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Abstract. In the present work, we consider a magnetization moment recovery problem, that
is finding integral of the vector function (over its compact support) whose divergence constitutes
a source term in the Poisson equation. We outline derivation of explicit asymptotic formulas for
estimation of the net magnetization moment vector of the sample in terms of partial data for the
vertical component of the magnetic field measured in the plane above it. For this purpose, two
methods have been developed: the first one is based on approximate projections onto spherical
harmonics in Kelvin domain while the second stems from analysis in Fourier domain following
asymptotic continuation of the data. Recovery results obtained by both methods agree and are
illustrated numerically by plotting formulas for net moment components with respect to the size
of the measurement area.

1. Introduction and problem formulation
Earth rocks and meteorites may preserve invaluable records of ancient planetary and solar nebula
magnetic fields in the form of remanent magnetization. Recent advances in magnetometry
(e.g., SQUID microscopy technique) have made it possible to measure magnetic fields of very
low intensity generated by some rocks, and extraction of this relict magnetic information has
become reality in cases that were previously inaccessible using standard rock magnetometers.
An endeavor to develop a robust and efficient method for processing these data leads to a
number of challenging problems such as effective extension of the restricted measurement data
and extraction of certain features of the magnetization (typically, its mean value) that may still
allow for retrieving those primordial records without having to solve the entire inverse problem
for the underlying spatial distribution of magnetic sources. In particular, we are concerned with
the following setting previously discussed in [2, 3].

Suppose there is a localized sample whose magnetization distribution is stationary and
described by an unknown vector function

~M (~x) ≡ (M1 (x, x3) ,M2 (x, x3) ,M3 (x, x3))
T , x ≡ (x1, x2)

T , ~x ≡ (x, x3)
T ,

supported on a subset Q ⊂ R3.



Representation of the produced magnetic field in terms of the scalar potential Φ leads to the
Poisson equation

~B/µ0 = −∇Φ + ~M ⇒ ∆Φ = ∇ · ~M,

where µ0 = 4π · 10−7 H· m−1 is the magnetic constant. Therefore,

Φ (x, x3) = − 1

4π

∫∫∫
R3

∇ · ~M
(
~t
)(

|x− t|2 + (x3 − t3)2
)1/2d3t.

In a typical experimental set-up, the vertical component of the magnetic field B3 = −µ0 ∂
∂x3

Φ
is measured on a part of the horizontal plane at height x3 = h > 0

B3 (x, h) =
µ0
4π

∫∫∫
Q

[
3 (h− t3)

(
M1

(
~t
)

(x1 − t1) +M2

(
~t
)

(x2 − t2)
)

+M3

(
~t
) (

2 (h− t3)2 − |x− t|2
)] d3t(
|x− t|2 + (h− t3)2

)5/2 . (1)

Then, knowing B3 (x, h) on some subset of the measurement plane above the sample, the main
physical interest is to estimate the net magnetization moment vector of the sample

~m ≡ (m1,m2,m3)
T :=

∫∫∫
Q

~M (~x) d3x ∈ R3.

In the present work, we assume that this subset is a disk DA :=
{
x ∈ R2 : |x| ≤ A

}
.

2. Kelvin transform approach
2.1. Motivation of the method
Let us imagine the situation when we have available data for the potential on a sphere of radius
r = R0 encompassing the sample, i.e. the left-hand side of

Φ (r, θ, φ) =
1

4π

∫∫∫
Q

[
M1

(
~t
)

(r sin θ cosφ− t1) +M2

(
~t
)

(r sin θ sinφ− t2)

+ M3

(
~t
)

(r cos θ − t3)
]

× d3t(
r2 − 2r [(t1 cosφ+ t2 sinφ) sin θ + t3 cos θ] + t21 + t22 + t23

)3/2 . (2)

Since Φ is harmonic for r > R0, we can expand it over solid harmonics

Φ (r, θ, φ) =
∞∑
l=0

1

rl+1

l∑
j=−l

cj,lS
j
l (θ, φ) , Sjl (θ, φ) :=

{
P jl (cos θ) cos (jφ) , j ≥ 0,

P
|j|
l (cos θ) sin (|j|φ) , j < 0,

where Sjl are spherical harmonics and P jl are associated Legendre polynomials.
As seen from (2), Φ decays at infinity as O

(
1/r2

)
which implies that c0,0 = 0.

Defining the L2 inner product on the sphere of radius R in the usual way

〈f, g〉L2(SR) =

∫ 2π

0

∫ π

0
f (r, θ, φ) g (r, θ, φ)R2 sin θdθdφ,



we employ orthogonality of spherical harmonics to obtain

lim
R→∞

〈
Φ,
(
S−11 , S0

1 , S
1
1

)T〉
L2(SR)

=

(
−1

3
m2,

1

3
m3,−

1

3
m1

)T
=

(
4π

3
c−1,1,

4π

3
c0,1,

4π

3
c1,1

)T
,

that is,

m1 = −3
〈
Φ, S1

1

〉
L2(SR0) , m2 = −3

〈
Φ, S−11

〉
L2(SR0) , m3 = 3

〈
Φ, S0

1

〉
L2(SR0) .

These formulas would exactly solve the moment recovery problem if we had the available data:

(i) on a sphere rather than on a horizontal plane;
(ii) for the potential rather than a component of the field;
(iii) on the complete surface rather than its subset.

To tackle the issue (i), we need to map the data to the sphere.

2.2. Kelvin transformation
Recall that in the complex plane C, the Moebius transform z−i

z+i sends the upper half-plane
Im z > 0 onto the unit disk |z| < 1 preserving harmonicity. Kelvin transformation is a
generalization of this concept to higher dimensions [1]. In particular, we consider a one-parameter
(R0 > 0) family of transforms

K [f ]
(
~ξ
)
≡ f?

(
~ξ
)

=
1∣∣∣~ξ − ~s∣∣∣f

(
R~ξ
)
,

where ~ξ := (ξ1, ξ2, ξ3)
T , ~s := (0, 0,−R0)

T , e0 :=
√

2R0 (R0 + h), and

R~ξ :=

(
e20ξ1

ξ21 + ξ22 + (ξ3 +R0)
2 ,

e20ξ2

ξ21 + ξ22 + (ξ3 +R0)
2 ,−R0 +

e20 (ξ3 +R0)

ξ21 + ξ22 + (ξ3 +R0)
2

)T
,

which map functions on horizontal plane x3 = h onto those defined on the sphere of radius R0

centered at the origin.
Hence, we have:

∆f (x, x3) = 0, x3 > h ⇐⇒ ∆f?
(
~ξ
)

= 0,
∣∣∣~ξ∣∣∣ < R0.

Application of this transform to the potential followed by restriction to the sphere SR0 gives

K [Φ] (θ, φ) =
1

4πR0

√
2 (1 + cos θ)

∫∫∫
Q

[
M1

(
~t
)((R0 + h) sin θ cosφ

1 + cos θ
− t1

)
+ M2

(
~t
)((R0 + h) sin θ sinφ

1 + cos θ
− t2

)
+M3

(
~t
)

(h− t3)
]

× d3t[(
(R0 + h) sin θ cosφ

1 + cos θ
− t1

)2

+

(
(R0 + h) sin θ sinφ

1 + cos θ
− t2

)2

+ (h− t3)2
]3/2 .



Unfortunately, because of a more complicated angular dependence, the simple link between
the net moment components and projections onto the first three spherical harmonics is now
broken:〈

K [Φ] , S−11

〉
L2(SR0) � m1,

〈
K [Φ] , S1

1

〉
L2(SR0) � m2,

〈
K [Φ] , S0

1

〉
L2(SR0) � m3.

However, it turns out that proportionality in the first two formulas still holds asymptotically for
large values of R0 (as can be expected geometrically), that is, we again have

lim
R0→∞

〈
K [Φ] , S−11

〉
L2(SR0) ∼ m1, lim

R0→∞

〈
K [Φ] , S1

1

〉
L2(SR0) ∼ m2.

Namely, multiscale analysis of integrals (see [4, Sect. 3.3.1]) results in

mj = 6 lim
R0→∞

R4
0

∫∫
R2

Φ (x, h)
xj[

x21 + x22 + (R0 + h)2
]5/2dx1dx2, j = 1, 2.

Employing spherical harmonics expansion and a specially derived connection formula for
normal derivatives

K [∂x3Φ]
(
~ξ
)

= − 1

e20
(R0 + ξ3)

(
K [Φ]

(
~ξ
)

+ 2R0∂rK [Φ]
(
~ξ
))

, ~ξ ∈ SR0 ,

we can show that

mj =
2

µ0
lim

R0→∞
R5

0

∫∫
R2

B3 (x, h)
xj[

x21 + x22 + (R0 + h)2
]5/2dx1dx2, j = 1, 2, (3)

thus overcoming the issue (ii) from the previous subsection.

2.3. Normal component recovery and incomplete data
Interestingly enough, the normal component of the net moment cannot be recovered by
asymptotic projection on the spherical harmonic S0

1 neither from the field nor from the potential.
One can, however, proceed another way. We use Poisson representation formula for K [Φ]
harmonic inside the ball and pass to the limit approaching vertically from inside the south
pole ~s which, on the other hand, as an image of infinity under Kelvin transformation, must be
proportional to m3 at the leading order due to the dominance of vertical component term in the
formula for B3. Careful analysis and series of integrations by parts permitting passage to the
limit lead to the following result [4, Sect. 3.4]

m3 = − 2

µ0
lim
ρ→∞

ρ3
∫ 2π

0
B3 (ρ cosϕ, ρ sinϕ, h) dϕ. (4)

Despite its simplicity, this formula is useless in practice for it only involves values of the field
in the far region, exactly, where they cannot be measured.

We now focus on (iii), the last of the formulated issues, namely, dealing with incomplete data.
The remedy of situation for the case of normal component comes from application of Gauss

theorem by splitting of the integral into a part with available values and its complement

0 =

∫∫
R2

B3 (x, h) dx1dx2 =

∫∫
DA

B3 (x, h) dx1dx2 +

∫∫
R2\DA

B3 (x, h) dx1dx2.



Assuming the measurement area DA is large enough, we use, in the second term on the right,
a far-distance asymptotic expansion of the field (1) whose integral is proportional to m3. This
immediately gives

m3 =
2

µ0A

∫∫
DA

B3 (x, h) dx1dx2 +O
(

1

A2

)
, (5)

which provides a practical replacement of the formula (4).
Applying the same splitting and asymptotic extension strategy to (3), we arrive at

mj =
2

µ0

∫∫
DA

B3 (x, h)xjdx1dx2 +O
(

1

A

)
, j = 1, 2. (6)

3. Fourier analysis
Define Fourier transform as F [f ] (k) = f̂ (k) =

∫∫
R2 f (x) e2πik·xdx1dx2, k := (k1, k2)

T , and

observe that F
[(
x21 + x22 +H2

)−3/2]
(k) = 2π

H e
−2πH|k| for H > 0.

Then, representing the field as

B3 (x, h) = −µ0
4π

∫∫∫
Q

[
(h− t3)

(
M1 (t, t3)

∂

∂x1

∣∣∣∣
x3=h

+M2 (t, t3)
∂

∂x2

∣∣∣∣
x3=h

)

+ M3 (t, t3)
∂

∂x3

∣∣∣∣
x3=h

(x3 − t3)

](
|x− t|2 + (x3 − t3)2

)− 3
2
d3t,

and denoting Q3 the vertical projection of the magnetization support set Q, we take advantage
of convolution structure of the integral operator and arrive at

B̂3 (k, h) = πµ0

∫
Q3

e−2π(h−t3)|k|
[
ik1M̂1 (k, t3) + ik2M̂2 (k, t3) + |k| M̂3 (k, t3)

]
dt3. (7)

Note that ~m =
∫
Q3

~̂M (0, t3) dt3, and ~̂M (k, t3) is smooth in k due to compact support of
~M (by Paley-Wiener theorem). Hence to extract the net moment information, we expand
about k = 0 all the right-hand side terms as well as the first integral in B̂3 (k, h) =(∫∫

DA
+
∫∫
R2\DA

)
e2πik·xB3 (x, h) dx1dx2 and, in the second one, we use continuation of B3

beyond the measurement area according to its asymptotics as discussed before. Matching terms of
different smallness in k, and employing asymptotic expansions of some special functions (Bessel,
Struve, sine integral), we obtain a set of relations connecting field integrals against monomials
with algebraic magnetization moments of different order (see [4, Sect. 3.6] for more details). In
particular, taking the imaginary part of (7) and fixing either k1 = 0 or k2 = 0 we are led to
formulas (6) whereas working with real part of (7) results in (5). More sophisticated combinations
of the obtained relations yield asymptotic formulas which are superior to (6)

mj =
2

µ0

∫∫
DA

(
1 +

4x2j
3A2

)
xjB3 (x, h) dx1dx2 +O

(
1

A2

)
, j = 1, 2. (8)

4. Numerical illustrations
We demonstrate results by performing numerical simulation on a synthetic example of
few magnetic dipoles (i.e. point-supported magnetization sources) with positions ~x(1) =

(3.5, 3.0, 1.0)T 10−5 m, ~x(2) = (0.0, 0.0, 7.0)T 10−5 m, ~x(3) = (4.0,−5.5, 11.5)T 10−5 m, ~x(4) =

(−4.0, 5.5, 2.5)T 10−5 m and magnetic moments ~m(1) = (4.5, 3.5, 1.0)T 10−12 A·m2, ~m(2) =



(2.5, 4.5, 0.5)T 10−12 A·m2, ~m(3) = (−3.0, 2.0, 2.5)T 10−12 A·m2, ~m(4) = (−1.0, 2.0, 1.5)T 10−12

A·m2 producing a magnetic field measured at x3 = h = 2.5 · 10−4 m.
Due to their asymptotic nature, the quality of the obtained formulas depends on the size of

the measurement area: the bigger the area, the better the accuracy. We plot the estimates of
the net moment components for different values of measurement disk radius A comparing the
first and the second order accuracy formulas (6), (8) for the tangential components m1, m2, and
illustrating the estimate for the normal component m3 given by formula (5) which is already of
the second order. Figure 1 contains results for the noiseless field whereas Figure 2 shows the
same estimate for the field contaminated with Gaussian white noise of SNR=20 dB. We observe
persistence of the estimates form1 andm2 with respect to the noise while the estimate form3 has
to be corrected to remedy amplification of noise due to factor A (in particular, we use 11-point
linear regression to suppress asymptotically linear growth in A excluding from consideration the
region of lower values of A). It is also clear that magnetic components of smaller magnitudes are
more deteriorated by the noise.
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Figure 1. Estimates for m1 (left), m2 (center), m3 (right) versus A, without noise.
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Figure 2. Estimates for m1 (left), m2 (center), m3 (right) versus A, with noise of SNR=20.

5. Conclusion
The source feature (net moment vector) recovery issue in the context of inverse magnetization
problem has been considered. We have devised two strategies of solving the problem which can
be extended to more general frameworks. The second-order asymptotic formulas for estimating
magnetization net moment components from the partially available data (5), (8) constitute the
main practical outcome of the work. Residue terms in the obtained formulas can potentially
be computed with arbitrary high precision and, by means of combination of measurements from
different size areas, can be reduced to higher order of smallness. Some combinations of higher-
order algebraic moments can also be easily extracted from the field data. The formulas extend
to other geometries with the only difference being in numerical factors; in particular, rectangular
geometry has been considered as well, and the corresponding results will be published elsewhere.
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