Lucas Ondel
email: ondel@lisn.fr

Léa-Marie Lam-Yee-Mui

Martin Kocour

Caio Filippo

Corro Lukás Burget

GPU-ACCELERATED FORWARD-BACKWARD ALGORITHM WITH APPLICATION TO LATTICE-FREE MMI

Keywords: Lattice-Free MMI, end-to-end ASR, Julia language, forward-backward

We propose to express the forward-backward algorithm in terms of operations between sparse matrices in a specific semiring. This new perspective naturally leads to a GPU-friendly algorithm which is easy to implement in Julia or any programming languages with native support of semiring algebra. We use this new implementation to train a TDNN with the LF-MMI objective function and we compare the training time of our system with PyChain-a recently introduced C++/CUDA implementation of the LF-MMI loss. Our implementation is about two times faster while not having to use any approximation such as the "leaky-HMM".

INTRODUCTION

The forward-backward algorithm is a crucial algorithm in speech recognition. It is used to compute the posterior distribution of state occupancy in the Expectation-Maximization training approach for Hidden Markov Model (HMM). Even though deep learning approaches have superseded the traditional GMM/HMM-based ASR [START_REF] Morgan | An introduction to hybrid hmm/connectionist continuous speech recognition[END_REF][START_REF] Xiong | Achieving human parity in conversational speech recognition[END_REF], the forward-backward algorithm is still used to estimate the gradient of two major sequence discriminative objective functions: Connectionist Temporal Classification [START_REF] Graves | Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks[END_REF] and Lattice-Free MMMI (LF-MMI) [START_REF] Povey | Purely sequence-trained neural networks for asr based on lattice-free mmi[END_REF][START_REF] Hadian | End-to-end speech recognition using lattice-free mmi[END_REF].

Because state-of-the-art models are trained on GPU, having a fast and an efficient implementation of these losses (and their gradients) is essential. The implementation is usually done in C++ and then wrapped in a Python module to be integrated with popular neural network libraries [START_REF] Abadi | Tensorflow: A system for large-scale machine learning[END_REF][START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF]. However, this practice is far to be satisfactory as the C++ code is usually complex, difficult to modify and, as we shall see, not necessarily optimal.

In this work, we propose a different approach: we express the forward-backward algorithms in terms of operations between matrices living in a particular semiring. This new perspective leads to a trivial implementation in the Julia language [START_REF] Bezanson | Julia: A fresh approach to numerical computing[END_REF] which is significantly faster than a competitive C++ implementation. As a result, our proposed implementation 1 of the forward-backward is just few lines long, easy to read, and easy to extend by anyone.

This paper is organized in two parts: in Section 2, we describe the forward-backward algorithm and its representation in terms of semiring algebra and in Section 3, we conduct our numerical analysis.

1 https://github.com/lucasondel/MarkovModels.jl, the forward-backward is implemented in the functions αrecursion and βrecursion Finally, we warmly encourage interested readers to look at the provided code and the Pluto notebooks2 ; we have made them with the hope to be accessible by a vast majority.

ALGORITHM

Description

Let x = (x1, x2, . . . , xN) be a sequence of features and z = (z1, z2, . . . , zn) an unobserved sequence sampled from a discretetime Markov process defined by the transition probability p(zn|zn-1). Each zn takes value in {1, . . . , K}, where 1, . . . , K are the index of the states of the Markov process. The forward-backward algorithm [START_REF] Lawrence R Rabiner | A tutorial on hidden markov models and selected applications in speech recognition[END_REF] calculates the marginal state posterior distribution:

p(zn|x) = αn(zn)βn(zn) z N α(zN) , (1)
where α (the forward pass) and β (the backward pass) are recursive functions defined as:

αn(zn) = p(xn|zn) zn p(zn|zn-1)αn-1(zn-1) (2)
βn(zn) = z n+1 p(xn+1|zn+1)p(zn+1|zn)βn+1(zn+1). (3)
Whereas the algorithm is simple to state, its implementation can be quite challenging. First, because it involves multiplication of probabilities, a naive implementation would quickly underflow. Second, the state-space is usually very large leading to heavy computations. However, because it is frequent that p(zn|zn-1) is zero for most of the pairs zn, zn-1 the amount of "useful" operations remains relatively low.

Thus, an efficient implementation of the forward-backward algorithm should address these two issues: numerical stability and using the structure of the transition probabilties to gain speed.

Matrix-based implementation

A convenient way to implement the forward-backward algorithm is to express (2) and (3) in terms of matrix operations. We introduce the following notation:

T =    p(zn = 1|zn-1 = 1) . . . p(zn-1 = K|zn-1 = 1) p(zn = 1|zn-1 = K) . . . p(zn = K|zn-1 = K)    vn =    p(xn|zn = 1) . . . p(xn|zn = K)    αn =      αn(zn 1) . . . αn(K)      β n =      βn(zn 1) . . . βn(K)     
, and we rewrite the forward-backward algorithm as:

αn = vn • (T αn-1) (4)
β n = T(β n+1 • vn), (5
)
where • is the Hadamard (i.e. element-wise) product. Implementing (4) and (5) is trivial using any linear algebra library. Another advantage of this implementation is that it can be easily accelerated with a GPU as matrix multiplication is a highly optimized operation on such device. Finally, we can represent the matrix T as a sparse matrix and avoid performing unnecessary operations. However, despite all these benefits, this implementation remains numerically unstable.

Semiring algebra

In order to keep the advantages of the matrix-based implementation while solving the numerical stability issue, we propose to express the algorithm in terms of matrices in the log-semifield 3 .

For a matrix M with non-negative entries we define:

M log =     log M11 log M12 . . . log M21     , (6)
M log ij ∈ S(R, ⊕, ⊗, , 0, 1), (7
)
where S is the log-semifield defined as:

a log ⊕ b log = log e a log + e b log (8)
a log ⊗ b log = a log + b log (9)
a log b log = a log -b log (10) 0 = -∞ (11) 1 = 0. (12
)
Equipped with these new definitions, we express the forwardbackward algorithm in the logarithmic domain:

α log n = v log n • (T log α log n-1) (13)
β log n = T log (β log n+1 • v log n) (14) log p(zn|x) = α log n (zn)β log n (zn) z N α log N (zN) . (15
)
Altogether, (13), (14) and (15) leads to an implementation of the forward-backward algorithm which is (i) trivial to implement (if provided with a semiring algebra API) as it consists of a few matrix multiplications, (ii) numerically stable as all the computations are in the logarithmic domain, and (iii) efficient as the matrix T can be represented as a sparse matrix storing only the elements different than 0.

Dealing with batches

Thus far, we have described our new implementation for one sequence only. However, when training a neural network it is common practice to use a batch of input sequences to benefit from the GPU parallelization. Our matrix representation of the algorithm is easily extended to accommodate for multiple sequences.

In the following, we drop the superscript log for the sake of clarity. We define Ti the transition probabilities of the ith sequence of the batch of size I. αi,n, β i,n and vi,n are defined similarly. Now, we set:

T =    T1 . . . TI    vn =    v1,n . . . vI,n    αn =    α1,n . . . αI,n    β n =    β 1,n . . . β I,n    ,
and using these new variables in (13), (14) and (15), we obtain a batch version of the forward-backward algorithm. This algorithm naturally extends to batch of sequences of different length by adding to the Markov process a phony self-looping state marking the end of sequence and padding v with 0 appropriately.

Using the Julia language

The algorithm we have described so far is straightforward to implement but for one difficulty: packages dealing with sparse matrices usually store the elements that are different from 0. However, for the log-semifield, because 0 = 0 and 1 = 0, this would lead to ignore important values and store many of non-relevant ones. Implementing in C or C++ a sparse matrix API agnostic to the semiring is not a trifle. It is perhaps easier to do it in a scripting language such as Python, but that would lead to poor performances. Fortunately, the Julia language provides an elegant solution to this problem.

Julia is a high-level language with performances comparable to other statically compiled languages. From a user perspective, it provides a programming experience close to what a Python programmer is accustomed to while allowing to write critical code without resorting to C or C++ 4 . Importantly for our problem, Julia naturally allows to use arbitrary semirings [START_REF] Viral | Novel algebras for advanced analytics in julia[END_REF] and, consequently, implementing a sparse matrix in the log-semifield amounts to write a few lines of code to implement (8)- [START_REF] Yuret | Knet: beginning deep learning with 100 lines of julia[END_REF]. Moreover, Julia offers a rich landscape for GPU [START_REF] Besard | Effective extensible programming: Unleashing Julia on GPUs[END_REF] and neural network toolkits [START_REF] Yuret | Knet: beginning deep learning with 100 lines of julia[END_REF][START_REF] Innes | Flux: Elegant machine learning with julia[END_REF] allowing to integrate any new code with state-of-the-art machine learning techniques.

APPLICATION

We now demonstrate the practicality of our algorithm by using it to build an ASR system trained with the LF-MMI objective function.

Objective function

The LF-MMI objective function [START_REF] Chow | Maximum mutual information estimation of hmm parameters for continuous speech recognition using the n-best algorithm[END_REF][START_REF] Povey | Purely sequence-trained neural networks for asr based on lattice-free mmi[END_REF][START_REF] Hadian | End-to-end speech recognition using lattice-free mmi[END_REF] for one utterance is defined as:

L = log p(X|Gnum) p(X|Gden) , (16
)
where Gnum is the numerator graph, i.e. an utterance-specific alignment graph, and Gden is the denominator graph, i.e. a phonotactic language model. If we denote Φ = (φ 1 , φ 2 , . . .) the sequence output by a neural network where we interpret φn,i = log p(xn|zn = i), the derivatives of the loss are given by:

∂L ∂φn,i = p(zn = i|X, Gnum) -p(zn = i|X, Gden). (17)
In practice, these derivatives are estimated by running the forwardbackward algorithm on the numerator and denominator graphs.

Python and Julia recipes

The baseline is the PyChain [START_REF] Shao | Pychain: A fully parallelized pytorch implementation of lf-mmi for end-to-end asr[END_REF] package which implements the LF-MMI objective function integrated with the PyTorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF] neural network toolkit. [START_REF] Shao | Pychain: A fully parallelized pytorch implementation of lf-mmi for end-to-end asr[END_REF] is the latest development of the original "Kaldi chain model" and, to the best of our knowledge, it is currently the most competitive implementation of the LF-MMI training. We have used the PyChain recipe 5 provided by the authors to prepare and to train the system. We compare the PyChain recipe against our Julia-based recipe6 that is built on top of our implementation of the forward-backward algorithm and the KNet [START_REF] Yuret | Knet: beginning deep learning with 100 lines of julia[END_REF] neural network Julia package. Despite that there exists other popular Julia neural network packages, we elected to use KNet as it is technically the most similar to PyTorch.

Note that the PyChain implementation of the LF-MMI loss is not exact: the forward-backward on the denominator is done with the so-called "leaky-HMM" approximation [START_REF] Povey | Purely sequence-trained neural networks for asr based on lattice-free mmi[END_REF] which speeds up the computations at the expense of an approximate result.

Datasets

We use two datasets:

• MiniLibrispeech, a subset of the Librispeech corpus [START_REF] Panayotov | Librispeech: an asr corpus based on public domain audio books[END_REF] created for software testing purposes. It contains 5 hours and 2 hours of training and validation data respectively. Because, it is only for "debugging", it doesn't have a proper test set and we report the WER on the validation set.

• the Wall Street Journal (WSJ) corpus [START_REF] Douglas | The design for the wall street journal-based csr corpus[END_REF], where we use the standard subsets for training (si284), validating (dev93) and testing eval92)

Model and Graphs preparation

Prior training the model with the LF-MMI objective, one needs to prepare the alignments graphs (i.e. the numerator graphs) and the ngram phonotactic language model (i.e. the denominator graph). Our preparation is identical to the PyChain recipe with one exception: whereas the PyChain recipe uses only one pronunciation for words having multiple ones, we use all the pronunciations when building the numerator graphs. In both recipes, we set the n-gram order of the phonotactic language model to 3. The model is a Time-Delay Neural Network (TDNN) [START_REF] Peddinti | A time delay neural network architecture for efficient modeling of long temporal contexts[END_REF] with 5 convolutional layers and a final affine transformation. Each convolutional layer is composed of the following sequence:

• 1-dimensional convolution • batch-normalization • REctified Linear Unit activation
• dropout with a dropping probability of 0.2 For each convolutional layer, the kernel sizes are [START_REF] Graves | Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks[END_REF][START_REF] Graves | Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks[END_REF][START_REF] Graves | Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks[END_REF][START_REF] Graves | Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks[END_REF][START_REF] Graves | Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks[END_REF], the strides are (1, 1, 1, 1, 3) and the dilations are [START_REF] Morgan | An introduction to hybrid hmm/connectionist continuous speech recognition[END_REF][START_REF] Morgan | An introduction to hybrid hmm/connectionist continuous speech recognition[END_REF][START_REF] Graves | Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks[END_REF][START_REF] Graves | Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks[END_REF][START_REF] Graves | Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks[END_REF].

The input features to the model are standard 40-dimensional MFCCs extracted at a 10 ms frame rate. These features are then mean and variance normalized on a per-speaker basis. The neural network output dimension is set to 84-we have 42 phones and each phone is modelled a with 2-state HMM topology [START_REF] Hadian | End-to-end speech recognition using lattice-free mmi[END_REF] resulting 2 × 42 emission probabilities.

Training

Our recipe follows exactly the one of PyChain: we use the Adam optimizer with β1 = 0.9, β2 = 0.999 and an initial learning rate of 10 -3 . If there is no improvement of the validation loss after one epoch, the learning rate is halved. We also apply a so-called "curriculum" training for one epoch, i.e. we sort in ascending order the utterances by their durations for the first epoch. For the rest of the training, we form batches of sequences of similar lengths and we shuffle the order of the batches. Upon completion of the training, we select the model with the best validation loss to decode the test data.

We have observed that our Julia-based recipe consumes more memory and cannot accommodate the same batch size as the Py-Chain recipe. To leverage this issue, we divide the batch size B by a factor F and we update the model after accumulating the gradient for F batches. In this way, the gradient calculated is the same but memory requirement is divided by F .

Results

The results reported here were run with a NVIDIA GeForce RTX 2080 Ti GPU.

The final Word Error Rate (WER) evaluated on the test set and the duration of the neural network training for both recipes are shown in Table 2. We observe that Julia-based training drastically outperforms the baseline recipe in term of training time even though it cannot use the same batch size. Regarding the WER, whereas differences for the WSJ is small, our recipe achieves a much better WER on the MiniLibrispeech corpus. Currently, we do not have a definitive explanation for this improvement. A potential cause that we will explore in future work is that the approximation used in Py-Chain may degrade the performance of the system when trained on small amount of data.

Analysis

In order to gain further insights about the training speed up observed in the previous experiment, we compare our proposed implementation of the forward-backward algorithm with the ones found in Py-Chain. PyChain ships two versions of the forward-backward both implemented in C++: the first one calculates the exact computations in the logarithmic domain whereas the second runs in the probability domain but uses a scaling factor and the "leaky-HMM" approximation to overcome numerical stability issues. We run our benchmark on two different graphs reflecting the typical structure of the numberator and denominator graphs in the LF-MMI function. For the numerator graph, we select the alignment graph from the training set of WSJ with the largest number of states. This alignment graph has 454 states and 1036 arcs. Then, we replicate this graph 128 times to simulate a training mini-batch and we measure the duration of the forward-backward on 128 input sequences of pseudo-loglikelihoods. We set each sequence to have 700 frames as it corresponds to the length of the largest likelihood sequence on WSJ. For the denominator graph, we repeat the same procedure replacing the alignment graph with a 3-gram phonotactic language model. The denominator graph has 3022 states and 50984 arcs.

The duration of the different implementations are shown in Table 1. First looking at the CPU version, we see that the proposed Julia implementation significantly outperfoms the logarithmic-domain PyChain implementation. The "leaky-HMM" version is drastically faster at the cost of yielding an approximate result. On GPU, the benefit of the "leaky-HMM" vanishes and the implementation is even slower in the case of the numerator graph benchmark. On the other hand, our Julia implementation fully benefits from the parallelism provided by the GPU device and shows more than 5 times speed up compared to logarithmic-domain PyChain implementation on the denominator graph.

Next, we measure the overhead induced by the forward-backward algorithm during the training. In Table 3, we plot the average duration of (i) the computation the LF-MMI loss and its gradient as described in [START_REF] Douglas | The design for the wall street journal-based csr corpus[END_REF], (ii) the forward and backward propagation through the neural network computation excluding the loss computation. These averages are estimated from 100 gradient computations during the WSJ training. We see that for the Julia-based version the loss overhead is severely reduced and accounts for only half the time of the total backpropagation. Interestingly, one can see that KNet, the neural network backend used in the Julia recipe, is actually slower than PyTorch, the neural network backend used in the PyChain recipe. Therefore, the speed up of the Julia-based training comes from our forward-backward algorithm rather than a faster neural network toolkit.

CONCLUSION AND FUTURE WORK

We have proposed a new implementation of the forward-backward algorithm relying on semiring algebra. This implementation naturally fits in the Julia language and achieves a significant speed up compared to a competitive C++ implementation. So far, we have only explored the use of the log-semifield, however, it is trivial to extend our algorithm to other semirings. Particulary, replacing the log-semiring with the tropical-semiring would lead to a straightforward implementation of the Viterbi algorithm. It is remarkable that with the advance programming languages, the implementation of something as complex as a full-fledged speech decoder can now be done in a few dozens lines of code.

Finally, we hope that this work will sparkle the interest of the speech community to the rich capabilities offered by the Julia language ecosystem.

Table 3 :

 3 Comparison of the average time spend in (i) the computation of the LF-MMI loss and its gradient, (ii) the forward and backward propagation through the neural network.

Table 1 :

 1 Comparison between the PyChain and the proposed implementations of the forward-backward algorithm. On GPU, our implementation is significantly faster than both PyChain implementations.

	Duration (s)

Table 2 :

 2 Comparison between the PyChain recipe and our Juliabased recipe of LF-MMI. B is the batch size and F is the gradient update frequency. Note that we report the duration of the neural network training, not the total duration of the recipes.

https://github.com/lucasondel/SpeechLab/tree/ main/recipes/lfmmi

A semifield is a semiring for which all the elements but 0 have a multiplicative inverse. Loosely speaking, a semifield is a semiring with a division operator.

It is also possible to write GPU kernels directly in Julia as was done in this work.

https://github.com/YiwenShaoStephen/pychain_ example

https://github.com/lucasondel/SpeechLab/tree/ main/recipes/lfmmi.