GPU-Accelerated Forward-Backward Algorithm with Application to Lattic-Free MMI
Lucas Ondel, Léa-Marie Lam-Yee-Mui, Martin Kocour, Caio Filippo, Corro Lukás Burget

To cite this version:
Lucas Ondel, Léa-Marie Lam-Yee-Mui, Martin Kocour, Caio Filippo, Corro Lukás Burget. GPU-Accelerated Forward-Backward Algorithm with Application to Lattic-Free MMI. 2021. hal-03434552

HAL Id: hal-03434552
https://hal.science/hal-03434552
Preprint submitted on 18 Nov 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
GPU-ACCELERATED FORWARD-BACKWARD ALGORITHM WITH APPLICATION TO LATTICE-FREE MMI

Lucas Ondel† Léa-Marie Lam-Yee-Mui† Martin Kocour‡ Caio Filippo Corro† Lukás Burget†

† LISN, CNRS, Université Paris-Saclay, Orsay, France
‡ Brno University of Technology, Faculty of Information Technology, Brno, Czech Republic
ondel@lism.fr

ABSTRACT

We propose to express the forward-backward algorithm in terms of operations between sparse matrices in a specific semiring. This new perspective naturally leads to a GPU-friendly algorithm which is easy to implement in Julia or any programming languages with native support of semiring algebra. We use this new implementation to train a TDNN with the LF-MMI objective function and we compare the training time of our system with PyChain—a recently introduced C++/CUDA implementation of the LF-MMI loss. Our implementation is about two times faster while not having to use any approximation such as the “leaky-HMM”.

Index Terms— Lattice-Free MMI, end-to-end ASR, Julia language, forward-backward

1. INTRODUCTION

The forward-backward algorithm is a crucial algorithm in speech recognition. It is used to compute the posterior distribution of state occupancy in the Expectation-Maximization training approach for Hidden Markov Model (HMM). Even though deep learning approaches have superseded the traditional GMM/HMM-based ASR, the forward-backward algorithm is still used to estimate the gradient of two major sequence discriminative objective functions: Connectionist Temporal Classification [3] and Lattice-Free MMI (LF-MMI) [4, 5].

Because state-of-the-art models are trained on GPU, having a fast and an efficient implementation of these losses (and their gradients) is essential. The implementation is usually done in C++ and then wrapped in a Python module to be integrated with popular neural network libraries [6,7]. However, this practice is far to be satisfactory as the C++ code is usually complex, difficult to modify and, as we shall see, not necessarily optimal.

In this work, we propose a different approach: we express the forward-backward algorithm in terms of operations between matrices living in a particular semiring. This new perspective leads to a trivial implementation in the Julia language [8] which is significantly faster than a competitive C++ implementation. As a result, our proposed implementation of the forward-backward is just few lines long, easy to read, and easy to extend by anyone.

This paper is organized in two parts: in Section 2.1 we describe the forward-backward algorithm and its representation in terms of semiring algebra and in Section 2.2 we conduct our numerical analysis.

Finally, we warmly encourage interested readers to look at the provided code and the Pluto notebook [9] we have made them with the hope to be accessible by a vast majority.

2. ALGORITHM

2.1. Description

Let \(x = (x_1, x_2, \ldots, x_N) \) be a sequence of features and \(z = (z_1, z_2, \ldots, z_n) \) an unobserved sequence sampled from a discrete-time Markov process defined by the transition probability \(p(z_n|z_{n-1}) \). Each \(z_n \) takes value in \(\{1, \ldots, K\} \), where \(1, \ldots, K \) are the index of the states of the Markov process. The forward-backward algorithm [9] calculates the marginal state posterior distribution:

\[
p(z_n|x) = \frac{\alpha_n(z_n) \beta_n(z_n)}{\sum_{z_N} \alpha(z_N)},
\]

where \(\alpha \) (the forward pass) and \(\beta \) (the backward pass) are recursive functions defined as:

\[
\alpha_n(z_n) = p(x_n|z_n) \sum_{z_{n+1}} p(z_{n+1}|z_n) \alpha_{n+1}(z_{n+1})
\]

\[
\beta_n(z_n) = \sum_{z_{n+1}} p(z_{n+1}|z_n) p(z_n|z_{n-1}) \beta_{n-1}(z_{n-1}).
\]

Whereas the algorithm is simple to state, its implementation can be quite challenging. First, because it involves multiplication of probabilities, a naive implementation would quickly underflow. Second, the state-space is usually very large leading to heavy computations. However, because it is frequent that \(p(z_n|z_{n-1}) = 0 \) for most of the pairs \(z_n, z_{n-1} \) the amount of “useful” operations remains relatively low.

Thus, an efficient implementation of the forward-backward algorithm should address these two issues: numerical stability and using the structure of the transition probabilities to gain speed.

2.2. Matrix-based implementation

A convenient way to implement the forward-backward algorithm is to express \(\alpha \) and \(\beta \) in terms of matrix operations. We introduce

\[1] \text{https://github.com/lucasondel/MarkovModels.jl} \]

the forward-backward is implemented in the functions \(\alpha_{\text{recursion}} \) and \(\beta_{\text{recursion}} \)
the following notation:

\[T = \begin{bmatrix} p(z_n | z_{n-1} = 1) & \cdots & p(z_n | z_{n-1} = K | z_{n-1} = 1) \\ \vdots & & \vdots \\ p(z_n | z_{n-1} = K) & \cdots & p(z_n | z_{n-1} = K | z_{n-1} = K) \end{bmatrix} \]

\[\mathbf{v}_n = \begin{bmatrix} p(x_n | z_n = 1) \\ \vdots \\ p(x_n | z_n = K) \end{bmatrix} \]

and we rewrite the forward-backward algorithm as:

\[\alpha_n = \mathbf{v}_n \circ (T^\top \alpha_{n-1}) \]

\[\beta_n = T(\beta_{n+1} \circ \mathbf{v}_n) \]

where \(\circ \) is the Hadamard (i.e., element-wise) product. Implementing \[\text{and} \] \[\text{is} \] \[\text{trivial} \] \[\text{using any linear algebra library.} \] Another advantage of this implementation is that it can be easily accelerated with a GPU as matrix multiplication is a highly optimized operation on such device. Finally, we can represent the matrix \(T \) as a sparse matrix and avoid performing unnecessary operations.

However, despite all these benefits, this implementation remains numerically unstable.

2.3. Semiring algebra

In order to keep the advantages of the matrix-based implementation while solving the numerical stability issue, we propose to express the algorithm in terms of matrices in the log-semifield. \[\text{For a matrix} \ M \ \text{with non-negative entries we define:} \]

\[M^{\text{log}} = \begin{bmatrix} \log M_{11} & \log M_{12} & \cdots \\ \log M_{21} & \ddots \\ \vdots \\ \log M_{N1} \end{bmatrix} \]

\[M^{\text{log}}_{1j} \in S(\mathbb{R}, \oplus, \ominus, \ominus, \overset{\text{log}}{\ominus}, \overset{\text{log}}{\ominus}) \]

where \(S \) is the log-semifield defined as:

\[a^{\text{log}} \oplus b^{\text{log}} = \log (e^{a} + e^{b}) \]

\[a^{\text{log}} \ominus b^{\text{log}} = a^{\text{log}} + b^{\text{log}} \]

\[a^{\text{log}} \ominus b^{\text{log}} = a^{\text{log}} - b^{\text{log}} \]

\[\overset{\text{log}}{\ominus} = -\infty \]

\[\overset{\text{log}}{\ominus} = 0 \]

Equipped with these new definitions, we express the forward-backward algorithm in the logarithmic domain:

\[\alpha^{\text{log}}_n = \mathbf{v}^{\text{log}}_n \circ (T^{\text{log}} \alpha^{\text{log}}_{n-1}) \]

\[\beta^{\text{log}}_n = T^{\text{log}}(\beta^{\text{log}}_{n+1} \circ \mathbf{v}^{\text{log}}_n) \]

\[\log p(z_n | x) = \frac{\alpha^{\text{log}}_n(z_n) \beta^{\text{log}}_n(z_n)}{\sum_{z} \alpha^{\text{log}}_n(z_n)} \]

Altogether, \[\text{and} \] \[\text{leads} \] \[\text{to an implementation of the} \]

| forward-backward algorithm which is (i) trivial to implement (if provided with a semiring algebra API) as it consists of a few

\[A \text{ semifield is a semiring for which all the elements but} 0 \ \text{have a multiplicative inverse.} \]

\[\text{Loosely speaking, a semifield is a semiring with a division operator.} \]

2.4. Dealing with batches

Thus far, we have described our new implementation for one sequence only. However, when training a neural network it is common practice to use a batch of input sequences to benefit from the GPU parallelization. Our matrix representation of the algorithm is easily extended to accommodate for multiple sequences.

In the following, we drop the superscript \(\text{log} \) for the sake of clarity. We define \(T_i \), the transition probabilities of the \(i \)th sequence of the batch of size \(I \). \(\alpha_{i,n}, \beta_{i,n} \) and \(v_{i,n} \) are defined similarly. Now, we set:

\[\mathbf{T} = \begin{bmatrix} T_1 & \cdots \\ \vdots & \ddots \\ \vdots & \cdots & T_I \end{bmatrix} \]

\[\mathbf{v}_n = \begin{bmatrix} v_{1,n} \\ \vdots \\ v_{I,n} \end{bmatrix} \]

\[\alpha_n = \begin{bmatrix} \alpha_{1,n} \\ \vdots \\ \alpha_{I,n} \end{bmatrix} \]

\[\beta_n = \begin{bmatrix} \beta_{1,n} \\ \vdots \\ \beta_{I,n} \end{bmatrix} \]

and using these new variables in \[\text{and} \] \[\text{we} \]

\[\text{obtain} \]

\[\text{a} \]

\[\text{batch} \]

\[\text{version} \]

\[\text{of} \]

\[\text{the} \]

\[\text{forward-backward} \]

\[\text{algorithm.} \]

\[\text{This algorithm} \]

\[\text{naturally} \]

\[\text{extends} \]

\[\text{to} \]

\[\text{batch} \]

\[\text{of} \]

\[\text{sequences} \]

\[\text{of different length} \]

\[\text{by adding} \]

\[\text{to the} \]

\[\text{Markov} \]

\[\text{process a} \]

\[\text{phony} \]

\[\text{self-looping} \]

\[\text{state} \]

\[\text{marking} \]

\[\text{the end} \]

\[\text{of} \]

\[\text{sequence} \]

\[\text{and} \]

\[\text{padding} \]

\[\text{v} \]

\[\text{with} \]

\[\text{0} \]

appropriately.

2.5. Using the Julia language

The algorithm we have described so far is straightforward to implement but for one difficulty: packages dealing with sparse matrices usually store the elements that are different from 0. However, for the log-semifield, because \(\bar{0} \neq 0 \) and \(\bar{1} = 0 \), this would lead to ignore important values and store many of non-relevant ones.

Implementing in C or C++ a sparse matrix API agnostic to the semiring is not a trifle. It is perhaps easier to do it in a scripting language such as Python, but that would lead to poor performances.

Fortunately, the Julia language provides an elegant solution to this problem.

Julia is a high-level language with performances comparable to other statically compiled languages. From a user perspective, it provides a programming experience close to what a Python programmer is accustomed to while allowing to write critical code without resorting to C or C++. \[4 \]

Importantly for our problem, Julia naturally allows to use arbitrary semirings \[10 \] and, consequently, implementing a sparse matrix in the log-semifield amounts to write a few lines of code to implement \[9-12 \]. Moreover, Julia offers a rich landscape for GPU \[11 \] and neural network toolkits \[12-13 \] allowing to integrate any new code with state-of-the-art machine learning techniques.

3. APPLICATION

We now demonstrate the practicality of our algorithm by using it to build an ASR system trained with the LF-MMI objective function.
3.1. Objective function

The LF-MMI objective function \[14, 4, 5\] for one utterance is defined as:

\[
\mathcal{L} = \log \frac{p(X | G_{\text{num}})}{p(X | G_{\text{den}})},
\]

where \(G_{\text{num}}\) is the numerator graph, i.e. an utterance-specific alignment graph, and \(G_{\text{den}}\) is the denominator graph, i.e. a phonotactic language model. If we denote \(\Phi = (\phi_1, \phi_2, \ldots)\) the sequence output by a neural network where we interpret \(\phi_{n,i} = \log p(x_n | z_n = i)\), the derivatives of the loss are given by:

\[
\frac{\partial \mathcal{L}}{\partial \phi_{n,i}} = p(z_n = i | X, G_{\text{num}}) - p(z_n = i | X, G_{\text{den}}).
\]

In practice, these derivatives are estimated by running the forward-backward algorithm on the numerator and denominator graphs.

3.2. Python and Julia recipes

The baseline is the PyChain \[15\] package which implements the LF-MMI objective function integrated with the PyTorch \[7\] neural network toolkit. \[15\] is the latest development of the original “Kaldi Chain model” and, to the best of our knowledge, it is currently the most competitive implementation of the LF-MMI training. We have used the PyChain recipe \[5\] provided by the authors to prepare and to train the system.

We compare the PyChain recipe against our Julia-based recipe \[6\] that is built on top of our implementation of the forward-backward algorithm and the KNet \[13\] neural network Julia package. Despite that there exists other popular Julia neural network packages, we elected to use KNet as it is technically the most similar to PyTorch.

Note that the PyChain implementation of the LF-MMI loss is not exact: the forward-backward on the denominator is done with the so-called “leaky-HMM” approximation \[4\] which speeds up the computations at the expense of an approximate result.

3.3. Datasets

We use two datasets:

- MiniLibrispeech, a subset of the Librispeech corpus \[16\] created for software testing purposes. It contains 5 hours and 2 hours of training and validation data respectively. Because, it is only for “debugging”, it doesn’t have a proper test set and we report the WER on the validation set.
- the Wall Street Journal (WSJ) corpus \[17\], where we use the standard subsets for training (si284), validating (dev93) and testing eval92)

3.4. Model and Graphs preparation

Prior training the model with the LF-MMI objective, one needs to prepare the alignments graphs (i.e. the numerator graphs) and the n-gram phonotactic language model (i.e. the denominator graph). Our preparation is identical to the PyChain recipe with one exception: whereas the PyChain recipe uses only one pronunciation for words having multiple ones, we use all the pronunciations when building the numerator graphs. In both recipes, we set the n-gram order of the phonotactic language model to 3.

The model is a Time-Delay Neural Network (TDNN) \[18\] with 5 convolutional layers and a final affine transformation. Each convolutional layer is composed of the following sequence:

- 1-dimensional convolution
- batch-normalization
- REctified Linear Unit activation
- dropout with a dropping probability of 0.2

For each convolutional layer, the kernel sizes are \((3, 3, 3, 3, 3)\), the strides are \((1, 1, 1, 1, 3)\) and the dilations are \((1, 1, 3, 3, 3)\).

The input features to the model are standard 40-dimensional MFCCs extracted at a 10 ms frame rate. These features are then mean and variance normalized on a per-speaker basis. The neural network output dimension is set to 84—we have 42 phones and each phone is modelled with 2-state HMM topology \[5\] resulting \(2 \times 42\) emission probabilities.

3.5. Training

Our recipe follows exactly the one of PyChain: we use the Adam optimizer with \(\beta_1 = 0.9, \beta_2 = 0.999\) and an initial learning rate of \(10^{-3}\). If there is no improvement of the validation loss after one epoch, the learning rate is halved. We also apply a so-called “curriculum” training for one epoch, i.e. we sort in ascending order the utterances by their durations for the first epoch. For the rest of the training, we form batches of sequences of similar lengths and we shuffle the order of the batches. Upon completion of the training, we select the model with the best validation loss to decode the test data.

We have observed that our Julia-based recipe consumes more memory and cannot accommodate the same batch size as the PyChain recipe. To leverage this issue, we divide the batch size \(B\) by a factor \(F\) and we update the model after accumulating the gradient for \(F\) batches. In this way, the gradient calculated is the same but memory requirement is divided by \(F\).

3.6. Results

The results reported here were run with a NVIDIA GeForce RTX 2080 Ti GPU.

The final Word Error Rate (WER) evaluated on the test set and the duration of the neural network training for both recipes are shown in Table \[2\]. We observe that Julia-based training drastically outperforms the baseline recipe in term of training time even though it cannot use the same batch size. Regarding the WER, whereas differences for the WSJ is small, our recipe achieves a much better WER on the MiniLibrispeech corpus. Currently, we do not have a definitive explanation for this improvement. A potential cause that we will explore in future work is that the approximation used in PyChain may degrade the performance of the system when trained on small amount of data.

3.7. Analysis

In order to gain further insights about the training speed up observed in the previous experiment, we compare our proposed implementation of the forward-backward algorithm with the ones found in PyChain. PyChain ships two versions of the forward-backward both implemented in C++: the first one calculates the exact computations in the logarithmic domain whereas the second runs in the probability
We run our benchmark on two different graphs reflecting the typical structure of the numerator and denominator graphs in the LF-MMI function. For the numerator graph, we select the alignment graph from the training set of WSJ with the largest number of states. This alignment graph has 454 states and 1036 arcs. Then, we replicate this graph 128 times to simulate a training mini-batch and we measure the duration of the forward-backward on 128 input sequences of pseudo-loglikelihoods. We set each sequence to have 700 frames as it corresponds to the length of the largest likelihood sequence on WSJ. For the denominator graph, we repeat the same procedure replacing the alignment graph with a 3-gram phonotactic language model. The denominator graph has 3022 states and 50984 arcs.

The duration of the different implementations are shown in Table 1. First looking at the CPU version, we see that the proposed Julia implementation significantly outperforms the logarithmic-domain PyChain implementation. The “leaky-HMM” version is drastically faster at the cost of yielding an approximate result. On GPU, the benefit of the “leaky-HMM” vanishes and the implementation is even slower in the case of the numerator graph benchmark. On the other hand, our Julia implementation fully benefits from the parallelism provided by the GPU device and shows more than 5 times speedup compared to logarithmic-domain PyChain implementation on the denominator graph.

Next, we measure the overhead induced by the forward-backward algorithm during the training. In Table 3 we plot the average duration of (i) the computation of the LF-MMI loss and its gradient, (ii) the forward and backward propagation through the neural network computation excluding the loss computation. These averages are estimated from 100 gradient computations during the WSJ training. We see that for the Julia-based version the loss overhead is severely reduced and accounts for only half the time of the total backpropagation. Interestingly, one can see that KNet, the neural network backend used in the Julia recipe, is actually slower than PyTorch, the neural network backend used in the PyChain recipe. Therefore, the speed up of the Julia-based training comes from our forward-backward algorithm rather than a faster neural network toolkit.

4. CONCLUSION AND FUTURE WORK

We have proposed a new implementation of the forward-backward algorithm relying on semiring algebra. This implementation naturally fits in the Julia language and achieves a significant speedup compared to a competitive C++ implementation.

So far, we have only explored the use of the log-semifield, however, it is trivial to extend our algorithm to other semirings. Particularly, replacing the log-semiring with the tropical-semiring would lead to a straightforward implementation of the Viterbi algorithm. It is remarkable that with the advance programming languages, the implementation of something as complex as a full-fledged speech decoder can now be done in a few dozens lines of code.

Finally, we hope that this work will spark the interest of the speech community to the rich capabilities offered by the Julia language ecosystem.
5. REFERENCES

