g(x, ·) is monotonically decreasing and continuous for all x ∈ R.
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5 Large ranking games with drift and common noise

In this section we consider an extension of our n-player game model described in Section
1. We make the same assumptions as for the n-player game, but we add a drift compo-
nent and a common noise to the dynamics of each players’ state process. The drift and
common diffusion coefficient are allowed to depend on all the players’ states. Moreover,
in order to take into account the effect of the common noise, we allow the control of each
player to depend on an additional factor, which is a one-dimensional process observable
by all the players. More precisely, for i = 1, . . . , n, we assume that the state process of
player i satisfies

dX i,a
t = b0

(
t,X i,a

t , X−i,at

)
dt+ ai(t,X

i,a
t , X−i,at , qat )dW

i
t + σ0

(
t,X i,a

t , X−i,at

)
dBt,

X i,a
0 = 0,

(33)

with
dqat = b0 (t,Xa

t ) dt+ σ0 (t,Xa
t ) dBt, qa0 = 0, (34)

and where b0, σ0 : [0, T ] × Rn → R are measurable functions, W = (W 1, . . . ,W n) is a
Brownian motion on Rn and B is a one-dimensional Brownian motion. We assume that,
for any i = 1, . . . , n, the distribution of the bracket 〈W i, B〉 is fixed. In particular, note
that we do not necessarily assume that B is independent from W . The players’ controls
are now measurable functions ai : [0, T ]×Rn×R→ [σ1, σ2], i = 1, . . . , n. Slightly abusing
notations, we still denote An the set of such controls, and write Ann = An× . . .×An for
the set of all strategy tuples.

Remark 5.1. A particular case covered by our analysis is when b0 and σ0 are functions
of the empirical distribution of all the players’ states. Even when b0 and σ0 are only
functions of time (independent of the variable x ∈ Rn), the dynamics given by (33) and
(34) substantially generalizes the no common noise case, and allows to model stronger
interactions (see Section 7 for an application).

Remark 5.2. For simplicity, b0 and σ0 appearing in (33) and (34) above do not depend
on qat . Adding this dependence would not entail additional difficulties in the proofs of
Theorem 5.3, whose statement would remain the same.

As before we suppose that each player aims at maximizing the probability of her own
state to be greater than the empirical (1−α)-quantile of all states at time T , i.e. player
i wants to maximize the quantity

P (X i,a
T > q(µn,a, 1− α))

over all admissible controls a. In the case without drift we have shown that an approxi-
mate Nash equilibrium is given when each player chooses the threshold control mb∗ (see
Theorem 4.2). In order to adapt this result to the case with drift and common noise,
we need to allow the players’ controls to depend on an additional factor q, that itself
depends only on the common noise and drift coefficients. A weak solution to (33)-(34) is
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now a tuple (Ωa,Fa, (Fat )t∈[0,T ], P
a,W a, Ba, Xa, qa) where (Ωa,Fa, (Fat ), P a) is a filtered

probability space supporting an n-dimensional (Fat )t∈[0,T ]-Brownian motion W and a
one-dimensional (Fat )t∈[0,T ]- Brownian motion B, such that (Xa, qa,W a, Ba) solves (33)-
(34), with both processes Xa and qa being (Fat )t∈[0,T ]-adapted and continuous. Recall
that we assume that the correlation between W a and Ba is fixed, but that we do not nec-
essarily assume that these processes are independent. An approximate Nash equilibrium
is then defined in a way analogous to Definition 4.1 in this new context.

Finally, we assume that the coefficients b0 and σ0 are such that, for any a ∈ Ann,
there exists at least one weak solution to the system (33)-(34). An example of sufficient
condition is the following: W a and Ba are independent, b0 and σ0 are measurable and
bounded, and σ0 is additionally bounded away from 0.

Theorem 5.3. Let n ≥ 2 and a = (a1, . . . , an) be the tuple of strategies in Ann, defined
by

ai(t, x1, . . . , xn, q) :=

{
σ1, if xi ≥ b∗ + q,

σ2, if xi < b∗ + q,
(35)

for (t, x, q) ∈ [0, T ]× Rn × R and

b∗ :=

 −σ2
√
TΦ−1

(
α(σ1+σ2)

2σ2

)
, if α ≤ σ2

σ1+σ2
,

σ1
√
TΦ−1

(
(1−α)(σ1+σ2)

2σ1

)
, if α > σ2

σ1+σ2
.

Then there exists a sequence εn ≥ 0 with limn εn = 0 such that a = (a1, . . . , an) is an

εn-Nash equilibrium of the n-player game. We can choose εn ∈ O(n−
1
2 ).

Remark 5.4. To be able to execute the optimal strategy ai, player i needs to observe
not only her own state Xi, but also the process qa defined by (34). So in presence of
a state-dependent drift and common noise coefficient, it is no longer the case that the
tuple of closed-loop approximate optimal strategies provide also an approximate Nash
equilibrium for the version of the game where the players cannot observe each other.

Remark 5.5. The fact that B and W in (33) and (34) need not be independent allows
for different interpretations of the game. Indeed, consider for instance the particular case
where B = W 1: this can be interpreted as a break in symmetry between the players,
since the idiosyncratic noise of player 1 affects all the other players.

To prove Theorem 5.3, we use the method introduced in [26] and exploit the translation
invariance of our reward functional, given by g(x, µ) = 1(1−α,∞)(µ((−∞, x])) for x ∈ R
and µ ∈ P(R), where P(R) denotes the set of all probability measures on R. Recall
(see e.g. Definition 2.1 in [26]) that g is translation invariant if for any x, y ∈ R and
µ ∈ P(R) we have g(x + y, µ) = g(x, µ(· + y)). Note that we do not directly use the
results of [26] for the mean field version of the game, but adapt the results of [26] to
the finite player case to show that from the εn-Nash equilibrium obtained in Theorem
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4.2 for the game without common noise, we can construct an εn-Nash equilibrium of the
finite player game, with common noise and drift.

First we show that for the candidate optimal strategy a defined above, pathwise
uniqueness of the state equation holds true. This result is not used in the proof of
Theorem 5.3, but it shows that for the equilibrium strategy derived in this section, the
players’ behavior is such that the associated processes are well-defined, and in particular
that their law is unique.

Proposition 5.6. Let a ∈ Ann be defined as in Theorem 5.3. Assume furthermore that
the maps x 7→ b0(·, x) and x 7→ σ0(·, x) are Lipschitz continuous on Rn, uniformly in t
and have linear growth. Then pathwise uniqueness for the system (33)-(34) holds true
and there exists a strong solution.

Proof. To shorten the notations, we will write Xa
t − qt := (X1,a

t − qt, . . . , X
n,a
t − qt).

Define for i = 1, . . . , n, Y i,a
t := X i,a

t − qat . Then this process Y a satisfies,

dY i,a
t = ai

(
t, Y 1,a

t + qat , . . . , Y
n,a
t + qat , q

a
t

)
dW i,a

t , i = 1, . . . , n, (36)

dqat = b0(t, Y
1,a
t + qat , . . . , Y

n,a
t + qat )dt+ σ0(t, Y

1,a
t + qat , . . . , Y

n,a
t + qat )dB

a
t . (37)

By definition of ai, ai(t, yi + q, q) = mb∗(yi) for any t ≥ 0 and y ∈ Rn. This implies that
the n equations in (36) are decoupled and independent of qa. Hence by Remark 3.1,
each of these n equations enjoys pathwise uniqueness and has a strong solution. Now
by our assumptions on b0 and σ0, (37) also has a unique strong solution. The existence
of a unique strong solution for the dynamics of (Xa

t − qat , qat ) entails the existence of a
unique strong solution for the dynamics of (Xa

t , q
a
t ).

Proof of Theorem 5.3. Let c ∈ An and fix i ∈ {1, . . . , n}. As in the proof of The-
orem 4.2, we compare a with the tuple where player i deviates from ai by choos-
ing a strategy c. To this end, we write (a−i, c) = (a1, . . . , ai−1, c, ai+1, . . . , an). Let
(Ωc,F c, (F ct ), P c,W c, Bc, Xc, qc) be a weak solution to (33)-(34) for the strategy (a−i, c).
We define the processes Y a and Y c by setting for j = 1, . . . , n and t ∈ [0, T ]

Y j,a
t := Xj,a

t − qat ,
Y j,c
t := Xj,c

t − qct .

Using again that aj(t, yj + q, q) = mb∗(yj) for any t ≥ 0 and y ∈ Rn, we get that
(Ωc,F c, (F ct ), P c,W c, Bc, Y c, qc) is a weak solution to

dY j,c
t = mb∗(Y

j,c
t )dW j,c

t , i = 1, . . . , n, j 6= i, (38)

dY i,c
t = c(Y 1,c

t + qct , . . . , Y
n,c
t + qct , q

c
t )dW

i,c
t , (39)

dqct = b0(t, Y
1,c
t + qct , . . . , Y

n,c
t + qct )dt+ σ0(t, Y

1,c
t + qct , . . . , Y

n,c
t + qct )dB

c
t . (40)

On the other hand, (Ωa,Fa, (Fat ), P a,W a, Ba, Y a, qa) is a weak solution to

dY j,a
t = mb∗(Y

j,a
t )dW j,a

t , i = 1, . . . , n, (41)
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dqat = b0(t, Y
1,a
t + qat , . . . , Y

n,a
t + qat )dt+ σ0(t, Y

1,a
t + qat , . . . , Y

n,a
t + qat )dB

a
t . (42)

The states Y a and Y c correspond to the n-player game without drift and without com-
mon noise. Y a are the states controlled with the approximate Nash equilibrium, given
in Theorem 4.2, and Y c represents the states where one player deviates from the ap-
proximate Nash equilibrium strategy by choosing the control c̃, given by c̃(t, y, q) =
c (t, y1 + q, . . . , yn + q, q) , t ∈ [0, T ], x ∈ Rn. Therefore, an immediate extension of The-
orem 4.2 implies that

P c(Y i,c
T > q(νn,(a−i,c), 1− α))− P a(Y i,a

T > q(νn,a, 1− α)) ≤ εn, (43)

for some sequence εn ∈ O(n−
1
2 ) independent of i, c and the choice of the weak solutions.

Now, the translation invariance of our gain functional implies that for d ∈ {a, c}

P d(X i,d
T > q(µn,d, 1− α)) = P d(Y i,d

T > q(νn,d, 1− α)), (44)

where µn,d = 1
n

∑n
j=1 δXj,d

T
and νn,d = 1

n

∑n
j=1 δY j,dT

. Finally, (43) and (44) imply that

P c(X i,c
T > q(µn,c, 1− α))− P a(X i,a

T > q(µn,a, 1− α))

= P c(Y i,c
T > q(νn,c, 1− α))− P a(Y i,a

T > q(νn,a, 1− α)) ≤ εn.

6 Comparison with the two player case

In this section we consider our game with two players. We show that there exists a
Nash equilibrium in an explicit form by using classical verification techniques for the
Isaacs equations of the game. For simplicity we consider only time-homogeneous control
functions. To this end, define Ã2 as the set of all measurable functions a : R2 → [σ1, σ2].
Uniqueness in law holds true for the SDE (46) for all controls in Ã2 (see [21], Theorem
3). For controls in the larger control set A2 there are no results on uniqueness in law
for (46) to the best of our knowledge. This means that the payoff of the players might
depend on the chosen weak solution. Nevertheless, one can show that the results of this
section also apply for the set A2, because the controls a∗1 and a∗2, defined in Theorem 6.1
below, are mutually best responses irrespective of the chosen weak solution. Our main
result is as follows:

Theorem 6.1. Let α = 1
2

and n = 2. Then the strategy (a∗1, a
∗
2) ∈ Ã2

2 is a Nash
equilibrium of the two player game, where (a∗1, a

∗
2) is defined by

a∗1(x, y) =

{
σ1, if x ≥ y,
σ2, if x < y,

(45)

and a∗2(x, y) = a∗1(y, x) for (x, y) ∈ R2.
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Figure 2: Part of the players choosing the small volatility σ1 in dependence of time.

One can interpret Theorem 6.1 and 3.5 as providing Nash equilibria for the extreme
cases n = 2 and n = ∞. Observe that the equilibrium strategies of the two extreme
cases differ considerably. In the two player equilibrium the relative position of the own
state with respect to the opponent’s state determines the choice of volatility. In contrast,
the strategy of the mean field equilibrium only depends on the absolute position of the
own state. For implementing (45) a player needs to observe her own state process and
the one of the opponent, whereas the mean field equilibrium only requires observation of
the own state. The results thus indicate that any information about the other players’
states becomes less useful as the number of players increases. This is plausible since in
a symmetric equilibrium the empirical distribution of all players’ states converges to the
distribution of the own state as n→∞.

A comparison of Theorem 6.1 and 3.5 further reveals that a larger number of players
incentivizes players to choose a high volatility more often. Indeed, in the two player
case with α = 1

2
the player with the higher state always chooses the small volatility.

In the large game with α = 1
2

the percentage of players choosing the smaller volatility
increases over time and reaches 50% at T . One can show that all players choose σ2 at
the beginning (see Figure 2b).

A related two player diffusion control game has been studied in McNamara [33]. In
[33], however, the two players control the same single state, whereas in our game each
player controls her own process. As in our two player game only the relative position
matters, one can derive the equilibrium from Theorem 6.1 by studying the difference of
the state processes, which has a similar dynamics as the state in the game of [33].

We first describe the two player game in more detail before proving Theorem 6.1. We
denote by X the state of player 1 and by Y the state of player 2. If the players choose
the strategy a ∈ Ã2

2, their dynamics are governed by the SDE

dX t,x,y,a
s = a1(X

t,x,y,a
s , Y t,x,y,a

s )dW 1
s ,

dY t,x,y,a
s = a2(X

t,x,y,a
s , Y t,x,y,a

s )dW 2
s , s ∈ [t, T ],

(46)

with initial data (Xt, Yt) = (x, y) ∈ R2, t ∈ [0, T ). As mentioned already in Section 1,
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there exists a weak solution of (46) for any control a ∈ Ã2
2. Moreover, for any control

a ∈ Ã2
2 uniqueness in law of the SDE (46) holds true because Theorem 3 in [21] applies

for two-dimensional equations. Although for any weak solution the filtered probability
space and the Brownian motion depend on the chosen control, we omit this dependence
in this section to simplify notation.

Lemma 6.2. For all a ∈ Ã2
2, t ∈ [0, T ) and (x, y) ∈ R2 we have

P
(
X t,x,y,a
T = Y t,x,y,a

T

)
= 0.

Proof. Let Zs = X t,x,y,a
s − Y t,x,y,a

s for all s ∈ [t, T ]. Moreover, we use the short hand
notation ai,s = ai(X

t,x,y,a
s , Y t,x,y,a

s ). Notice that W̃ , given by

W̃s =

∫ s

t

1√
a21,r + a22,r

(a1,rdW
1
r − a2,rdW 2

r ), s ≥ t,

is a Brownian motion, and

dZs =
√
a21,s + a22,sdW̃s, s ∈ [t, T ]. (47)

Observe that
√
a21,s + a22,s is bounded and bounded away from zero. Theorem 1 in [32]

entails that P (ZT = 0) = 0, and hence we obtain the result.

Note that for α = 1
2

and n = 2 the game described in Section 1 is for each player
equivalent to the task of maximizing the probability of being ahead at time T . Moreover,
for each player maximizing the probability of being ahead is equivalent to minimizing
the probability for the opponent to be ahead at time T . Hence, it is enough to consider
the payoff of player 1, which is given by

J(t, x, y, a) := P
(
X t,x,y,a
T ≥ Y t,x,y,a

T

)
= P

(
X t,x,y,a
T > Y t,x,y,a

T

)
.

The last equality follows from Lemma 6.2.
For (t, x, y) ∈ [0, T )× R2 the lower value of the game is then defined by

V (t, x, y) = sup
a1∈Ã

inf
a2∈Ã

J(t, x, y, a1, a2),

and the upper value of the game is defined by

V (t, x, y) = inf
a2∈Ã

sup
a1∈Ã

J(t, x, y, a1, a2).

Notice that the definitions imply V ≤ V .
We now prove Theorem 6.1 by constructing a solution to the Isaacs equations of the

game and then show, by classical verification techniques, that they agree with the upper
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and lower value function of the game. Moreover, we show that (a∗1, a
∗
2) is a saddle point

of J , i.e.
inf
a2∈Ã

J(t, x, y, a∗1, a2) = sup
a1∈Ã

J(t, x, y, a1, a
∗
2) = V (t, x, y),

where the value function V is given by V = V = V . Thus we obtain that (a∗1, a
∗
2) is a

Nash equilibrium.
The upper and lower Isaacs equation are given by

− wt(t, x, y)− 1

2
inf

b∈[σ1,σ2]
sup

a∈[σ1,σ2]
(a2wxx + b2wyy)(t, x, y) = 0, (48)

− vt(t, x, y)− 1

2
sup

a∈[σ1,σ2]
inf

b∈[σ1,σ2]
(a2vxx + b2vyy)(t, x, y) = 0, (49)

with w(T, x, y) = 1(0,∞)(x − y) and v(T, x, y) = 1(0,∞)(x − y), respectively. Note that
(48) and (49) coincide and hence it is enough to consider either one of those equations.
Moreover, one can easily verify that the function G, defined by

G(t, x, y) := Φ

(
x− y√

(σ2
1 + σ2

2)(T − t)

)
, (t, x, y) ∈ [0, T )× R2,

and G(T, x, y) := 1(0,∞)(x − y) , solves both (48) and (49). We show by a classical
verification that G coincides with V and V .

Lemma 6.3. V (t, x, y) = V (t, x, y) = G(t, x, y) for (t, x, y) ∈ [0, T )×R2 and hence the
value function of the problem is given by

V (t, x, y) = Φ

(
x− y√

(σ2
1 + σ2

2)(T − t)

)
, (t, x, y) ∈ [0, T )× R2.

Proof. We show that G = V and G = V on [0, T ) × R2. Hence we obtain all the
statements of Lemma 6.3. Note that for t ∈ [0, T ) and (x, y) ∈ R2 we have

∂xxG(t, x, y) = ∂yyG(t, x, y)

{
≤ 0, if x ≥ y,

> 0, if x < y,
(50)

and

∂tG(t, x, y) +
1

2
∂xxG(t, x, y)

(
σ2
1 + σ2

2

)
= 0 (51)

since G satisfies (48) and (49).
We start with showing that G ≤ V . To this end fix a2 ∈ Ã. By (50) and (51) we have

0 ≤ ∂tG(t, x, y) +
1

2
∂xxG(t, x, y)

(
a∗1(x, y)2 + a2(x, y)2

)
(52)

for all (t, x, y) ∈ [0, T ) × R2. Now fix (t, x, y) ∈ [0, T ) × R2, set â := (a∗1, a2) and let
(X, Y ) = (X t,x,y,â, Y t,x,y,â) be a weak solution of the state SDE (46) on the time interval
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[t, T ] with initial condition (x, y). Recall that the solution (X, Y ) is unique in law. By
Itô’s formula and (52), for all δ ∈ (0, T − t) we have

G(T − δ,XT−δ, YT−δ)

= G(t, x, y) +MT−δ +

∫ T−δ

t

(
∂tG+

1

2
∂xxG

(
(a∗1)

2 + a22
))

(s,Xs, Ys)ds

≥ G(t, x, y) +MT−δ,

where Ms, s ∈ [t, T ), is a martingale with Mt = 0. By first taking expectations, and
then letting δ ↓ 0, we arrive by dominating convergence at

G(t, x, y) ≤ lim
δ↓0

E[G(T − δ,XT−δ, YT−δ)] = P (XT ≥ YT ) = J(t, x, y, a∗1, a2).

Note that we can apply dominated convergence since by Lemma 6.2 the discontinuity
points of G(T, ·, ·) are attained with probability zero. Since a2 is arbitrary, we also have
G(t, x, y) ≤ infa2∈Ã J(t, x, y, a∗1, a2) ≤ V (t, x, y).

We next show that G ≥ V . To this end fix a1 ∈ Ã. By (50) and (51) we have

0 ≥ ∂tG(t, x, y) +
1

2
∂xxG(t, x, y)

(
a1(x, y)2 + a∗2(x, y)2

)
(53)

for all (t, x, y) ∈ [0, T ) × R2. Now fix (t, x, y) ∈ [0, T ) × R2, set â := (a1, a
∗
2) and let

(X, Y ) = (X t,x,y,â, Y t,x,y,â) be a weak solution of the state SDE (46) on the time interval
[t, T ] with initial condition (x, y). With Itô’s formula and (53) one can derive similar to
the reasoning above that

E[G(T − δ,XT−δ, YT−δ)] ≤ G(t, x, y)

for any δ ∈ (0, T − t). Letting δ ↓ 0 we obtain G(t, x, y) ≥ J(t, x, y, a1, a
∗
2), and hence

also G(t, x, y) ≥ V (t, x, y). Thus, we have shown G = V and

sup
a1∈Ã

J(t, x, y, a1, a
∗
2) = J(t, x, y, a∗1, a

∗
2) = inf

a2∈Ã
J(t, x, y, a∗1, a2). (54)

The proof of G = V is similar and therefore omitted.

Proof of Theorem 6.1. The statement follows immediately from the proof of Lemma 6.3:
(54) implies that (a∗1, a

∗
2) is a saddle point of J and thus (a∗1, a

∗
2) is a Nash equilibrium

of the two player game.

7 Application: Risk taking by mutual fund managers

The game considered in this paper is formulated in a generic way and thus allows for
multiple interpretations. In the following we illustrate an interpretation in terms of a
competition among mutual funds.
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Suppose that the players are managers of mutual funds, with state X i representing
the return process of the fund managed by player i. Assume further that the return
dynamics satisfy (33). The dB-term in (33) then represents the systematic risk of all
funds, and the dW i-term the idiosyncratic risk of fund i. The process qa can be viewed
as the market return that is common to all states. Note that we allow the market return
process to depend on all the players’ returns. By shifting the return process by qa one
obtains the idiosyncratic return dynamics (1).

Each manager can control the volatility of her mutual fund by holding risky or less
risky assets in her portfolio. A maximal implementable volatility σ2 reflects risk con-
straints that are imposed on the mutual funds, e.g. by a regulator. A minimal positive
volatility σ1 means that the managers cannot completely eliminate idiosyncratic risk.
The reward of the game can be interpreted as an additional income that manager i re-
ceives at T , e.g. at the end of the calendar year, if the return of fund i until T is among
the highest α.

The additional income can be, e.g., a bonus that the manager receives from the fund’s
owner if the fund’s performance is among the best of the year. Alternatively, the addi-
tional income can be generated by an increase of the size of the fund. The size of inflow
into a fund and its outflow depends on the performance of the fund. There is empirical
evidence that the flow does not depend linearly on the performance. Indeed, the results
from [9] indicate that net inflow into a fund due to a good performance is larger than
the net outflow due to a bad performance (see Section III in [9]).

Our results show that the fund managers have an incentive to alter the riskiness of the
portfolio once the portfolio performance, corrected by the market return qa, has attained
the winning level, the equilibrium threshold b∗, that only α funds will have attained by
the end of the year. Below the winning level the managers are willing to increase the
volatility of their portfolios even without additional expected return. In other words, the
managers are willing to gamble in order to maximize the probability of being among the
best. Thus, our results reveal that the winner-take-all bonus scheme of the game leads
to risk incentives that are not in the interest of risk-averse fund participants. Indeed,
a risk averse participant always prefers the smallest volatility, given that the expected
returns are always the same.

The implication that mutual funds reduce their riskiness once they have attained the
winning level goes in line with the observation reported in [9], Section V, that mutual
funds tend to lock in gains in the final quarter of the year if they have well performed
in the first three quarters.

Note that if α is not too large, then b∗ is positive and hence the percentage of funds
having attained the threshold increases over the course of the year. This entails that
also the number of funds choosing the minimal volatility σ1 increases over the year (see
Figure 2a).

The comparative statics results at the end of Section 3 imply that the managers
will opt for the maximal volatility more often if α decreases or if 1/γ, the range of
implementable volatilities, increases. Moreover, the variance of the returns increases as
α decreases and 1/γ increases.
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optimal energy demand response management. Mathematical Finance, 31(1):399–
473, 2021.

31
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