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Abstract: In this work, we derive Born’s rule from the pilot-wave theory of de Broglie and Bohm.
Based on a toy model involving a particle coupled to an environment made of “qubits” (i.e., Bohmian
pointers), we show that entanglement together with deterministic chaos leads to a fast relaxation from
any statistical distribution ρ(x) of finding a particle at point x to the Born probability law |Ψ(x)|2.
Our model is discussed in the context of Boltzmann’s kinetic theory, and we demonstrate a kind of H
theorem for the relaxation to the quantum equilibrium regime.
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1. Introduction and Motivations

The work of Wojciech H. Zurek is universally recognized for its central importance
in the field of quantum foundations; in particular, concerning decoherence and the un-
derstanding of the elusive border between the quantum and classical realms [1]. Zurek
emphasized the role of pointer states and environment-induced superselection rules (ein-
selections). In recent years, part of his work has gone beyond mere decoherence and
averaging focused on quantum Darwinism and envariance. The main goal of quantum
Darwinism is to emphasize the role of multiple copies of information records contained in
the local quantum environment. Envariance aims is to justify the existence and form of
quantum probabilities; i.e., deriving Born’s rule from specific quantum symmetries based
on entanglement [2]. In recent important reviews of his work, Zurek stressed the impor-
tance of some of these concepts for discussing the measurement problem in relation with
various interpretations of quantum mechanics [3,4]. Recent works showed, for instance,
the importance of such envariance to the establishment of Born’s rule in the many-world
and many-mind contexts [5,6]. While in his presentations, Zurek generally advocated a
neutral position perhaps located between the Copenhagen and Everett interpretations, we
believe his work on entanglement and decoherence could have a positive impact on other
interpretations, such as the de Broglie–Bohm theory. We know that Zurek has always been
careful concerning Bohmian mechanics (see for example his remarks in [7] p. 209) perhaps
because of the strong ontological price one has to pay in order to assume a nonlocal quan-
tum potential and surrealistic trajectories (present even if we include decoherence [3,8]).
Moreover, the aim of this work is to discuss the pivotal role that quantum entanglement
with an environment of “Bohmian pointers” could play in order to justify Born’s rule in
the context of such a Bohmian interpretation. The goal is thus to suggest interesting and
positive implications that decoherence could have on ontologies different from Everettian
or consistent histories approaches. In this work, we were strongly inspired and motivated
by the success of envariance for justifying quantum probabilities. Moreover, as mentioned
above, Zurek’s envariance emphasizing the role of entanglement is more “interpretation in-
dependent”. Therefore, for comparison, we also include in the conclusion a short summary
of Zurek’s proof for the Born rule and compare the result with ours.

The de Broglie–Bohm quantum theory (BBQT) introduced by de Broglie in 1927 [9–11]
and further discussed by Bohm in 1952 [12,13], is now generally accepted as a satisfactory
interpretation of quantum mechanics, at least for problems dealing with non-relativistic
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systems [14–16]. Within this regime, BBQT is a clean, deterministic formulation of quantum
mechanics preserving the classical concepts of point-like particles moving continuously
in space-time. This formulation is said to be empirically equivalent to the orthodox de-
scription axiomatized by the Copenhagen school, meaning that BBQT is able to justify
and reproduce the probabilistic predictions made by the standard quantum measurement
theory. More specifically, this implies recovering the famous Born rule, which connects
the probability

Pα = |Ψα|2 (1)

of observing an outcome α (associated with the quantum observable Â) to the amplitude
Ψα in the quantum state expansion |Ψ〉 = ∑α Ψα|α〉 (i.e., |α〉 is an eigenstate of Â for the
observable eigenvalue α).

This issue has been a recurrent subject of controversies since the early formulation
of BBQT (see for example Pauli’s objection in [17,18]). It mainly arises because BBQT is a
deterministic mechanics and therefore, like for classical statistical mechanics, probabilities
in BBQT can only be introduced in relation with ignorance and uncertainty regarding
the initial conditions of the particle motions. Moreover, after more than one and a half
centuries of developments since the times of Maxwell and Boltzmann, it is well recognized
that the physical and rigorous mathematical foundation of statistical mechanics is still
debatable [19]. BBQT, which in some sense generalizes and extends Newtonian mechanics,
clearly inherits these difficulties, constituting strong obstacles for defining a clean basis of
its statistical formulation. This fact strongly contrasts with standard quantum mechanics,
for which randomness has been axiomatized as genuine and inevitable from the beginning.

Over the years, several responses have been proposed by different proponents of
BBQT to justify Born’s rule (for recent reviews, see [20–22]). Here, we would like to focus
on the oldest approach, which goes back to the work of David Bohm on deterministic and
molecular chaos. Indeed, in 1951–1952, Bohm already emphasized the fundamental role
of the disorder and chaotic motion of particles for justifying Born’s rule [12,13]. In his
early work, Bohm stressed that the complexity of the de Broglie–Bohm dynamics during
interaction processes, such as quantum measurements, should drive the system to quantum
equilibrium. In other words, during interactions with an environment such as a measure-
ment apparatus, any initial probability distribution ρ(X) 6= |Ψ(X)|2 for N particles in the
configuration space (here X = [x1, ..., xM] ∈ R3M is a vector in the N-particles configuration
space) should evolve in time to reach the quantum equilibrium limit ρ(X) → |Ψ(X)|2
corresponding to Born’s rule. In this approach, the relaxation process would be induced by
both the high sensitivity to changes in the initial conditions of the particle motions (one
typical signature of deterministic chaos) and by the molecular thermal chaos resulting
from the macroscopic nature of the interacting environment (i.e., with ∼ 1023 degrees of
freedom). Furthermore, in this strategy, Born’s rule ρ(X) = |Ψ(X)|2 should appear as an
attractor similar to the microcanonical and canonical ensemble in thermodynamics. In
1953, Bohm developed an example model [23] (see [24] for a recent investigation of this
idea) where a quantum system randomly submitted to several collisions with external
particles constituting a bath was driven to quantum equilibrium ρ(X) = |Ψ(X)|2. In
particular, during his analysis, Bohm sketched a quantum version of the famous Boltzmann
H-theorem to prove the irreversible tendency to reach Born’s rule (for other clues that
Bohm was already strongly fascinated by deterministic chaos in the 1950s, see [25] and the
original 1951 manuscript written by Bohm in 1951 [26] and rediscovered recently).

However, in later works, especially in the work conducted with Vigier [27] and then
subsequently Hiley [14], Bohm modified the original de Broglie–Bohm dynamics by in-
troducing stochastic and fluctuating elements associated with a subquantum medium
forcing the relaxation towards quantum equilibrium ρ(X)→ |Ψ(X)|2. In this context, we
mention that very important works have been done in recent years concerning “Stochastic
Bohmian mechanics” based on the Schrödinger–Langevin framework, the Kostin equa-
tion and involving nonlinearities [28–30]. While this second semi-stochastic approach
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was motivated by general philosophical considerations [31], proponents of BBQT have
felt divided concerning the need for such a modification of the original framework. In
particular, starting in the 1990s, Valentini has developed an approach assuming the strict
validity of BBQT as an underlying deterministic framework and introduced mixing and
coarse-graining à la Tolman–Gibbs in the configuration space in order to derive a Bohmian
“subquantum” version of the H-theorem [32,33]. However, we stress that the Tolman–Gibbs
derivation [34] and therefore Valentini’s deduction can be criticized on many grounds
(see for example [21] for a discussion). For instance, Prigogine already pointed out that
the Tolman–Gibbs “proof” is a priori time-symmetric and cannot therefore be used to
derive a relaxation. Furthermore, what the theorems show is that if we define a coarse-
grained entropy S[ρ]t, we have necessarily (i.e., from the concavity of the entropy function)
S[ρ]t ≥ S[ρ]t = S[ρ]t=0 ≡ S[ρ]t=0 (the second equality S[ρ]t = S[ρ]t=0 comes from unitarity
and Liouville’s theorem, and the third one S[ρ]t=0 ≡ S[ρ]t=0 is an initial condition where
the fine-grained and coarse-grained distributions are identical). However, this result cannot
be used to directly prove the relation S[ρ]t+δ ≥ S[ρ]t for δ ≥ 0. In other words [21], one
cannot show that the entropy is a monotonously growing function ultimately reaching
quantum equilibrium (i.e., corresponding to the maximum of the entropy function [32]).
Importantly, in his work on the “subquantum heat-death” (i.e., illustrated with many
numerical calculations [35,36] often connected with cosmological studies [37,38]), Valentini
and coworkers stressed the central role of deterministic chaos in the mixing processes,
and this indeed leads to an increase of the entropy function in the examples considered.
Moreover, deterministic chaos in BBQT is a research topic in itself (for a recent review,
see [39,40]) and many authors (including Bohm [14] and Valentini [35,36]) have stressed
the role of nodal-lines associated with phase-singularities of the wave-function for steering
deterministic chaos in the BBQT [41–43]. However, it has also been pointed out [39,44] that
this chaos is not generic enough to force the quantum relaxation ρ(X) = |Ψ(X)|2 for any
arbitrary initial conditions ρ(X) 6= |Ψ(X)|2 (a reversibility objection à la Kelvin–Loschmidt
is already sufficient to see the impossibility of such an hypothetical deduction [21,45]).
Therefore, this analysis ultimately shows that the H-theorem can only makes sense if we
complete it with a discussion of the notion of typicality [45–47].

In the present work, we emphasize the role of an additional ingredient that (to-
gether with chaos and coarse graining) helps and steers the quantum dynamical relaxation
ρ(X)→ |Ψ(X)|2: quantum entanglement with the environment. The idea that quantum
correlations must play a central role in BBQT for justifying Born’s rule is not new of course.
Bohm already emphasized the role of entanglement in his work [13,14,23]. It has been
shown that entanglement could lead to Born’s rule using ergodicity [48]. Moreover, in
recent studies motivated by the Vigier–Bohm analysis, we developed a Fokker–Planck [22]
and Langevin-like [49] description of relaxation to quantum equilibrium ρ(X) = |Ψ(X)|2
by coupling a small system S to a thermal bath or reservoir T inducing a Brownian motion
on S. We showed that, under reasonable assumptions, we can justify a version of the
H-theorem where quantum equilibrium appears as a natural attractor. Furthermore, at the
end of [22], we sketched an even simpler strategy based on mixing together with entangle-
ment and involving deterministic chaotic iterative maps. After the development of such
an idea, it came to our attention that a similar strategy has been already developed in an
elegant work by Philbin [50], and therefore we did not include too much detail concerning
our model in [22]. Here, we present the missing part and provide a more complete and
quantitative description of our scenario, which is presented as an illustration of a more
general scheme. More precisely, we (i) analyze the chaotic character of the specific de
Broglie–Bohm dynamics associated with our toy model, (ii) build a Boltzmann diffusion
equation for the probability distribution and finally (iii) derive a simple H-theorem from
which Born’s rule turns out to be an attractor. We emphasize that our work, like the one of
Philbin, suggests interesting future developments for justifying Born’s rule and recovering
standard quantum mechanics within BBQT.
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2. The Status of Born’s Rule in the de Broglie–Bohm Theory

We start with the wave-function ψ(x, t) = R(x, t)eiS(x,t)/h̄ obeying Schrödinger’s
equation

ih̄
∂

∂t
ψ(x, t) =

−h̄2∇2

2m
ψ(x, t) + V(x, t)ψ(x, t) (2)

for a single nonrelativistic particle with mass m in the external potentials V(x, t) (we limit
the analysis to a single particle, but the situation is actually generic). BBQT leads to the
first-order “guidance” law of motion

d
dt

xψ(t) = vψ(xψ(t), t) (3)

where vψ(x, t) = 1
m∇S(x, t) defines an Eulerian velocity field and xψ(t) is a de Broglie–

Bohm particle trajectory. Furthermore, from Equation (2), we obtain the conservation rule:

− ∂

∂t
R2(x, t) = ∇ · [R2(x, t)vψ(x, t)] (4)

where we recognize R2(x, t) = |ψ(x, t)|2 as the distribution which is usually interpreted as
Born’s probability density. Now, in the abstract probability theory, we assign to every point
x a density ρ(x, t) corresponding to a fictitious conservative fluid obeying the constraint

− ∂

∂t
ρ(x, t) = ∇ · [ρ(x, t)vψ(x, t)]. (5)

Comparing with Equation (4), we deduce that the normalized distribution f (x, t) = ρ(x,t)
R2(x,t)

satisfies the equation

[
∂

∂t
+ vψ(x, t) ·∇] f (x, t) :=

d
dt

f (x, t) = 0. (6)

This actually means [23] that f is an integral of motion along any trajectory xψ(t). In particu-
lar, if f (x, tin) = 1 at a given time tin and for any point x, this holds true at any time t. There-
fore, Born’s rule being valid at a given time will be preserved at any other time [11,12,23].
It is also important to see that the relation d

dt f (xψ(t), t) = 0 plays the same role in BBQT
for motions in the configuration space as Liouville’s theorem d

dt η(q(t), p(t), t) = 0 in clas-
sical statistical mechanics (where η(q, p, t) is the probability density in phase space q, p).
Therefore, with respect to the measure dΓ = |ψ(x, t)|2d3x (which is preserved in time
along trajectories since d

dt dΓt = 0), the condition f = 1 is equivalent to the postulate of
equiprobability used in standard statistical mechanics for the microcanonical ensemble.
Clearly, we see that the inherent difficulties existing in classical statistical mechanics to
justify the microcanonical ensemble are transposed in BBQT to justify Born’s rule; i.e.,
f = 1.

At that stage, the definition of the probability ρ(x, t)d3x of finding a particle in the
infinitesimal volume d3x is rather formal and corresponds to a Bayesian–Laplacian inter-
pretation where probabilities are introduced as a kind of measure of chance. Moreover, in
BBQT, the actual and measurable density of particles must be defined using a “collective”
or ensemble of N-independent systems prepared in similar quantum states ψ(xi, t) with
i = 1, . . . , N. However, the concept of independency in quantum mechanics imposes
the whole statistical ensemble with N particles to be described by the total factorized
wave-function:

ΨN(x1, ..., xN , t) =
i=N

∏
i=1

ψ(xi, t) (7)
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as a solution of the equation

ih̄
∂

∂t
ΨN = [

i=N

∑
i=1

−h̄2∇2
i

2m
+ V(xi, t)]ΨN . (8)

For this quantum state ΨN, BBQT allows us to build the velocity fields d
dt xψ

i (t) = vψ(xψ
i (t), t),

where xψ
i (t) := xΨN

i (t) define the de Broglie–Bohm paths for the uncorrelated particles
(i.e., guided by the individual and independent wave functions ψ(xi, t) and Eulerian flows
vΨN

i (x1, . . . , xN , t) = vψ(xi, t)). Within this framework, the actual density of particles P(r, t)
at point r is given by

P(r, t) =
1
N

k=N

∑
k=1

δ3(r− xψ
k (t)) (9)

which clearly obeys the conservation rule

− ∂

∂t
P(x, t) = ∇ · [P(x, t)vψ(x, t)]. (10)

Comparing with Equation (6), we see that if ρ(x, t) = f (x, t)|ψ(x, t)|2 plays the role of an
abstract Laplacian probability, P(r, t) instead represents the frequentist statistical proba-
bility. Both concepts are connected by the weak law of large numbers (WLLN), which is
demonstrated in the limit N → +∞ and leads to the equality ρ(x, t) = P(r, t); i.e.,

f (r, t)|ψ(r, t)|2 =≡ lim
N→+∞

1
N

k=N

∑
k=1

δ3(r− xψ
k (t)) (11)

where the equality must be understood in the sense of a “limit in probability” based on
typicality and not as the more usual “point-wise limit”. We stress that the application of
the WLLN already relies on the Laplacian notion of measure of chance since by definition
in a multinomial Bernoulli process, the abstract probability density ρN(x1, . . . , xN , t) =

∏i=N
i=1 ρ(xi, t) is used for weighting an infinitesimal volume of the N-particle configuration

space dτN := ∏i=N
i=1 d3xi. It can be shown that in the limit N → +∞ with the use of this

measure ρNdτN , almost all possible configurations xψ
1 (t), . . . , xψ

N(t) obey the generalized
Born’s rule P(r, t) = ρ(x, t) = f (x, t)|ψ(x, t)|2 (the fluctuation varying as 1√

N
). It is in that

sense that Equation (11) is said to be typical, where typical means valid for “overwhelm-
ingly many” cases; i.e., almost all states in the whole configuration space weighted by
ρNdτN . The application of the law of large numbers to BBQT is well known and well
established [33,46,47] but has been the subject of intense controversies [45,46,51,52]. Issues
concern (1) the interpretation of ρN as a probability density—i.e., in relation with the
notion of typicality—and (2) the choice of f = 1 as natural and guided by the notion of
equivariance [53]. To paraphrase David Wallace, the only thing the law of large numbers
proves is that relative frequency tends to weight ... with high weight [54]. However, there
is a certain circularity in the reasoning that at least shows that the axiomatic nature of the
probability calculus allows us to identify an abstract probability such as ρd3x to a frequency
of occurrence such as Pd3x. However, the WLLN alone is unable to guide us in selecting a
good measure for weighting typical configurations (the condition on equivariance [53] is
only a convenient mathematical recipe based on elegant symmetries, not a physical conse-
quence of a fundamental principle). Therefore, the value of the f function is unconstrained
by the typicality reasoning without already assuming the result [51]. In other words, it is
impossible to deduce Born’s rule directly from the WLLN.

However, it must be perfectly clear that our aim here is not to criticize the concept
of typicality. Typicality, associated with the names of physicists such as Boltzmann or
mathematicians such as Cournot and Borel, is, we think, at the core of any rigorous for-
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mulation of objective probability [55]. Our goal in the next section is to understand how
natural and how stable the Born rule f = 1 is. For this purpose, our method is to con-
sider entanglement between an environment of pointers, already in quantum equilibrium,
and a not yet equilibrated system driven by chaotic Bohmian dynamics to the quantum
equilibrium regime.

3. A Deterministic and Chaotic Model for Recovering Born’s Rule within the de
Broglie–Bohm Quantum Theory
3.1. The Basic Dynamics

As a consequence of the previous discussion, we now propose a simple toy model
where the condition f = 1 appears as an attractor; i.e, ft → 1 during a mixing process.
We consider a single electron wave-packet impinging on a beam-splitter. To simplify the
discussion, we consider an incident wave-train with one spatial dimension x characterized
by the wave-function

ψ0(x, t) ' Φ0(x− vxt)ei(kx x−ωkt) (12)

where we have the dispersion relation Ek := h̄ωk =
h̄2k2

x
2m and the (negative) group velocity

components vx = h̄kx
m < 0 with kx = −|kx|. Furthermore, for mathematical consistency,

we impose Φ0 ' const. = C in the spatial support region, where the wave-packet is not
vanishing and the typical wavelength λ = 2π/|kx| � L, where L is a typical wave-packet
spatial extension. If we assume Born’s rule, |C|2 must be identified with a probability
density, and by normalization this implies C = 1/

√
L (this point will be relevant only in

Section 3). The beam-splitter is a rectangular potential barrier or well V(x) = V0 with V0 a
constant in the region |x| < ε/2� L and V(x) = 0 otherwise. During the interaction with
the beam-splitter, the whole wave-function approximately reads

ψ(x, t) ' ψ0(x, t) + Rkψ1(x, t)

if x > ε/2

ψ(x, t) ' Φ0(−vxt)[Akeiqx x + Bke−iqx x]e−iωkt

if |x| < ε/2

ψ(x, t) ' Tkψ0(x, t)

if x < −ε/2 (13)

where ψ1(x, t) = Φ0(x + vxt)e−ikx xe−iωkt = ψ0(−x, t) and Rk (reflection amplitude),
Tk(transmission amplitude) and Ak, Bk are Fabry–Perot coefficients computed in the limit
where the wave-packet is infinitely spatially extended. We have

Tk =
4qxkx

(qx + kx)2
1

ei(qx−kx)ε − (qx−kx)2

(qx+kx)2 e−i(kx+qx)ε

Rk = iTk
k2

x − q2
x

2qxkx
sin (qxε)

Ak = Rk[
qx + kx

2qx
e−i(qx−kx)ε/2 +

qx − kx

2qx
e−i(qx+kx)ε/2]

Bk = Rk[
qx − kx

2qx
ei(qx+kx)ε/2 +

qx + kx

2qx
ei(qx−kx)ε/2]

(14)

where qx is given by the dispersion relation Ek := h̄ωk =
h̄2q2

x
2m +V0, i.e., q2

x− k2
x = −2mV0/h̄.

As an illustration, we choose ε = 1
2

λ
2π and qx ' 2.5kx (i.e., V0 < 0) which leads to

Tk ' 1√
2

ei0.267π and Rk = iTk corresponding to a balanced 50/50 beam-splitter.
We consider the problem from the point of view of the scattering matrix theory. First,
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for negative time tin < 0 (with |tin| � L/|vx|), the incident wave-packet ψ0(x, tin) given
by Equation (12), which is coming from the x > 0 region with a negative group velocity,
is transformed for large positive times t f > 0 (with |t f | � L/|vx|) into the two non
overlapping wave-packets:

ψ(x, t f ) ' Rkψ1(x, t f ) if x > 0

ψ(x, t f ) ' Tkψ0(x, t f ) if x < 0 . (15)

Since the wave packets are non-overlapping we write:

ψ(x, t f ) ' Rkψ1(x, t f ) + Tkψ0(x, t f ). (16)

Of course, the situation is symmetric: if an incident wave-packet ψ1(x, tin) comes from
the x < 0 region with a positive group velocity for tin < 0, we will finally obtain, i.e., for
t f > 0,

ψ(x, t f ) ' Tkψ1(x, t f ) + Rkψ0(x, t f ). (17)

The general case can thus be treated by superposition: an arbitrary initial state ψ(x, tin) =
a+ψ0(x, tin) + a−ψ1(x, tin) for negative times tin (with |tin| � L/|vx|) will evolve into

ψ(x, t f ) ' (a+Rk + a−Tk)ψ1(x, t f )

+(a+Tk + a−Rk)ψ0(x, t f ) (18)

for positive times t f (with |t f | � L/|vx|). Writing a′+ = a+Rk + a−Tk and a′− = a+Tk +
a−Rk as the different mode amplitudes, we define a 2 × 2 unitary transformation(

a′+
a′−

)
=

(
Rk Tk
Tk Rk

)(
a+
a−

)
=

ei0.267π

√
2

(
i 1
1 i

)(
a+
a−

)
. (19)

Moreover, consider now the point of view of BBQT. Following this theory, the dynam-
ics of the material point are obtained by the integration of the guidance equation

d
dt

xψ(t) = vψ(xψ(t), t) =
h̄
m

Im[
∂

∂x
ψ(x, t)|x=xψ(t)] (20)

that can easily be computed numerically. We illustrate in Figure 1 the interaction with
the 50/50 beam-splitter characterized by Equation (19) of a rectangular wave-packet (i.e.,
Φ0(x) = C if |x| < L/2, where L is the width of the wave-packet) incident from the x > 0
region (i.e., a+ = 1, a− = 0). As a remarkable feature, we can see the Wiener fringes [11]
existing in the vicinity of the beam-splitter and that strongly alter the de Broglie–Bohm
trajectories. What is also immediately visible is that the de Broglie–Bohm trajectories xψ(t)
never cross each other. This is a general property of the first-order dynamics [14,15], which
play a central role in our analysis.

An interesting feature of this example concerns the density of “probability” |ψ(x, t)|2.
Indeed, consider a time tin in the remote past before the wave-packet from the positive
region (i.e., like in Figure 1) interacts with the potential well. At that time, the center of
the wave-packet is located at xin = vxtin > 0. However, since trajectories cannot cross
each other, we know that the ensemble γ+(tin) of all possible particle positions at time
tin—i.e., xψ(tin) ∈ [xin − L

2 , xin +
L
2 ]—is divided into two parts. In the first part, γ

(+)
+ (tin)—

i.e., xψ(tin) ∈ [xin + H, xin + L
2 ] with |H| < L

2 —all particles evolve in the future (i.e., at
time t f ) into the ψ1(x, t f ) reflected wave-packet (corresponding to the support γ+(t f ),

i.e., xψ(t f ) ∈ [x f − L
2 , x f − L

2 ] with x f = −vxt f > 0). In the second part γ
(−)
+ (tin)—i.e.,
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xψ(tin) ∈ [xin − L
2 , xin + H]—all the particles necessarily end their journey in the ψ0(x, t f )

transmitted wave-packet (corresponding to the support γ−(t f ), i.e., xψ(t f ) ∈ [−x f −
L
2 ,−x f − L

2 ]). Now, remember that from the de Broglie–Bohm–Liouville theorem, the
measure dΓ(x, t) = |ψ(x, t)|2dx is preserved in time; i.e., d

dt dΓt = 0. Therefore, the measure

Γ+(t f ) =
∫

γ+

|ψ(x, t)|2dx = LC2/2 (21)

associated with the reflected wave necessarily equals the measure associated with the
segment γ

(+)
+ (tin); i.e.,

Γ(+)
+ (tin) = (L/2− H)C2 = Γ+(t f ). (22)

This leads to H = 0, which in turn means that γ
(+)
+ (tin) corresponds to xψ(tin) ∈ [xin, xin +

L
2 ] and γ

(−)
+ (tin) to xψ(tin) ∈ [xin − L

2 , xin]. This result is actually general and holds for
any symmetric wave-packet Φ0(x) = Φ0(−x) if we can neglect the overlap between
Φ0(x− vxt f ) and Φ0(x + vxt f )).

Figure 1. (a) Scattering of a 1D wave-packet impinging on a 50/50 beam-splitter (BS). The colormap
shows Re[Ψ(x, t)] in the t, x plane. The color (red and yellow) lines are de Broglie–Bohm trajectories
associated with this wave-function (red and yellow trajectories are ending in two different wave-
packets. The dotted white lines are crosscuts, as discussed in the main text. (b) A similar situation
when a wave-packet impinges on the other input gate.

Moreover, for the rectangular wave-packet, we deduce from the de Broglie–Bohm–
Liouville theorem d

dt dΓt = 0 that any infinitesimal-length element δxψ(tin) surrounding a
point xψ(tin) in γ+(tin) evolves to the infinitesimal length δxψ(t f ) = 2δxψ(tin) surrounding
the point xψ(t f ) located in γ±(t f ). This property can be used to define a simple mapping
between the initial coordinates xψ(tin) ∈ γ+(tin) and the final outcome xψ(t f ) ∈ γ+(t f ) ∪
γ−(t f ). It is simpler to introduce the normalized variables:

y(tin) =
xψ(tin)− xin

2L
+

3
4
∈ [

1
2

, 1] if xψ(tin) ∈ γ+(tin)

y(t f ) =
xψ(t f )− x f

2L
+

3
4
∈ [

1
2

, 1] if xψ(t f ) ∈ γ+(t f ) (23)

y(t f ) =
xψ(t f ) + x f

2L
+

1
4
∈ [0,

1
2
] if xψ(t f ) ∈ γ−(t f ) .
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The mapping between the two new ensembles (which we will continue to name γ+(tin)
and γ+(t f ) ∪ γ−(t f )) is thus simply written as

y(t f ) = 2y(tin)− 1. (24)

The result of this mapping is illustrated using the x coordinates in Figure 2a or the y
coordinates in Figure 2b. In particular, it is visible that the correspondence y(t f ) =

F(y(tin)) is not always univocally defined. This occurs at xψ(tin) = xin (i.e., y(tin) =
3
4 ),

which evolves either as xψ(t f ) = x f − L/2 ∈ γ+(t f ) or xψ(t f ) = −x f + L/2 ∈ γ−(t f )

corresponding to the single value y(t f ) = 1
2 . Physically, as shown in Figure 2a, this

means that a point located at the center of the wave-packet ψ0(x, tin) is unable to decide
whether it should move into the reflected or transmitted wave-packets: this is a point of
instability. This apparently violates the univocity of the de Broglie–Bohm dynamics in
Equation (20), which imposes that at a given point—i.e., xψ(tin) = xin—one and only one
trajectory is defined. However, we stress that this pathology is actually a consequence
of the oversimplification of our model consisting in assuming an idealized rectangular
wave packet Φ0(x) = C if |x| < L/2 with abrupt boundaries at |x| = L/2. In a real
experiment with a Gaussian wave-packet, the point xψ(tin) = xin would be mapped at the
internal periphery of the two wave-packets constituting ψ(x, t f ) (this would correspond
to the points xψ(t f ) = ±ε/2 ∼ 0 where the beam splitter is located). In this regime, our
assumption of a finite support for Φ0(x) is no longer acceptable.

Figure 2. (a) Transformation from the initial γ±(tin) x-space to the final γ±(tou) x-space for the two
situations shown in Figure 1a,b, respectively (depicted as blue lines and red lines, respectively).
(b) The same transformation using the y coordinate instead of the x coordinate (as explained in the
main text).

The previous analysis was limited to the case of the wave-packet ψ0(x, tin) coming
from the x > 0 region. However, in the symmetric case of a wave-packet ψ1(x, tin) coming
from the x < 0 region (i.e., a+ = 0, a− = 1), the situation is very similar (as shown in
Figure 2), with the only differences being that the γ+(tin) space is changed into γ−(tin), i.e.,
xψ(tin) ∈ [−xin − L

2 ,−xin +
L
2 ] and the roles of γ+(t f ) and γ−(t f ) (the previous definitions

are let unchanged) are now permuted (i.e., γ+(t f ) is now associated with the transmitted
wave-packet and γ−(t f ) with the reflected one). From the point of view of BBQT, the
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trajectories of Figure 1b are obtained by a mirror symmetry x → −x from Figure 1a. The
new mapping xψ(tin)→ xψ(t f ) is now well described by the variable transformation:

y(tin) =
xψ(tin) + xin

2L
+

1
4
∈ [0,

1
2
] if xψ(tin) ∈ γ−(tin)

y(t f ) =
xψ(t f )− x f

2L
+

3
4
∈ [

1
2

, 1] if xψ(t f ) ∈ γ+(t f ) (25)

y(t f ) =
xψ(t f ) + x f

2L
+

1
4
∈ [0,

1
2
] if xψ(t f ) ∈ γ−(t f ) .

which lets the definition of y(t f ) unchanged with respect to Equation (24). The mapping
between the two ensembles γ−(tin) and γ+(t f ) ∪ γ−(t f ) is now written as

y(t f ) = 2y(tin) (26)

which is very similar to Equation (24).

3.2. Entanglement and Bernoulli’s Shift

If we regroup Equations (24) and (26) together with Equations (24) and (26), we are
tempted to recognize the well known Bernoulli map:

y(t f ) = 2y(tin) mod(1), (27)

which actually means

y(t f ) = 2y(tin)− 1 if y(tin) >
1
2

y(t f ) = 2y(tin) if y(tin) <
1
2 (28)

for y(t f ) and y(tin) ∈ [0, 1]. This would physically correspond to a mapping γ+(tin) ∪
γ−(tin)→ γ+(t f ) ∪ γ−(t f ). In classical physics, such a mapping would be unproblematic
since the two dynamics given by Equations (24) and (26) could be superposed without
interference. However, in quantum mechanics, and specially in BBQT, the dynamics is
contextually guided by the whole wave-function ψ(x, t) and a general superposition of
states ψ(x, tin) = a+ψ0(x, tin) + a−ψ1(x, tin) evolves at t f to the state ψ(x, tin) given by
Equation (18). Consider for example with Equation (19) the unitary evolution

ψ0(x, tin) + iψ1(x, tin)√
2

→ iei0.267πψ1(x, t f ). (29)

From the point of view of BBQT (as illustrated in Figure 3), we have a mapping
γ+(tin) ∪ γ−(tin) → γ+(t f ) which has nothing to do with either Equations (24) and (26)
or even Equation (27). More precisely, the mapping associated with Equation (29) reads

y(t f ) =
y(tin)

2
+

1
2

(30)

Therefore, the high contextuality of the BBQT leads (in agreement with wave–particle
duality) to new features induced by the coherence of the different branches of the input
wave-function.

In order to make sense of the Bernoulli shift in Equation (27) in a simple way, we
modify the properties of our beam-splitter by adding phase plates in the input and output
channels. From here on, we consider instead of Equation (19) the unitary relation(

a′+
a′−

)
=

1√
2

(
1 1
1 −1

)(
a+
a−

)
. (31)
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Furthermore, in order to break the coherence between the two input waves ψ0(x, tin)
and ψ1(x, tin), we introduce entanglement with an external pointer qubit before entering
the beam splitter. The pointer must represent unambiguous “which-path” information
concerning the moving particle in the context of BBQT. We represent the initial state of
the pointer by a wave-function ϕ1

in(Z1) associated with the coordinate Z1 of the pointer
(we assume

∫
dZ1|ϕ1

in(Z1)|2 = 1). The interaction leading to entanglement works in the
following way: starting with an arbitrary state such as Aψ0(x, t0) + Bψ1(x, t0) at time t0
and a fixed initial pointer state ϕ1

in(Z1), we obtain

(Aψ0(x, t0) + Bψ1(x, t0)ϕ1
in(Z1)→ Aψ0(x, t0)ϕ1

↑(Z1) + Bψ1(x, t0)ϕ1
↓(Z1). (32)

Here, we assume
∫

dZ1|ϕ1
↑(Z1)|2 =

∫
dZ1|ϕ1

↓(Z1)|2 = 1 and
∫

dZ1 ϕ1
↑(Z1)(ϕ1

↓(Z1))
∗ = 0.

Additionally, in order to simplify the analysis, we suppose the pointer–particle interaction
to be quasi-instantaneous and act only at time t ' t0. Moreover, in BBQT, the positions of
the particle and pointer play a fundamental, ontic role. In order to have genuine Bohmian
which-path information, we thus require that the two pointer wave-functions are well
localized and are not overlapping; i.e., ϕ1

↓(Z1)ϕ1
↑(Z1) = 0 ∀Z1.

Figure 3. Same as in Figure 1 but for a symmetric superposition of the two wave-functions impinging
from the two input gates of BS. The superposition principle forces the resulting wave-packet to end
its journey in the exit gate γ+(t f ). The pilot-wave dynamics are strongly impacted by the linearity of
the superposition (compare with Figure 1).

We now consider the following sequences of processes, which are sketched in Figure 4.
First, we prepare a non-entangled quantum system in the initial state ψ0(x, t′0)ϕin(Z) with
t′0 � t0. Before interacting with the qubit, the particle wave-packet interacts with a first
beam-splitter BS0, as in the previous subsection. Using Equations (31) and (32), this leads to

ψ0(x, t′0)ϕ1
in(Z1)→

ψ1(x, t0) + ψ0(x, t0)√
2

ϕ1
in(Z1)→

ψ1(x, t0)ϕ1
↑(Z1) + ψ0(x, t0)ϕ1

↓(Z1)√
2

. (33)

In order to use a probabilistic interpretation—i.e., Born’s rule—we impose the normal-
ization C = 1/

√
L associated with the wave-packet Φ0 (see Equation (12)). Second, as

shown in Figure 4, the two wave-packets are moving in free space and interact with
two mirrors which reflect the beams into the direction of a second beam-splitter BS1,
where they cross (BS1 is the time translation of the same beam-splitter, but we continue
to use this notation for simplicity). The main effect of the mirrors is to reverse the di-
rection of propagation of ψ0(x, t0) and ψ1(x, t0)—i.e., ψ0(x, t0)→ −ψ1(x, t′1 +

2D
vx
)eiχ and

ψ1(x, t0)→ −ψ0(x, t′1 +
2D
vx
)eiχ—with t′1 a time after the interaction and χ = 2D

vx
(ωk− kxvx)
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a phase shift depending on the distance D between BS0 and any of the two mirrors
(− 2D

vx
> 0 is the travel time taken by the center of the wave-packet for moving from BS0 to

BS1). At a time t′1 before crossing BS1, the quantum state reads

−eiχ
ψ0(x, t′1 +

2D
vx
)ϕ1
↑(Z1) + ψ1(x, t′1 +

2D
vx
)ϕ1
↓(Z1)√

2
. (34)

At a time t1 � − 2D+L
vx

after the interaction with BS1 the quantum state reads (omitting the
irrelevant phase factor)

ψ0(x, t′1 +
2D
vx
)ϕ1
↑(Z1) + ψ1(x, t′1 +

2D
vx
)ϕ1
↓(Z1)√

2

→
ψ1(x, t1 +

2D
vx
)ϕ1
→(Z1) + ψ0(x, t1 +

2D
vx
)ϕ1
←(Z1)√

2
(35)

where ϕ1
→ =

ϕ1
↑+ϕ1

↓√
2

and ϕ1
← =

ϕ1
↑−ϕ1

↓√
2

are two orthogonal eigenstates. Now, if we

write this quantum state during the interaction with BS1 as Ψ(x, Z, t) = ψ↑(x, t)ϕ1
↑(Z1) +

ψ↓(x, t)ϕ1
↓(Z1) we can define the Bohmian particle velocity d

dt xΨ(t) = v(x, Z, t) as:

d
dt

xΨ(t) =
v↑(x, t)|ψ↑(x, t)ϕ1

↑(Z1)|2 + v↓(x, t)|ψ↓(x, t)ϕ1
↓(Z1)|2

|ψ↑(x, t)ϕ1
↑(Z1)|2 + |ψ↓(x, t)ϕ1

↓(Z1)|2
(36)

where we introduced the two velocities v↑/↓(x, t) = 1
m ∂xS↑/↓(x, t) associated with the two

wave-functions ψ↑/↓(x, t). Equation (36) relies on the “which-path” constraint ϕ1
↓(Z1)ϕ1

↑(Z1) =
0 and therefore we have here two different dynamics depending on the pointer position Z1.
If Z1 lies in the support of ϕ1

↑(Z1), we have the dynamics d
dt xΨ(t) = v↑(x, t) corresponding

to Figure 1a, whereas if Z1 lies in the support of ϕ1
↓(Z1), we have the dynamics d

dt xΨ(t) =
v↓(x, t) corresponding to Figure 1b.

Figure 4. Drawing of the iterative procedure for entangling an initial wave-packet with “Bohmian”
pointers providing unambiguous which-path information on the pilot-wave particle motion (as ex-
plained in the main text). The various pointers interacting at time t0, t1 . . . are sketched as qubit states.

The previous procedure for generating decohered Bohmian paths can be repeated
iteratively at the times t2, t3, . . . after interaction with the beam-splitter BS2, BS3 . . . (see
Figure 4). For this purpose, we consider at time t1 entanglement with a an additional
pointer initially in the state ϕ2

in(Z), and we assume the transformation

ψ1(x, t1 +
2D
vx
)ϕ1
→(Z1) + ψ0(x, t1 +

2D
vx
)ϕ1
←(Z1)√

2
ϕ2

in(Z2)

→
ψ1(x, t1 +

2D
vx
)ϕ1
→(Z1)ϕ2

↑(Z2) + ψ0(x, t1 +
2D
vx
)ϕ1
←(Z1)ϕ2

↓(Z2)√
2

. (37)
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The wave-packets propagate into the interferometer, and between times t′2 and t2, we ob-
tain

ψ0(x, t′2 +
4D
vx
)ϕ1
→(Z1)ϕ2

↑(Z2) + ψ1(x, t′2 +
4D
vx
)ϕ1
←(Z1)ϕ2

↓(Z2)√
2

→
ψ1(x, t2 +

4D
vx
)ϕ12
→(Z1, Z2) + ψ0(x, t2 +

4D
vx
)ϕ12
←(Z1, Z2)√

2
(38)

with the orthonormal states ϕ12
→ = 1√

2
(ϕ1
→ϕ2
↑ + ϕ1

←ϕ2
↓) and ϕ12

←(Z1, Z2) = 1√
2
(ϕ1
→ϕ2
↑ −

ϕ1
←ϕ2
↓).
This can be generalized at any time tn after interaction with BSn:

ψ0(x, t′n +
2nD
vx

)ϕ1,...,n−1
→ (Z1, . . . , Zn−1)ϕn

↑(Zn) + ψ1(x, t′n +
2nD
vx

)ϕ1,...,n−1
← (Z1, . . . , Zn−1)ϕn

↓(Zn)
√

2

→
ψ1(x, tn +

2nD
vx

)ϕ1,...,n
→ (Z1, . . . , Zn) + ψ0(x, tn +

2nD
vx

)ϕ1,...,n
← (Z1, . . . , Zn)√

2
, (39)

with the orthonormal states ϕ1,...,n
→/← = 1√

2
(ϕ1,...,n−1
→ ϕn

↑ ± ϕ1,...,n−1
← ϕn

↓). Like for the interaction

at BS1 (between t′1 and t1), we can define a Bohmian dynamical evolution similar to
Equation (36) but based on the wave-function

Ψ(x, Z1, . . . , Zn, t) = ψ↑(x, t)ϕ1...,n−1
→ (Z1, . . . , Zn−1)ϕn

↑(Zn)

+ψ↓(x, t)ϕ1,...,n−1
← (Z1, . . . , Zn−1)ϕ2

↓(Zn). (40)

We obtain the velocity

d
dt

xΨ(t) =
v↑(x, t)|ψ↑(x, t)ϕ1,...,n−1

→ (Z1, ..., Zn−1)ϕn
↑(Zn)|2

|ψ↑(x, t)ϕ1,...,n−1
→ (Z1, ..., Zn−1)ϕn

↑(Zn)|2 + |ψ↓(x, t)ϕ1,...,n−1
← (Z1, ..., Zn−1)ϕ2

↓(Zn)|2

+
v↓(x, t)|ψ↓(x, t)ϕ1,...,n−1

← (Z1, ..., Zn−1)ϕ2
↓(Zn)|2

|ψ↑(x, t)ϕ1,...,n−1
→ (Z1, ..., Zn−1)ϕn

↑(Zn)|2 + |ψ↓(x, t)ϕ1,...,n−1
← (Z1, ..., Zn−1)ϕ2

↓(Zn)|2
(41)

which like Equation (36) reduces to one of the two dynamics (i) d
dt xΨ(t) = v↑(x, t) if Zn lies

in the support of ϕn
↑(Zn) (i.e., corresponding to Figure 1a) or (ii) d

dt xΨ(t) = v↓(x, t) if Zn lies
in the support of ϕn

↓(Zn) (i.e., corresponding to Figure 1b). The full history of the particle
in the interferometer depends on the positions Z1, ..., Zn taken by the various Bohmian
pointers. In turn, this deterministic iterative process allows us to define a Bernoulli map
for the evolution.

3.3. Mixing, Chaos and Relaxation to Quantum Equilibrium

The Bernoulli map is clearly defined from Equations (27) and (28) after introducing
the variable y(t) replacing x(t). Between t′n and tn, this reads

y(tn) = 2y(t′n) mod(1). (42)

Moreover, the y(t′n) coordinate at time t′n is obviously equal to y(tn−1) at time tn−1 (see
Figure 4), and therefore we have the map

y(tn) = 2y(tn−1) mod(1). (43)

This iterative Bernoulli map yn = F(yn−1) is one of the simplest chaotic maps discussed
in the literature [56,57]. In particular, its chaotic nature has been already studied in the
context of BBQT [58,59] (for different purposes than those considered here), and an attempt
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to use it for deriving Born’s rule has been worked out [60] (without the entanglement used
here and in [22,50]).

The chaotic nature of the map is easy to obtain; consider for example Figure 5.

Figure 5. (a) Bernoulli map yn = F(yn−1) in the y, y′ plane where the function y′ = F(y) acts
iteratively. The red and green lines are acting as mirrors during the process. The black and blue
trajectories correspond to different initial coordinates y0 = 0.22 and y0 = 0.23. (b) The same Bernoulli
map is shown as a function y = y(n) of the iteration steps n = 0, 1, . . . . The two chaotic trajectories
shown in red and blue correspond to y0 = 0.22 and y0 = 0.220001, respectively (see main text).

In Figure 5a, we show a standard representation of the iterative function yn = F(yn−1)
for two paths initially starting at y0 = 0.22 and y0 = 0.23, and after a few iterations, the
coordinates are apparently diverging in an unpredictable way. This is even more clear
in the representation of Figure 5b, where two trajectories y(tn) := yn are shown with
y0 = 0.22 and y0 = 0.220001. Again, the motions become chaotic after a few iterations, and
the trajectories are strongly diverging. Mathematically, any number y in the interval [0, 1] is
represented in binary notation as 0.u1u2...un..., i.e., y = u1

2 + u2
4 + ...+ un

2n + ... where un = 0

or 1. The Bernoulli transformation y′ = F(y) with y′ = u′1
2 +

u′2
4 + ... + u′n

2n + ... corresponds
to the shift u′n = un−1; i.e., to the binary number 0.u2u3...un−1.... Iteratively, this generates
chaos since if the nth term in y = u1

2 + u2
4 + ... + un

2n + ... is known with an uncertainty
δyi =

1
2n after n iterations, this uncertainty will grow to δy f = 1/2. For example, if n = 133

and δyi = 2−133 ' 10−40, we have after only 40 iterations completely lost any predictability
in the dynamics (note that rational numbers are periodical in the binary representation
and therefore the sequence will reappear periodically for rational numbers representing a
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null measure in the segment [0, 1]). It can be shown that this feature leads to randomness
in close analogy with ideal probabilistic coin tossing [61]. Therefore, any uncertainty
will ultimately lead to chaos. The Lyapunov divergence of this Bernoulli map is readily
obtained by considering as in Figure 5 two trajectories y(A)

n and y(B)
n = y(A)

n + δyn differing
by a infinitesimal number such that

δyn = 2δyn−1 = 2nδy0 = en ln 2δy0 (44)

where the positive Lyapunov exponent ln 2 characterizes the chaotic dynamics. If we
introduce the time delay δt = −2D/vx > 0 and define the evolution time as tn = nδt, we
can rewrite the exponential divergence in Equation (44) as e+t/τ where τ = δt

ln 2 defines a
Lyapunov time.

Most importantly, the Bernoulli shift allows us to define a mixing property for the
probability distribution ρ(y). More precisely, we can consider at any time tn the probabil-
ity density ρ(x, tn) =

∫
...
∫

ρ(x, Z1, ..., Zn, tn)dZ1...dZn, where according to BBQT we have
ρ(x, Z1, ..., Zn, tn) = f (x, Z1, ..., Zn, tn)|Ψ(x, Z1, ...Zn, tn)|2. In this framework, ρ(x, tn) is a
coarse-grained probability involving a form of classical ignorance. In the following, we suppose
that the pointers are all in quantum equilibrium, and we have f (x, Z1, ..., Zn, tn) := f (x, tn)
and ρ(x, tn)dx = f (x, tn)dΓ(x, tn) with dΓ(x, tn) = dx

∫
...
∫
|Ψ(x, Z1, ...Zn, tn)|2dZ1...dZn.

For the present purpose, a key result of deterministic maps such as yn = F(yn−1)
is the Perron–Frobenius theorem [56,57] allowing us to introduce the operator ÛPF; i.e.,
µ(y, tn+1) = ÛPFµ(y, tn) with the definition ρ(x, t)dx = µ(y, t)dy. For this, we use the
property for a trajectory

δ(y− yn+1) = δ(y− F(yn)) =
∫ 1

0
dYδ(y− F(Y))δ(Y− yn) (45)

and the fact that any density µ(w, tn) reads∫ 1

0
dy(tn)µ(y(tn), tn)δ(w− y(tn)) =

∫ 1

0
dy(t0)µ(y(t0), t0)δ(w− y(tn)) (46)

(where we used Liouville’s theorem dy(tn)µ(y(tn), tn) = dy(t0)µ(y(t0), t0)). Therefore,
from Equation (45), we obtain

µ(y, tn+1) = ÛPFµ(y, tn) =
∫ 1

0
dYδ(y− F(Y))µ(Y, tn) (47)

which for the Bernoulli map means

µ(y, tn+1) = ÛPFµ(y, tn) =
1
2

[
µ(

y
2

, tn) + µ(
y + 1

2
, tn)

]
. (48)

Moreover, for the present wave-function defined in term of the wave-packet Φ0(x) which
is constant in amplitude in its support, we can also write

f̃ (y, tn+1) = ÛPF f̃ (y, tn) =
1
2

[
f̃ (

y
2

, tn) + f̃ (
y + 1

2
, tn)

]
(49)

with f (x, t) = f̃ (y, t) using the transformation x → y (see Equations (24) and (26)) by

definition and where
∫

γ+(tn)∪γ−(tn)
dx |C|

2

2 f (x, tn) =
∫ 1

0 dy f̃ (y, tn) = 1 involving the nor-

malization C = 1/
√

L. This iterative Perron–Frobenius relation admits Bernoulli poly-
nomial eigenstates defined by 1

2n Bn(y) = ÛPFBn(y) with B0(y) = 1, B1(y) = y − 1/2,
B2(y) = y2 − y + 1/6, . . . [56].

It can be shown [56] that the Bm(y) polynomials form a basis for the probability func-
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tion f̃ (y, t), and therefore we write f̃ (y, t0) = ∑m=+∞
m=0 AmBm(y), which we obtain after n

iterations of the ÛPF−operator:

f̃ (y, tn) =
m=+∞

∑
m=0

Ame−n·m ln 2Bm(y). (50)

In this formula, we have [56,62]

Am =
∫ 1

0
dy f̃ (y, t0)B̃m(y) (51)

where B̃0(y) = 1 and B̃m(y) = limε→0+
(−1)m−1

m!
dm−1

dym−1 [δ(y− 1 + ε)− δ(y− ε)] for m ≥ 1.

This leads to A0 =
∫ 1

0 f̃ (y, t0)dy and Am = limε→0+
1

m!
dm−1

dym−1 [ f̃ (1 − ε, t0) − f̃ (0 + ε, t0)].
Equation (50) is important as it shows that in the limit n → +∞, we necessarily have
f̃ (y, tn)→ A0B0(y) = A0. Moreover, from the properties of the Bernoulli polynomials and
the normalization of the probability density, we necessarily have

∫ 1
0 f̃ (y, t)dy = A0 = 1

(with
∫ 1

0 dyBm(y) = δ0,m). Therefore, we deduce

lim
n→+∞

f̃ (y, tn) = lim
n→+∞

f (x, tn) = 1. (52)

This result says that quantum equilibrium, and therefore Born’s rule, is a statistical
attractor in BBQT. Importantly, Equation (50) shows that each term in the sum is character-
ized by an exponential decay e−mtn/τ , which is a signature of stability (negative Lyapunov
exponent) whereas the trajectories (as we have shown in Equation (44)) have a positive
Lyapunov exponent associated with dynamical instability and chaos. These two pictures
are thus clearly complementary. This was already emphasized long ago by Prigogine in a
different context [62,63]. As an illustration, we show in Figure 6 the transformation of an ar-
bitrary (normalized) density f̃ (y, t0): after only three applications of the Perron–Frobenius
operator, the density is indistinguishable from the quantum equilibrium f̃ = f = 1, which
acts as a very efficient attractor.

Figure 6. Evolution of f̃ (y, tn) := f̃n(y) as a function of y for a few n values (using the Perron–
Frobenius operator Equation (49)). The initial distribution f̃0(y) (blue curve) was chosen to be
arbitrarily irregular. After a few iterations n ≥ 2, the function f̃n(y) cannot be distinguished from the
line f̃ = f = 1 associated with quantum equilibrium (i.e., Born’s rule).

We emphasize that the iterative process sketched in Figure 4 and associated with
states such as Equations (39) and (40) ultimately involves the two branches ψ0(x, tn) and
ψ1(x, tn) entangled with an environment of Bohmian pointers characterized by ϕ1,...,n

→/← =
1√
2
(ϕ1,...,n−1
→ ϕn

↑ ± ϕ1,...,n−1
← ϕn

↓). Moreover, because of the orthogonality of these pointer
states, the two branches ψ0(x, tn) and ψ1(x, tn) cannot interfere: they are decohered. Still,
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in each of the two final wave-packets ψ0(x, tN) and ψ1(x, tN) (after a large number of
iterations N), we have f (x, tN) ' 1 with a high accuracy. Therefore, supposing that we
now make a pinhole to select one of these two branches, we have prepared a quantum
system satisfying Born’s rule ρ(x, t) ' |ψ(x, t)|2. Fundamentally, this means that if an
entangled system such as the system we discussed is post-selected by a filtering procedure,
we can define subsystems for which Born’s rule is true and where quantum coherence is
maintained (this is the case with our two wave-functions ψ1 and ψ0 taken separately). For
example, the wave-function ψ0(x, t) can be collimated and sent into an interferometer in
order to observe wave–particle duality. All systems following this guiding wave belong to
a statistical ensemble of particles obeying Born’s rule f ' 1. Therefore, all the predictions
of standard quantum mechanics are reproduced with these systems.

Although the present model is rudimentary, it allows us to obtain precious information
on relaxation to quantum equilibrium. Indeed, observe that in the continuous time approxi-
mation, we have f̃ (y, t) ' 1+ A1e−t/τ B1(y), which is a solution of the differential equation

∂ f̃ (y, t)
∂t

= − f̃ (y, t)− 1
τ

(53)

This suggests a collision term in a Boltzmann-like equation and therefore an extension of
our model by writing

d f (x, t)
dt

:= ∂t f (x, t) + vψ(x, t)∂x f (x, t) = − f (x, t)− 1
τ

(54)

or equivalently with ρ(x, t) = f (x, t)|ψ(x, t)|2 and ∂t|ψ(x, t)|2 + ∂x(vψ(x, t)|ψ(x, t)|2) = 0:

∂tρ(x, t) + ∂x(vψ(x, t)ρ(x, t)) = −ρ(x, t)− |ψ(x, t)|2
τ

. (55)

With such dynamics (with an effective broken time symmetry), it is useful to introduce the
Valentini entropy [32]:

St := −
∫

f (x, t) ln ( f (x, t))dΓ(x, t) (56)

with dΓ(x, t) = |ψ(x, t)|2. From the previous equation, we deduce

d
dt

St = −
∫ d ft

dt
(1 + ln ft)dΓt =

∫
( ft − 1)

τ
(1 + ln ft)dΓt =

∫
( ft − 1)

τ
ln ftdΓt. (57)

This kinetic equation leads to a quantum version of the Boltzmann H-theorem, as can
be shown easily: first, we have by definition a ln b + a

b − a ≥ 0 (with a, b > 0) leading to

( f − 1) ln f + f−1
f − f − 1 ≥ 0 if f − 1 > 0; i.e., we obtain ( f − 1) ln f ≥ ( f−1)2

f if f − 1 > 0.

Moreover, ln f ≤ f − 1, and thus if f − 1 < 0, we have ( f − 1) ln f ≥ ( f − 1)2. Now,
separating the full Γ− space into two parts Γ+ and Γ− where f − 1 ≥ 0 and 1− f ≥ 0,
respectively, we have

d
dt

St =
∫

( ft − 1)
τ

ln ftdΓt ≥
∫

Γ+

( ft − 1)2

ftτ
dΓt +

∫
Γ−

( ft − 1)2

τ
dΓt ≥ 0. (58)

Therefore, Valentini’s entropy St cannot decrease, and the equality d
dt St = 0 occurs iff f = 1

corresponding to the quantum equilibrium. This defines an H-theorem for BBQT.

4. Conclusions and Perspectives

The proposal discussed in this work is certainly schematic but it leads to several inter-
esting conclusions. First, since the dynamics maps used here are deterministic and chaotic,
this shows that randomness is unavoidable in BBQT. As stressed by Prigogine [62,63], we
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have two complementary descriptions: one with trajectories that can be associated with the
evolution map yn+1 = F(yn) and the second with a probability density; i.e., as given by the
Perron–Frobenius transformation f̃ (y, tn+1) = ÛPF f̃ (y, tn). The two pictures are of course
not independent since for a single trajectory we have δ(y− yn+1) = ÛPFδ(y− yn) (i.e.,
f̃ (y, tn) = δ(y− yn) = f (x, tn) =

2
|C|2 δ(x− xn) = 2Lδ(x− xn)). Moreover, for a trajectory,

the probability distribution is singular and the convergence to equilibrium is infinitely slow
(this is connected to the fact that the coefficients Am in Equation (51) are given by an integral
which is badly defined for the singular Dirac distribution f̃ (y, t0) = δ(y− y0)). Therefore,
the infinite precision required to compute such a chaotic path (due to the exponentially
growing deviation errors with time) leads all practical computations to the strong random-
ness previously mentioned. To quote Ford [61], “a chaotic orbit is random and incalculable;
its information content is both infinite and incompressible”. Subsequently, because of the
extreme sensitivity in the initial conditions associated with the predictability horizon and
the positive Lyapunov exponent, the use of probability distributions in BBQT seems (at
least in our model) unavoidable if we follow Prigogine’s reasoning. Indeed, Prigogine
dynamic instability (and thus deterministic chaos) leads to probability. The necessarily
finite precision δy0 used to determine the position of a particle will grow exponentially
with time to ultimately cover the whole segment [0, 1]. Therefore, if we assign a uniform
ignorance probability f̃0 over the segment δy0 (in which the particle is located) then—i.e.,
subsequently after a few iterations—we will have f̃t = 1 over the whole segment.

However, we stress that we do not share all the conclusions obtained by Prigogine
concerning determinism and probability here (for related and much more detailed criti-
cisms, see e.g., [64]). Indeed, BBQT (as with the classical mechanic considered by Prigogine
in [62,63]) is a fully deterministic theory with a clear ontology in the 3D and configuration
space. Therefore, while a trajectory could be incalculable by any finite mean or algorithm,
the path still fundamentally exists for an idealized Laplacian daemon; i.e., having access to
an infinite computing power and precision for locating and defining the particle motion.
This metaphor is the core idea of Einstein’s realism: postulating the existence of a world
independent of the presence or absence of observers (even if the observers can be part of
the world). From this ontic perspective, we need more than simply ignorance in order
to justify the use of probability in statistical physics. Indeed, as emphasized long ago by
Poincaré, the laws of the kinetic theory of gases still hold true even if we exactly know
the positions of all molecules—[65]. There is something objective in the laws of statisti-
cal mechanics that goes beyond mere ignorance: otherwise, how could parameters such
as diffusion constants have objective physical contents? This point was emphasized by
Prigogine from the very beginning, and this constitutes the motivation for his program
in order to justify the objectivity of thermodynamics in general and the second law—i.e.,
irreversibility—in particular.

However, in our opinion, the missing point in Prigogine’s implication—“instability
→ probability → irreversibility”—is the recognition that in a deterministic theory, the
laws (chaotic or not) are not complete but must be supplemented by specific initial con-
ditions, ultimately with a cosmological origin. Indeed, if we suppose a universe made
of only one electron described initially by the wave-function ψ0(x, t) and all the pointers
involved in the iterative procedure sketched in Figure 4, then we must use the chaotic
Bernoulli map yn+1 = F(yn) for this system or equivalently the Perron–Frobenius evo-
lution δ(y− yn+1) = ÛPFδ(y− yn). As we have explained, this system is unstable due
to the presence of a positive Lyapunov exponent. Moreover, if we want to make sense
of the formulas (49) and (50) with the rapid convergence to f̃ = f = 1, we must con-
sider a sufficiently regular distribution f̃ (y, t0) 6= δ(y − y0). Now, as mentioned in
Section 2, the application of the WLLN to a statistical ensemble requires a “metric” of
typicality associated with the Laplacian definition of probability. In BBQT, this metric
reads ρ(r, t) = f (r, t)|ψ(r, t)|2, and the law of large numbers leads to Equation (11)—
i.e., ρ(r, t) ≡ limN→+∞

1
N ∑k=N

k=1 δ3(r− xψ
k (t))—defined probabilistically in the long term;

i.e, for an infinitely long sequence or infinite system. In our problem, this means that
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we consider an infinite Gibbs ensemble of copies similar to our system, as described in
Figure 4. Here, the presence of an infinite sum of Dirac distributions is expected to lead
to difficulties in connection with the chaotic map δ(y − yn+1) = ÛPFδ(y − yn). In our
problem, if the WLLN ρ(r, t) ≡ limN→+∞

1
N ∑k=N

k=1 δ3(r − xψ
k (t)) is used to specify the

initial distribution at time t0, this preserves the chaotic description associated with the
positive Lyapunov exponent; therefore, Dirac distributions become problematic. In order
to remove this unpleasant feature, one must introduce coarse-graining as proposed by
Valentini [32,51]. In our case, this can be done by using a regular weighting function
∆(u) such that ρ(x, t) =

∫
duδ(u)ρ(x− u, t), which in connection with the WLLN leads

to ρ(x, t) ≡ limN→+∞
1
N ∑k=N

k=1 ∆(x − xψ
k (t)). The coarse-graining of cells in the config-

uration space plays a central role in the work of Valentini for defining a “subquantum
H-theorem” [32,33]. Here, we see that in connection with Prigogine’s work, coarse-graining
must be supplemented with a dose of deterministic chaos and entanglement in order to
reach the quantum equilibrium regime. We believe that these two pictures complete each
other very well.

Before summarizing our work, it is important to go back to Zurek’s envariance as
discussed in the introduction in order to see connections with the derivation of Born’s
rule as presented in this article. We remind the reader that in 2003, Zurek [66] proposed
an alternative proof of Born’s rule based on envariance—a neologism for environment-
assisted invariance—with a purely quantum symmetry based on the entanglement of a
system with its environment. The importance of this elegant proof could perhaps only be
compared with that presented by Gleason [67] in 1957. As stressed by Zurek, “Envariance
of entangled quantum states follows from the nonlocality of joint states and from the
locality of systems, or, put a bit differently, from the coexistence of perfect knowledge of
the whole and complete ignorance of the parts” [66]. The proof is remarkably general and
does not rely on any specific ontology, even though it has been used by advocates of the
many-world interpretation to justify or recover Born’s rule (for a review and a comparison
to the decision-theoretic deduction [5], see [6]).

In order to have a vague idea of the whole derivation, consider a Bell state |Ψ〉SE =
|♥〉S |♦〉E + |♠〉S |♣〉E between a system S and environment E . Now, the main idea of
envariance concerns symmetry: a local “swapping” (for example, on S for the two possible
outcomes |♥〉S/|♠〉S ) in the entanglement is irrelevant for the local physics of E (this is
obvious a priori, since E is untouched by the swap). This (unitary) swap reads

|Ψ〉SE = |♥〉S |♦〉E + |♠〉S |♣〉E → |♠〉S |♦〉E + |♥〉S |♣〉E = |Ψ′〉SE (59)

The symmetry of the swap should a priori also impact probabilities associated with out-
comes (whatever the definition used for a probability). In other words, if we are allowed
to define a probability function PΨ(|♥〉S |♦〉E ) for the two correlated outcomes ♥ and ♦
before the swap, then the previous equation imposes

PΨ(|♥〉S |♦〉E ) = PΨ′(|♠〉S |♦〉E ) (60)

where PΨ′(|♠〉S |♦〉E ) is a probability after the swap (i.e., defined for the state |Ψ′〉SE ).
Moreover, the swap on S can be compensated by a “counterswap” acting locally on the
subsystem E :

|Ψ′〉SE = |♠〉S |♦〉E + |♥〉S |♣〉E → |♠〉S |♣〉E + |♥〉S |♦〉E = |Ψ〉SE . (61)

Now, again from symmetry, we must have the relation

PΨ′(|♠〉S |♦〉E ) = PΨ(|♠〉S |♣〉E ). (62)



Entropy 2021, 23, 1371 20 of 23

However, by comparing Equation (60) and Equation (62), we clearly deduce

PΨ(|♠〉S |♣〉E ) = PΨ(|♥〉S |♦〉E ) =
1
2

(63)

which implies equiprobability for the two branches in the state |Ψ〉SE . This equiprobablity
is clearly an illustration of Born’s rule for the entangled state |Ψ〉SE . Therefore, envariance
can be used to derive Born’s rule (more general reasonings and deductions are given
in [66]).

It is important to remark that the reasoning depends on the a priori existence of a
probability function, and in order to justify this point, we should rely on a more precise
definition of probability in a given ontology. Moreover, in the de Broglie–Bohm ontology,
as in classical statistical mechanics, the concept of probability is related to a distribution
of particles in ensembles or collectives and is therefore strongly rooted in the concepts
of frequency and population. In other words, if we consider a large ensemble of copies
for the entangled systems prepared in the quantum state |Ψ〉SE , then according to the
Bernoulli WLLN, the probability PΨ(|♥〉S |♦〉E ) is simply a measure of the fraction of
systems prepared in the states |♥〉S |♦〉E . Now, in the de Broglie–Bohm theory (like in
classical physics), x-coordinates for particles define a “preferred basis” in the sense that
particles are really located at some positions xΨ(t) defining trajectories. Zurek’s envariance
can thus be applied to the de Broglie–Bohm ontology if we consider systems S and E that
are well located in the configuration. Therefore, like in the model used in the present article,
we can consider two non-overlapping wave-functions ♥(XS )S and ♠(XS )S associated
with the coordinates XS in the configuration space of the S-subsystem and similarly for the
non-overlapping wave-functions♦(XE )E and♣(XE )E of the E -subsystem. In this ontology,
we can give a physical meaning to the invariance under swap or counterswap conditions.

It is indeed possible to postulate that there areas many copies of the systems prepared
in the |Ψ〉SE state as in the |Ψ′〉SE state in the universe. The situation is similar to the one
found in a classical gas of molecules were correlated pairs can be defined by exchanging
some properties and are present in equal numbers before and after the swap (this kind of
symmetry played a key role in the deduction made by Maxwell and Boltzmann justifying
the canonical ensemble distribution). Fundamentally, this symmetry in the population is
related to some choices in the initial conditions of the whole ensemble. The full deduction
of Zurek based on envariance is thus preserved, and this must lead to Born’s rule (at least
if we assume that the population of de Broglie–Bohm particles is uniformly distributed in
the spatial supports of the various wave functions).

Furthermore, it is important to stress that the envariance deduction is linked to
the no-signaling theorem as shown by Barnum [68]. This no-signaling theorem was also
emphasized by Valentini [69] in the de Broglie–Bohm theory in order to protect macroscopic
causality and to prohibit faster-than-light signaling. Crucially, Born’s rule appears as a
necessary condition for the validity of the no-signaling theorem (this was also related to
the second law of thermodynamics by Elitzur [70]). Interestingly, in the present work, we
considered regimes of quantum-nonequilibrium where the symmetry of the entangled
wave-functions was not present in the particle distribution characterized by the f (Xt, t)
function. However, in the end, we showed that if the environment of pointers was already
in quantum equilibrium, then the system would be driven to the quantum equilibrium
f = 1 acting as an attractor under the chaotic Bohmian dynamics. In the end, this also
shows that the quantum equilibrium in the de Broglie–Bohm dynamics is natural and also
how fragile and unstable physical deviations to the Born rule are. We believe that this
confirms the deductions made by Zurek concerning the fundamental role of envariance.
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There is another way to express the same concept: going back to our discussion about
typicality at the end of Section 2, we see that in this article, we indeed developed a model
that does not assume quantum equilibrium for all particles. The system moving in the
interferometer is initially out of quantum equilibrium f = 1. However, it is quickly driven
to quantum equilibrium due to (1) entanglement with pointers already relaxed in the
regime f = 1 and (2) the presence of chaotic dynamics inducing fast mixing and thus a fast
relaxation f → 1. It is interesting that the number of iterations N and therefore the number
of pointers involved in the process does not have to be large (i.e., we do not have to go to
the thermodynamic limit N → +∞ associated with a quantum bath). As we have shown,
the chaotic Bernoulli map drives the system to quantum equilibrium already for N ' 3.
This demonstrates, we think, the robustness of this attractor leading to Born’s rule.

To summarize, in this work, we have proposed a mechanism for relaxation to quantum
equilibrium in order to recover Born’s rule in BBQT. The proposed mechanism relies on
entanglement with an environment of “Bohmian pointers” allowing the system to mix.
The scenario was developed for the case of a single particle in 1D motion interacting
with beam splitters and mirrors, but the model could be generalized to several situations
involving collisions between quanta and scattering with defects or other particles. The
general proposal is thus to consider the quantum relaxation to Born’s rule as a genuine
process in phases of matter where interactions between particles play a fundamental
role. This involves usual condensed matter or even plasma or gases where collisions
are mandatory. For example, based on our toy model, we consider that interaction with
the beam splitter and entanglement with Bohmian pointers is a good qualitative model
for discussing collisions between molecules in the atmosphere, and if we remember that
nitrogen molecules at a temperature of 293 K and at a pressure of 1 bar involve typically
a collision frequency of 7 × 109 /s (which implies fast dynamics for reaching quantum
equilibrium), we thus have a huge number n of collisions per second corresponding to a
huge number of iterations in our Bernoulli-like process based on the Perron–Frobenius
operator f (y, tn+1) = ÛPF f (y, tn). Compared to Valentini’s framework [32,33] where
mixing and relaxation to quantum equilibrium are associated with coarse-graining à la
Gibbs, our approach emphasizes the role of information losses due to entanglement with
a local environment. In both cases, we obtain an increase of entropy and a formulation
of the H−theorem for BBQT. These two views are certainly complementary, in the same
way that Gibbs and Boltzmann perspectives on entropy are related. This could have an
impact on the efficiency of quantum relaxation in the early stages of the evolution of the
universe [37,38].
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