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Chapter 1
Solution of a homogeneous version of Love type
integral equation in different asymptotic regimes

L. Baratchart, J. Leblond, D. Ponomarev

1.1 Introduction

For h, a > 0, we consider the following homogeneous Fredholm integral equation
of the second kind

h
π

∫ a

−a

f (t)

(x− t)2 +h2
dt = λ f (x) , x ∈ (−a,a) , (1.1)

which can be viewed as a problem of finding eigenfunctions of the integral operator
PhχA: L2 (A)→ L2 (A) with

Ph [ f ] (x) := (ph ? f )(x) =
h
π

∫
∞

−∞

f (t)

(x− t)2 +h2
dt, (1.2)

ph (x) :=
h
π

1
x2 +h2 , (1.3)

and χA being the characteristic function of the interval A := (−a,a).
Integral equations with kernel function (1.3) have a long history starting with

[Sno], as the earliest mention we could trace, and up to very recent papers [TW1,
TW2, TW3, Pro]. It most commonly arises in rotationally symmetric electrostatic
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[Lov] or fluid dynamics problems [Hut1] (in such contexts it is most famously
known as Love equation), quantum-mechanical statistics of Fermi / Bose gases
(known there as Gaudin / Lieb-Liniger equation, respectively) [Gau, LL], antiferro-
magnetic one-dimensional Heisenberg chains [Gri], and is relevant as well in other
contexts such as probability theory [KP] and radiative transfer [vT]. Since ph is the
two-dimensional Poisson kernel for the upper half-plane, equation (1.1) has also
applications to problems of approximation by harmonic functions [LP] and it is in-
strumental in some inverse source problems for the Poisson PDE (e.g., so-called
inverse magnetization problems, see [BHLSW]).

The class of exactly solvable convolution integral equations on interval is ex-
tremely narrow and rarely exceeds the class of equations with kernels whose
Fourier transform is a rational function. Such approaches usually hinge on a ma-
trix Wiener-Hopf factorization which is inapplicable due to non-smooth and non-
algebraic (at infinity) behavior of the Fourier transform of the kernel function (1.3):
p̂h (k) = e−2πh|k|. Therefore, the main hope for an analytical solution is a structural
approach (i.e. when exact solutions are determined up to constants that cannot be
expressed in a closed-form) or an asymptotic one. Despite seeming simplicity of
the kernel function ph, the integral equation (1.1) evades applicability of relevant
constructive techniques: both for exact structural [LM] and asymptotic solutions
[KK, Hut2]. The problem of failure of asymptotic approaches (when the length of
the interval is large) in [KK, Hut2] is the lack of sufficient decay of the kernel
function at infinity (alternatively, the lack of existence of second-order derivative
at k = 0 of p̂h (k)). The powerful approach of Leonard and Mullikin [LM] aiming
to obtain essentially exact sine/cosine solutions (with frequencies to be determined
from auxiliary equations which are unsolvable explicitly) breaks down since the
inverse Laplace transform of the kernel function is not of constant sign which the
authors claim to be merely a technical problem (according to them, the assumption
of constant sign is made to "simplify the discussion"). However, from results of our
approach we will see that change of the sign of this function that occurs infinite
number of times results in a qualitatively different form of solutions than that for a
large class of standard kernels. Such solutions being beyond simple trigonometric
functions shifted by constants (see Figures of Section 1.5) are still reminiscent of
solutions of a Sturm-Liouville problem.

To the best of our knowledge, the only available result in the literature regard-
ing the equation (1.1) (except for its non-homogeneous version with λ =±1) is the
exact exponential decay law of eigenvalues [Wid] and a relevant reduction to a hy-
persingular equation which "appears too difficult to solve explicitly" [KK] (see also
Section 1.6).

Consideration of the homogeneous version of the equation with the kernel (1.3)
is the most general in a sense that the obtained solutions (eigenfunctions) permit
solving a general non-homogeneous equation with λ different from an eigenvalue.
Indeed, Mercer’s theorem for positive definite kernels entails construction of the
resolvent kernel in a form of a uniformly and absolutely converging series. Also,
eigenfunctions, in view of their completeness and orthogonality, provide an efficient
(due to exponential decay of eigenvalues) representation of the solution.
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After discussing general spectral properties of the integral operator (Section 1.2),
we propose original constructive techniques for obtaining asymptotical solution for
the case of small (Section 1.3) and large size of interval (Section 1.4). When the
interval is small, the integral equation can be approximated by another one which
admits a commuting differential operator. This fact allows reduction of the problem
to solving a second-order boundary-value problem whose solutions upon further
approximations are prolate spheroidal harmonics (Slepian functions). When the in-
terval is large, the problem can be transformed into an integro-differential equation
on a shifted half-line. Integral kernel function of such problem consists of two terms:
one depends on the difference of the arguments, the other - on their sum. The latter
turns out to be small for the large interval, and hence we arrive at an approxima-
tion by a convolution integro-differential equation which we solve by an extended
Wiener-Hopf method. Connection of this half-line problem solution to the solution
of the original equation inside the original interval is provided by analytic continua-
tion that can be performed by means of solution of an elementary non-homogeneous
ODE. Finally, we illustrate the obtained asymptotical results, compare them with
numerical solution (Section 1.5), and outline potential further work (Section 1.6).

1.2 General properties

Since the kernel ph (x) is an even and real-valued function, the operator PhχA is self-
adjoint, and because of the regularity of ph (x), the operator is also compact (e.g.,
as a Hilbert-Schmidt operator), and, by its analytic properties, has a dense range in
L2 (A). Hence the standard spectral theorem [NS] reformulates as

Theorem 1. There exists (λn)
∞

n=1 ∈ R, λn→ 0 as n→ ∞ and ( fn)
∞

n=1 is a complete
set in L2 (A).

Basic properties of eigenfunctions and eigenvalues can be outlined in the following
proposition (see [Pon]).

Proposition 1. For λ , f satisfying (1.1), the following statements hold true
(a) All (λn)

∞

n=1 are simple, and λn ∈ (0,1),
(b) Each fn is either even or odd, real-valued (up to a constant multiplicator), and
fn ∈C∞

(
Ā
)
. Moreover, fn (±a) 6= 0.

The key result here is a non-vanishing behavior of eigenfunctions at the endpoints
implying the multiplicity (simplicity) of the spectrum which, in particular, along
with the evenness of ph, further entails the real-valuedness and a certain parity of
each solution fn, a fact that will be used constructively in Section 1.4.

The upper bound for the eigenvalues in part (a) of Proposition 1 can be improved
to

λn ≤
2
π

arctan
a
h
, n ∈ N+,

and asymptotically exponential decay of higher-order eigenvalues is given by
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logλn '−nπ
K (sech(πa/h))
K (tanh(πa/h))

, n� 1 (1.4)

where K (x) :=
∫ π/2

0
dθ√

1−x2 sin2 θ

the complete elliptic integral of the first kind.

Note that, since the spectrum is simple, we can uniquely order eigenvalues as

0 < · · ·< λ3 < λ2 < λ1 < 1,

and denote fn the eigenfunction corresponding to λn, n∈N+. In what follows, when
no comparison between different eigenvalues/eigenfunctions is made, we will con-
tinue writing simply f , λ instead of fn, λn.

Finally, observe that a scaling argument (with a change of variable; see further)
implies that the spectrum actually depends only on one parameter β := h/a. The
main results will be formulated in terms of the magnitude of this parameter.

1.3 Small interval (β � 1)

Setting φ (x) := f (ax) for x ∈ (−1,1), equation (1.1) rewrites as

β

π

∫ 1

−1

φ (t)

(x− t)2 +β 2
dt = λφ (x) , x ∈ (−1,1) , (1.5)

Since eigenfunctions are defined up to a multiplicatory constant, for the sake of
determinicity, let us choose this constant to be real and so that ‖φ‖L2(−1,1) = 1.

Observe that the kernel function pβ (x) essentially coincides with [0/2] Padé ap-
proximant of hyperbolic secant function

sech(x) =
1

1+ x2/2
+O

(
x4) , |x| � 1,

hence the formulation (1.5) can be approximated by∫ 1

−1
sech

(
(x− t)

√
2/β

)
φ (t)dt = πβλφ (x)+O

(
1/β

4) , x ∈ (−1,1) , (1.6)

and we therefore expect its solutions to be close to those of (1.5) for large β .
We drop the error term, postponing precise approximation error analysis to

a further work, and now focus on an eigenvalue problem for the integral oper-
ator on the left of (1.6) which turns out to be again a positive compact self-
adjoint operator on L2 (−1,1) with simple spectrum and the same law of decay
of eigenvalues (1.4). However, this seemingly more complicated integral opera-
tor has an advantage over the original one since it belongs to a rather unique
family of convolution integral operators that admit a commuting differential op-
erator [Gru, Wid]: eigenfunctions of an integral operator with the kernel bsincx

csinhbx
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(with constants b, c ∈ R∪ iR) are also eigenfunctions of the differential operator
− d

dx

(
1− sinh2(bx)

sinh2 b

)
d
dx +

(
b2 + c2

) sinh2(bx)
sinh2 b

with condition of finiteness at x = ±1.

Therefore, taking c= i
√

2/β , b= 2
√

2/β , and denoting µ

2sinh2(2
√

2/β)
an eigenvalue

of the differential operator, we reduce (1.6) to solving a boundary-value problem
given by an ODE, for x ∈ (−1,1),((

cosh
4
√

2
β
− cosh

4
√

2x
β

)
φ
′ (x)

)′
+

(
µ− 6

β 2

(
cosh

4
√

2x
β
−1

))
φ (x) = 0

(1.7)
and boundary conditions

φ
′ (±1) =∓

µ +6/β 2
(

1− cosh
(

4
√

2/β

))
4
√

2β sinh
(

4
√

2/β

) φ (±1) . (1.8)

Alternatively, introducing

ψ (s) :=
φ

(
β

2
√

2
log
[(

e−2
√

2/β − e2
√

2/β

)
s+ e−2

√
2/β

])
[(

e−2
√

2/β − e2
√

2/β

)
s+ e−2

√
2/β

]1/2 ,

equation (1.6) can be brought into a simpler integral equation arising in the context
of singular-value analysis of the finite Laplace transform [BG]∫ 1

0

ψ (t)
s+ t + γ

dt =−π
√

2λψ (s) , s ∈ (0,1) ,

with γ := 2e−2
√

2/β . Here the operator in the left-hand side is a truncated Stieltjes
transform which again, by commutation with a differential operator, can be reduced
to solving an ODE, for s ∈ (0,1),(

s(1− s)(γ + s)(γ +1+ s)ψ
′ (s)
)′− (2s(s+ γ)+µ)ψ (s) = 0

with boundary conditions enforcing regularity of solutions at the endpoints

ψ
′ (0) =

µ

γ (γ +1)
ψ (0) , ψ

′ (1) =− 2(γ +1)+µ

(γ +1)(γ +2)
ψ (1) .

Finally, it is remarkable that if we get back to (1.7) and Taylor-expand hyperbolic
functions due to smallness of 1/β , we obtain

((
1− x2)

φ
′ (x)

)′
+

(
µ− 6

β 2 x2
)

φ (x) = 0, x ∈ (−1,1) , (1.9)
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an ODE that coincides with a well-studied equation [ORX, SP] whose solutions are
bounded on [−1,1] only for special values µn = χn

(√
6

β

)
, n = N0, and termed as

prolate spheroidal (Slepian) wave functions S0n

(√
6

β
,x
)

(with notation as in [SP]).
Note that even though differential operators presented here have the same eigen-

functions as integral ones, their eigenvalues are different. Once an eigenfunction φn
is obtained, the corresponding eigenvalue of the original integral operator can be
computed as λn =

〈
Pβ

[
χ(−1,1)φn

]
,φn
〉

L2(−1,1) (we use notation (1.2)).

1.4 Large interval (β � 1)

Let us set ϕ (x) := f (xh) for x ∈ (−a/h,a/h) and, by a change of variable, rewrite
(1.1) as

1
π

∫ 1/β

−1/β

ϕ (t)

(x− t)2 +1
dt = λϕ (x) , x ∈ (−1/β ,1/β ) , (1.10)

Denote B := (−1/β ,1/β ), choose normalization ‖ϕ‖L2(B) = 1, and define the ana-
lytic continuation to R of the solution of (1.10) as

ϕ (x) =
1

λπ

∫ 1/β

−1/β

ϕ (t)

(x− t)2 +1
dt. (1.11)

Then, building up on a transformation introduced in [Gri], we can prove a non-
evident yet very important result [Pon]

Lemma 1. The analytic continuation of solution of (1.10) given by (1.11) satisfies∫
R\B

R0 (x− t)ϕ (t)dt = ϕ (x) , x ∈ R, (1.12)

with

R0 (x) :=− sin(x logλ )

tanh(πx)
− 1

π

∞

∑
n=1

nλ n

n2 + x2 . (1.13)

The parity of solutions (part (b) of Proposition 1) allows reducing an integration
to only one half-line.

Theorem 2. The analytic continuations ϕext (x) := ϕ (x+1/β ) of even / odd solu-
tions of (1.10) satisfy, for x ∈ R,∫

∞

0

[
R0 (x− t)±R0

(
x+ t +

2
β

)]
ϕext (t)dt = ϕext (x) , (1.14)

as well as an integro-differential equation∫
∞

0

[
K (x− t)±K

(
x+ t +

2
β

)]
ϕext (t)dt = ϕ

′′
ext (x)+ log2

λ ϕext (x) (1.15)
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with the kernel function

K (x) :=−
(

d2

dx2 + log2
λ

)(
sin(x logλ )

tanh(πx)
+

1
π

∞

∑
n=1

nλ n

n2 + x2

)
. (1.16)

Here and onwards the upper sign corresponds to even solutions, the lower to odd
ones.

Even though equation (1.14) (which is a direct rephrasing of (1.12)) is simpler
than an integro-differential equation (1.15), it has a kernel (1.13) with an oscillatory
behavior at infinity whereas K (x) decays. Indeed, it is easy to see that

R0 (x) h
|x|�1

sin(x logλ )

tanh(πx)
h sin(|x| logλ ) , K (x) h

|x|�1

1
x2 .

This decaying property of the kernel function of (1.15) is crucial for construction of
approximation on the right half-line region since the sum part of the kernel in (1.15)
is uniformly small for β � 1 and x, t > 0: K (x+ t +2/β ) = O

(
β 2
)
. Neglecting

this small term (and thus again postponing tedious error analysis to a further work),
we end up with an equation of Wiener-Hopf type. Even though the presence of the
derivative prohibits application of the standard Wiener-Hopf method, this difficulty
can still be overcome by means of additional transformation leading to an explic-
itly solvable scalar Riemann-Hilbert problem giving thus an exact solution of the
approximate equation. These results presented in greater detail in [Pon] are summa-
rized here in Theorem 3 below. First of all, however, we should set up notations and
define few auxiliary quantities, for k ∈ R,

k0 :=− logλ

2π
, κ :=−π

6
+2k0 log

(
e2πk0 −1

)
+

1
π

Li2
(

1− e2πk0
)
,

ˆK (k) =
2π2

(
k2

0− k2
)

eπ(k0−|k|)

sinh(π (k0−|k|))
, G(k) :=

k2− k2
0

2(k2 +1)
[1+ coth(π (|k|− k0))] ,

X± (k) := exp(P± [logG] (k)) = G1/2 (k)exp
[
± 1

2πi
p.v.

∫
R

logG(τ)

τ− k
dτ

]
,

C (k) :=
(1+κ)

(
1+4π2k2

0
)

(1−2πik)2 −
1−4π2k2

0 +2κ

1−2πik
−P+

[
2(1−πi·)+κ

(1−2πi·)2
ˆK (·)

]
(k) ,

where we defined the Euler dilogarithm / Spence’s function, Fourier transform, and
projection operators on spaces of analytic functions of upper and lower half-planes
as follows:

Li2 (x) :=−
∫ x

0

log(1− t)
t

dt =
∞

∑
n=1

xn

n2 , F̂ (k) := F [F ] (x) =
∫
R

F (x)e2πikxdx,

P± [F ] (k) := F χR±F
−1 [F ] (k) =

1
2

F (k)± 1
2πi

p.v.
∫
R

F (t)
t− k

dt.
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Now we are ready to state the following

Theorem 3. The integro-differential equation∫
∞

0
K (x− t)ϕext (t)dt = ϕ

′′
ext (x)+ log2

λ ϕext (x) , x > 0, (1.17)

possesses the unique solution given by

ϕext (x) = ϕ

(
1
β

)[
e−x (1+(1+κ)x)+

∫
R

e−2πikx P+ [C /X−] (k)
4π2 (k2 +1)X+ (k)

dk
]
.

(1.18)
Moreover, this solution satisfies the endpoint condition ϕ ′ext (0) = κϕext (0).

Now we reuse Theorem 2 to recover solutions ϕ (x) = ϕext (x−1/β ) inside the
interval B due to the fact that the left-hand side of (1.15) is now computable from
(1.18). This non-homogeneous ODE is easily solvable and depending on a choice
of the sign in the integral term of (1.15) we obtain either even or odd family of
solutions.

We conclude that even eigenfunctions are given by

ϕ (x)/ϕ

(
1
β

)
=C1 (λ ,β )cos(x logλ )−

∫ x

0
N+

0 (t,λ ,β )sin((x− t) logλ )dt,

(1.19)
and odd ones by

ϕ (x)/ϕ

(
1
β

)
=C2 (λ ,β )sin(x logλ )−

∫ x

0
N−0 (t,λ ,β )sin((x− t) logλ )dt,

(1.20)
where

C1 (λ ,β ) :=
1

cos
(

1
β

logλ

) [1+
∫ 1

β

0
N+

0 (t,λ ,β )sin
((

1
β
− t
)

logλ

)
dt

]
,

C2 (λ ,β ) :=− 1

sin
(

1
β

logλ

) [1+
∫ 1

β

0
N−0 (t,λ ,β )sin

((
1
β
− t
)

logλ

)
dt

]
,

N±0 (x,λ ,β ) :=
1

2πk0

∫
∞

0

(
K

(
x− t− 1

β

)
±K

(
x+ t +

1
β

))
·[

e−t (1+(1+κ) t)+
∫
R

e−2πikt P+ [C /X−] (k)
4π2 (k2 +1)X+ (k)

dk

]
dt.

Evaluation of derivatives and use of the boundary condition obtained in Theorem
3 lead to characteristic equations for even and odd eigenvalues, respectively,
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κ

logλ
cos
(

1
β

logλ

)
+sin

(
1
β

logλ

)
=−

∫ 1
β

0
N+

0 (t,λ ,β )cos(t logλ )dt, (1.21)

κ

logλ
sin
(

1
β

logλ

)
− cos

(
1
β

logλ

)
=−

∫ 1
β

0
N−0 (t,λ ,β )sin(t logλ )dt. (1.22)

1.5 Numerical illustrations

We verify our results of both Sections 1.3 and 1.4 by comparing them to a numerical
(Nyström) method applied to a rescaled formulation (1.5). We use a Gauss-Legendre
quadrature rule with N = 100 points to approximate the integral operator

N

∑
j=1

ω j pβ (x− t j)φ j = λφ (x) , x ∈ (−1,1) (1.23)

with ω j :=
2(1−t2

j )
N2P2

N−1(t j)
, PN−1 (x) being the (N−1)-th Legendre polynomial, pβ (x)

as in (1.3), and solve for φ j := φ (t j), j = 1, . . . ,N, the following linear system

N

∑
j=1

pβ (ti− t j)ω jφ j = λφi, i = 1, . . . , N. (1.24)

Eigenvalues are found from equating determinant of the system to zero, and contin-
uous eigenfunctions are then reconstructed from (1.23) as

φ (x) =
1
λ

N

∑
j=1

ω j pβ (x− t j)φ j, x ∈ (−1,1) . (1.25)

Numerical solutions demonstrate properties of a Sturm-Liouville sequence: even
and odd eigenfunctions interlace and each φn, n ∈ N+, has exactly n−1 zeros.

In the case β � 1, we compare numerical results with prolate spheroidal wave
functions which were computed using a Fortran code provided in [ZJ] and converted
into a MATLAB program with the software f2matlab. We see in Figure 1.1 that
even double approximation (first, by a cumbersome boundary-value problem (1.7)-
(1.8) and then, proceeding further, by the one with ODE (1.9) for standard special
functions) already furnishes excellent results.

In the case β � 1, we first solve characteristic equations (1.21)-(1.22) by finding
intersection of curves in left- and right-hand sides as a function of k0 =− logλ

2π
. They

are plotted in Figure 1.2 along with vertical lines which correspond to eigenvalues
obtained from the numerical solution described above. Plugging eigenvalues back
in (1.19)-(1.20), we obtain even and odd family of solutions, respectively. We plot
a couple of eigenfunctions in Figure 1.3, namely, the third even eigenfunction and
the tenth odd. As in Figure 1.1, the asymptotic solutions are almost indistinguish-
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able from the numerical, however, Figure 1.4 shows a breakdown of the asymptotic
approximation for higher-order eigenfunctions (note also the discrepancies between
abscisses of circled intersection points and vertical lines in Figure 1.2).

More plots of eigenfunctions and approximation errors are available in [Pon].
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Fig. 1.1 Eigenfunctions φ1 (left plot) and φ6 (right plot). β = 10.
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Fig. 1.2 Solving characteristic equations (1.21) (left plot) and (1.22) (right plot). β = 0.1.

1.6 Conclusion

We have presented two different methods to construct asymptotic solutions in cases
when the interval is small and large. In the first case, we have exploited a rather spe-
cific property of asymptotical closedness of the problem to an integral equation with
an admissible commuting differential operator and concluded that solutions (eigen-
functions) can be approximated by those arising from either of two auxiliary Sturm-
Liouville problems and, if further approximation is pursued, they coincide with
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Fig. 1.3 Eigenfunctions ϕ5 (left plot) and ϕ20 (right plot). β = 0.1.

10 20 30

5

10

15

20

25

30 0

0.2

0.4

0.6

0.8

1

10 20 30

5

10

15

20

25

30 0

0.2

0.4

0.6

0.8

1

Fig. 1.4 Inner product matrices for solutions: asymptotic (left plot) and numerical (right plot).
β = 0.1.

scaled versions of prolate spheroidal wave functions. In the second case, when the
interval is large, the developed approach is rather general and should, in principle,
be applicable to a wide class of integral equations with even kernels. Computational
details (and simplicity of the form of a kernel for the integral equation on the half-
line), however, will depend on analytical structure of the Fourier transform of a ker-
nel. This is a natural topic for further investigation. Also, in the case of large interval,
it is interesting to attempt to extend the results for λ =−1 (and a non-homogeneous
term) recently obtained by Tracy and Widom [TW2, TW3] or those given by a
boundary-layer type of asymptotic constructions in [AL], and compare these results
with ours. Moreover, in the same large interval case, it was proven in [Pon] that
equation (1.1) can be approximately reduced to a known non-homogeneous hyper-
singular equation known in air-foil theory p.v.

∫ a
−a

f ′(t)
x−t dt = µ f (x)+g(x) which so

far has been efficiently solved only numerically [KP, vT]. It seems worthy exploring
this connection deeper on a constructive level. Nevertheless, of the primary impor-
tance is to provide rigorous justification of the obtained results (initiated in [Pon])
which were presented here heuristically and verified only numerically. This work in
progress will soon be published in a forthcoming paper.
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