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Abstract
Fuzzy random variables possess several interpretations. Histori-

cally, they were proposed either as a tool for handling linguistic label
information in statistics or to represent uncertainty about classical
random variables. Accordingly, there are two different approaches to
the definition of the variance of a fuzzy random variable. In the first
one, the variance of the fuzzy random variable is defined as a crisp
number, that makes it easier to handle in further processing. In the
second case, the variance is defined as a fuzzy interval, offering a grad-
ual description of our incomplete knowledge about the variance of an
underlying, imprecisely observed, classical random variable. In this
work, we first discuss another view of fuzzy random variables, that
comes down to a set of random variables induced by a fuzzy relation
describing an ill-known conditional probability. This view leads to yet
another definition of the variance of a fuzzy random variable, in the
context of the theory of imprecise probabilities. The new variance is
a real interval, which achieves a compromise between both previous
definitions in terms of representation simplicity. Our main objective
is to demonstrate, with the help of simple examples, the practical sig-
nificance of these definitions of variance induced by various existing
views of fuzzy random variables.

Keywords: Imprecise probabilities, Fuzzy random variable, Ran-
dom set, Variance, Second-order possibility measure.
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1 Introduction

The concept of fuzzy random variable, that extends the classical definition
of random variable, was introduced by Féron [19] in 1976. Later on and
sometimes independently, Kwakernaak [29], Puri and Ralescu [43], Kruse
and Meyer [28], Diamond and Kloeden [13], proposed other variants. In [23],
Krätschmer surveyed all of these definitions and proposed a unified approach.
In all of these papers, a fuzzy random variable is defined as a function that
assigns a fuzzy subset to each possible output of a random experiment. The
different definitions in the literature disagree on the measurability conditions
imposed to this mapping, and in the properties of the output space, but all
of them intend to model situations that combine fuzziness and randomness.

Since the introduction of this concept, much effort has been devoted to
the generalisation of different probabilistic concepts and classical results to
the case when outcomes of a random experiment are represented by fuzzy
sets. Generalized definitions of descriptive parameters, useful as informa-
tion summaries for probability distributions, can be divided into two groups.
Some authors view extensions of standard parameters as fuzzy values: the
expectation [43], the distribution function in a point [6, 28], the variance [27]
and the covariance1 [34]. For yet other authors, the expectation [31], the
variance [18, 22, 32], the covariance [18] or the inequality index [33] are de-
fined as crisp values. These scalar definitions sometimes reflect the idea that
the fuzzy outcomes of the random process are viewed as primitive objects
(like in [43], while the former definitions consider a fuzzy random variable as
the imprecise perception of an otherwise precise random variable. The scalar
definitions are also easier to handle in practice.

In spite of the great amount of mathematical results about fuzzy random
variables, few publications study the different interpretations that could be
given to their various definitions. Yet there is not a unique intuition behind
the various definitions originally proposed in the literature. While Feron [19],
Puri and Ralescu [43], Diamond and Kloeden [13] view a fuzzy random vari-
able as the extension of a random set, Kwakernaak [29], Kruse and Meyer
[28] consider it models the imprecise perception of an ill-known classical ran-
dom variable. This divergence of views directly impacts the choice of suitable
definitions for extensions of traditional descriptive parameters such as vari-
ance.

This work especially focuses on the meaning of different extensions of
the concept of variance to fuzzy random variables. For simplicity we restrict

1We must remark that the concept of fuzzy random variable not only extends the
concept of one-dimensional random variable, but also of random n-dimensional vector.
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ourselves to the case where the values of the fuzzy random variable are fuzzy
subsets of R. We review two different definitions of variance, found in the
literature, namely, a scalar one, and a fuzzy-interval-valued one. Moreover
we propose an additional interval-valued definition, cast in the setting of
imprecise probabilities, that relies on a third view of a fuzzy random variable.

We lay bare the three specific interpretations of fuzzy random variables
and the corresponding definitions of variance. Guided by simple examples, we
observe the advantages and drawbacks of each definition in different contexts.
In particular, the meaning of the variance depends upon assumptions on the
nature of the modelled quantity, according to whether it is deterministic or
stochastic.

Interestingly, the study of variance enables a clear distinction to be made
between the three views of fuzzy random variables, while expectations can-
not properly do it. Indeed, the same fuzzy-valued expectation is obtained
in the Puri-Ralescu and the Kruse-Meyer views, even if with different ratio-
nales and methods. The third view proposed here yields an interval-valued
expectation, that is precisely bounded by the upper and lower expectations
of the probability family encoded by the fuzzy-valued expectation obtained
in the two other views [5]. When the fuzzy random variable is a random
set, all three views yield the same interval-valued expectation. This is not
the case with variance as we shall see in this paper. In fact as pointed out
by Walley ([47] Appendix G), upper and lower expectations induced by a
convex probability family (a credal set) are attained on vertices of the credal
set, while upper and lower variances are often attained inside the credal set.

The next sections will be devoted to these three different definitions of
the variance, namely the scalar, the fuzzy and the interval-valued ones. In
Section 5, we discuss possible connections between the two latter notions.

2 Scalar variance of a fuzzy random variables

Let us recall that the variance of a classical random variable X defined on
a probability space (Ω,A, P ) is of the form Var(X) =

∫
Ω

[X − E(X)]2dP ,
E(X) being the expectation of X. Var(X) can be expressed as the following
Lebesgue integral 2 with respect to the probability measure PX induced by
X on the real line:

2Since the variance of a classical random variable is a function of its induced probability
distribution, we speak of the variance of such probability distribution, as a slight abuse of
language.
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Var(PX) =

∫
R

(
x−

∫
R
y dPX(y)

)2

dPX(x).

Let us consider a metric, d, defined over the class of the fuzzy subsets of
R, F(R), (oftentimes a subclass, typically the set of compact fuzzy subsets
of the real line). Many such metrics are surveyed in [24], and examples
of them are discussed later on in this section. A fuzzy random variable
X̃ : Ω → F(R) is an A-β(d)-measurable function (here, β(d) represents the
Borel σ-algebra induced by d.) The expectation E(X̃) of a fuzzy random
variable is a fuzzy subset of the real line which has been given several, often
equivalent, definitions in the literature (see [25, 28, 43]). It is basically a kind
of integral over Ω of the fuzzy-set-valued function X̃.

The following definition of variance of a fuzzy random variable is widely
found in the literature, and is strikingly similar to the classical notion:

Definition 1. We call scalar variance of X̃ with respect to distance d, the
quantity (when it exists)

SVar(X̃) =

∫
Ω

d(X̃, E(X̃))2 dP. (1)

In the following several instances of this definition found in the literature
are discussed in more details.

2.1 Some metrics underlying the scalar variance

The various existing definitions of variance of a fuzzy random variable that
fit the formulation in Equation 1 satisfy SVar(X̃) = 0 if and only if all fuzzy
outcomes are the same (they have the same membership function). They
differ in the used metric and in the definition of expectation.

Körner [22] considers Fréchet’s definition of expectation [20] for measur-
able functions taking values in a metric space. The variance of X̃ is defined
as the expectation of the squares of the distances of their values to their
Fréchet expectation. It is noticeable that Fréchet defines the expectation of
a measurable function Z, with values in a metric space (M,d) as a solution
a = E(d)(Z), (not necessarily unique) of the problem mina∈M E[d(Z, a))2].
Körner’s definition is valid when the final space is Rn, with arbitrary n ∈ N.
In the particular case where X̃ is a classical random vector and the chosen
distance is Euclidean, the result of this calculation is the moment of iner-
tia. This way, Körner’s procedure generalizes, in the n-dimensional case, a
concept that may be useful to measure the dispersion of the membership
functions that are values of the fuzzy random variable. However this concept
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is not directly related to the concept of variance-covariance matrix. Körner
[22] checks that Puri and Ralescu’s expectation [43] is the only Fréchet ex-
pectation for a certain family of metrics defined over the class of compact
and normal fuzzy sets of R.

Lubiano et al. [32] introduce a family of variances defined by (1), the
considered expectation being also that of Puri-Ralescu, EPR(X̃), and the
class of distances being that defined by Bertoluzza et al. in [4]. Bertoluzza
et al. distances are defined for pairs of convex and compact fuzzy sets of the
real line F(R) (fuzzy intervals [15]) as follows:

D~λ(A,B) =

√∫
(0,1]

[d~λ(Aα, Bα)]2 dα,

where Aα = {ω ∈ Ω : A(ω) ≥ α} and Bα denote respectively the (weak)

α-cuts of A and B, ~λ = (λ1, λ2, λ3) ∈ [0, 1)3 is a triple of weights such that
λ1 +λ2 +λ3 = 1, and d~λ(Aα, Bα) denotes a weighted combination of distances
between upper and lower bounds and midpoint of the intervals:

[λ1(supAα − supBα)2 + λ2(midAα −midBα)2 + λ3(inf Aα − inf Bα)2]1/2,

mid denoting the midpoint of the corresponding interval.

2.2 Random linguistic variables

In practical situations, the values of X̃ are often linguistic labels L = {L1, . . . , Lk}
forming a (fuzzy or not) partition of the real line. Only the coarsening L of
the actual range of an underlying usual random variable is used. Families of
scalar variances so defined allow us to quantify the dispersion of the (fuzzy,
or set-valued) values of X̃, regarded as a measurable function from Ω to
(L, d), adopting a classical point of view. SVar(X̃) thus evaluates the vari-
ation across the possible linguistic labels. Let us illustrate the use of the
scalar variance with an example of this kind.

Example 1. A person has a container of apples and he is asked about their
weight. He does not use any scale. He just takes an apple in his hand and
chooses between “high”, “medium” and “low”, these terms forming the lin-
guistic scale L. Each of these labels can be viewed as a suitable fuzzy subset of
the weight scale. This information can be described by a fuzzy random vari-
able X̃ : Ω→ L, where each ω ∈ Ω represents an apple and X̃(ω) represents
the label assigned to it (high, medium or large). The probability distribution
induced by X̃ determines the proportion of times that this person assigns
each label. Let us suppose that he assigns the weight “medium” to all the
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apples, because he cannot appreciate any difference of weight among them.
Then the scalar variance takes the value 0. Suppose now than another person
(a woman) uses finer notions of “high”, “medium” and “low”, and hence,
she can give more accurate descriptions of the weights, so she chooses, for
instance, each label one-third of the times. Thus, what the first person calls
“medium” covers what the second person calls “high”, “medium” and “low”.
Then the scalar variance associated to her assignations is much higher. We
can assign different scalar variances to the same container of apples, depend-
ing on the accuracy of our answers about the weight. We are not especially
interested by the variability of the real weights of apples at this stage, just by
the variability of the assignment to classes.

However, the general framework for this kind of fuzzy random variable
does not assume the (fuzzy) values of X̃ to form a partition, just that these
values are elements of a space equipped with a metric, which is at odds with
the linguistic interpretability of the terms in L. In particular, the scalar dis-
tance between any two such fuzzy sets measures the difference in specificity
as much as in location. On the contrary, restricting to a fuzzy partition where
fuzzy sets only weakly overlap, the distance between terms is an approxima-
tion of the distance one could compute if our perception was finer. So the
family of scalar variances studied here looks somewhat debatable beyond its
use for linguistic random variables.

2.3 Some interpretations of the scalar variance of a
fuzzy random variable

The scalar variance is in agreement with the view of a fuzzy random variable
as accounting for a standard random phenomenon whose fuzzy outcomes are
objects of their own, subject to variability (e.g. linguistic labels). In [22]
and [32] we can find some interesting properties of the families of variances
defined there, shedding more light on their meaning. Let us consider the
formulation of the scalar variance in the particular case when X̃ is a random
interval (a function whose values are intervals of the final space and which
satisfies a suitable measurability condition.) In this case, the definition of
Lubiano et al. is of the form:

SVar(X̃) = λ1Var(X1) + λ2Var

(
X1 +X2

2

)
+ λ3Var(X2)

where λ1 + λ2 + λ3 = 1 and X1, X2 are the random variables defined over Ω
as X1(ω) = inf X̃(ω) and X2(ω) = sup X̃(ω), ∀ω ∈ Ω, respectively. (Under
the measurability conditions imposed to X̃ by the authors, the functions X1
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and X2 are A-β(R) measurable.) Thus, we can easily check that it can be
alternatively written as follows:

SVar(X̃) = π1Var(X1) + π2Cov(X1, X2) + π3Var(X2),

where π1 = λ1 +0.25λ2, π2 = 0.5λ2, π3 = λ3 +0.25λ2, λi ≥ 0, i = 1, 2, 3. Fur-
thermore, in this particular situation, the family of distances considered by
Körner represents a special case of the family of metrics defined by Bertoluzza
et al., and so, Körner’s variance also fulfills the above restrictions. Therefore,
in the particular case in which λ2 is zero (thus π3 = 1− π1), the variance of
the random set will be a convex linear combination of the variances of their
boundaries3. Additionally, if π3 = (1 − √π1)2, the variance of X̃ coindices
with the variance of the convex linear combination of X1 and X2 given by
the expression

√
π1X1 + (1 − √π1)X2. In other words, in this case, for ev-

ery element in the sample space, ω, we can choose a representative point,
αX1(ω) + (1 − α)X2(ω) (with α ∈ [0, 1]), of the value of the fuzzy random
variable, and then calculate the variance of the resulting classical random
variable. The idea of computing the scalar variance using a representative
substitute point to each fuzzy observation is used by Baudrit et al. [3], as one
piece of information to be extracted from the result of a hybrid propagation
of fuzzy and probabilistic information through a mathematical model.

3 Fuzzy variance associated to a second-order

imprecise model

The scalar variance does not inform much about the variability of some prop-
erty of the elements of a population Ω, modelled by (classical) underlying
random variable, but known only through imprecise observations, a situa-
tion again captured by a fuzzy random variable. This is Kwakernaak’s inter-
pretation, taken over by Kruse and Meyer [28]. They choose a possibilistic
interpretation of fuzzy sets. Each fuzzy set is viewed as modeling incomplete
knowledge about an otherwise precise value. These authors then claim that
the fuzzy random variable represents imprecise or vague knowledge about a
classical random variable, X0 : Ω→ R, they refer to as the “original random
variable.” Therefore, the membership degree X̃(ω)(x) of a real number x to
the fuzzy set X̃(ω) represents the possibility degree of the assertion “X0(ω)
is x”, i.e., the image of element ω coincides with x. Note that while X0 is

3The definition given by Feng in [18] and cited in the introduction fits this formulation
for π1 = π3 = 0.5.
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random, X0(ω) is deterministic, once ω is fixed. On this ground, these au-
thors define a possibility measure over the set of all random variables, which
is associated to the so-called “acceptability function”. The “acceptability
degree” of each random variable, X : Ω→ R, is computed as:

accX̃ (X) = inf
ω∈Ω

X̃(ω)(X(ω)).

According to Kruse and Meyer ([28]), accX̃(X) represents the grade of pos-
sibility that X is the “true” random variable that models the studied exper-
iment. In other words, it represents the grade of possibility of the assertion

X0(ω) = X(ω), ∀ω ∈ Ω.

3.1 The case of disjunctive random sets

When, in particular, the fuzzy random variable is a multi-valued mapping
(its values are crisp subsets of R), the set-valued image X̃(ω) restricts mutu-
ally exclusive deterministic quantities only (we call these sets disjunctive for
this reason). The acceptability function then assigns the value 1 to random
variables in a certain set of possible ones (the selections of the multi-valued
mapping), and the value 0 to the remaining impossible ones. Of course, in
the particular case when the fuzzy random variable is a classical random
variable (our knowledge its values is represented by sets with only one ele-
ment) the acceptability function would assign the value 1 to only one random
variable, which is the true random variable that models the experiment (and
0 to others). In this case, its observation is completely precise. In [27], Kruse
defines the variance of a multi-valued mapping, X̃ : Ω→ ℘(R), as the set:

VarKr(X̃) = {Var(X)|X ∈ S(X̃)},

where S(X̃) represents the set of all measurable selections of the multi-valued
mapping, i.e., the class of random variables whose values are contained in
the (crisp) values of X̃.

The following example illustrates the merits of this set-valued variance
that quantifies the information available about the variance of an underlying
random variable, when adopting a “possibilistic” view of the random set, as
opposed to the scalar variance of the previous setting. We refer the reader
to [44, 45] for additional real life examples.

Example 2.

(a) The set Ω = {ω1, . . . , ω4} comprises four objects, whose actual weights
are X0(ω1) = 10.2, X0(ω2) = 10.0, X0(ω3) = 10.4, X0(ω4) = 9.7.
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We sense the weights with a digital device that rounds the measure to
the nearest integer, and displays the value ‘10’ in all of these cases.
Therefore, we get the constant random set Γ(ωi) = [9.5, 10.5],∀ i =
1, . . . , 4. The true variance of the four measurements is 0.067. Since
we only know the information provided by Γ, all we can say about the
variance is that it is bounded by the values 0 and 0.25. This is the
information that Kruse variance gives us. However, the scalar variance
of X̃ returns the misleading value 0.

(b) Case (a) is an example where the scalar variance of the random set Γ
is not an upper bound of the actual value of the variance of X0. Nei-
ther is it, in general, a lower bound. Indeed, suppose that four objects
ω1, . . . , ω4 weigh the same: X0(ω1) = X0(ω2) = X0(ω3) = X0(ω4) =
9.8g. Let us also suppose that, for some reason, the weight of the fourth
object was imprecisely measured, and we only know that it is between the
values 9.5 and 10.5. Our knowledge about the variable X0 is given by the
random set Γ : Ω → ℘(R) defined as Γ(ω1) = Γ(ω2) = Γ(ω3) = {9.8}
and Γ(ω4) = [9.5, 10.5]. The true variance of X0 is 0, and Kruse vari-
ance produces the interval [0, 0.092]. But the scalar variance assigns a
strictly positive value to it, that depends on the choice of the distance.

The last case suggests that the observed scalar variance of a fuzzy random
variable can be misleading in some contexts. It may reflect the variance of
the imprecision of the output when all set-realizations are nested (e.g. the
knowledge of object ω4 is more imprecise than the knowledge of the other
objects), rather than the actual variability of the underlying phenomenon. In
any case, in the above examples, we are not interested in the variability of val-
ues of the set-valued-mapping as measured by the scalar variance, but by the
possible values of the variance if information had been complete. VarKr(X̃)
is a crisp set of potentially attainable variances that reflects the imprecision
pervading the observation of the outcome of a random experiment.

This set-valued definition makes full sense when computing the variance
of a finite set of incomplete data represented by intervals [26]. Suppose a
collection of n measurements of a variable X0 has been obtained, where each
measurement is an interval [xi, xi], ∀ i = 1, . . . , n. This interval pertains to
a singular measurement step, hence to a precise value xi of X0, that should
have been known, had the procedure been perfect. All that is known is that
xi ∈ [xi, xi]. Then Kruse’s variance (computed for this particular sample)
is the set of variances that could have been obtained by substituting each
interval [xi, xi] by the true value of X0 in realization i. Computing the bounds

of the interval VarKr(X̃) is an NP-hard problem, in general [26].
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3.2 A fuzzy set-valued variance

The preceding definition can be extended to the case of fuzzy random vari-
ables in a natural way. But we must first clarify some ideas about the α-cuts
of the fuzzy random variable. Let us consider, for each α ∈ [0, 1], the multi-
valued mapping X̃α : Ω→ ℘(R) defined as follows:

X̃α(ω) = [X̃(ω)]α = {x ∈ R : X̃(ω)(x) ≥ α}, ∀ω ∈ Ω. (2)

and let S(X̃α) be the class of measurable selections of X̃α, i.e.,

S(X̃α) = {X : Ω→ R measurable : X(ω) ∈ X̃α(ω), ∀ω ∈ Ω}.

Let us now remember that the acceptability function accX̃ represents the
possibility distribution associated to a possibility measure, IΠ, over the class
of all the random variables (the measurable mappings from Ω to R). Accord-
ing to [8, 9], a probability measure IP over the class of all random variables
from Ω to R is dominated by the 2d-order possibility measure IΠ if and only
if it satisfies the inequalities :

IP (S(X̃α)) ≥ 1− α, ∀α ∈ [0, 1].

Such probability measures form the credal set of IΠ. In words, the possibilis-
tic information provided by the acceptability function is equivalent to the
following confidence-level information:

For each α ∈ [0, 1], the probability that the underlying random
variable X0 belongs to S(X̃α) is greater than or equal to 1− α.

Having these ideas in mind, the definition of set-valued variance given by
Kruse can be naturally extended to fuzzy random variables as follows:

Definition 2. The fuzzy variance FV ar(X̃) of the fuzzy random variable
X̃ : Ω → F(R), is the unique fuzzy set determined by the nested family of
sets:

F (α) := FVar(X̃α),∀α,

where X̃α is the multi-valued mapping α-cut of X̃.

We refer to the fuzzy set whose membership function is given by the
expression

πFV ar(X̃)(s) = sup{α ∈ (0, 1] : s ∈ VarKr(X̃α)}, ∀x ∈ R.
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Since {s : πFV ar(X̃)(s) > α} ⊆ F (α) ⊆ {s : πFV ar(X̃)(s) ≥ α}, ∀α ∈ (0, 1),
it is easy to see that the following (Kwakernaak style) equality holds:

πFV ar(X̃)(s) = sup{accX̃(X) : Var(X) = s}, ∀ s ∈ R, (3)

where accX̃(X) denotes the acceptability degree of X. The membership
degree πFV ar(X̃)(s) of a value s to the fuzzy set FVar(X̃) represents the
maximal possibility degree of random variables whose variance is equal to
s.

When the outputs of a random experiment are imprecisely observed, our
knowledge about their dispersion is also imprecise. So, the fuzzy variance can
be called potential variance, since πFV ar(X̃)(s) is the degree of possibility that
s is the variance (in case it exists) of the actual underlying random variable.
FVar(X̃) is a fuzzy set of potentially observable variances.

Example 3. Let us reconsider Example 1, now taking into account the im-
precision of the linguistic labels, each label being now viewed as a possibility
distribution on the real weight scale. If an apple ω is assigned the linguistic
label Li, it is interpreted as a fuzzy interval X̃(ω) restricting the real value
X0(ω) (the actual weight of the apple), this fuzzy set expressing only the
subjective judgment of the grocer. Alternatively we may think of the grocer
providing nested subjective prediction intervals [aα, bα] on the actual weight,
with lower probabilities 1−α. The second-order model, in this subjectivist per-
spective addresses the following problem. Given a probability space (Ω,A, P )
and some (non-random) imprecise observation of a quantity (for instance
expressed in a linguistic way), what is the family of probabilities PX0 com-
patible with the imprecision expressed by X̃? The natural way of computing
the variance here is to use the fuzzy interval FVar(X̃). Assuming apples ω
are selected at random (according to the Laplace distribution P ) from the
container, we can obtain a set of fuzzy evaluations of the apples in the bas-
ket: {X̃(ω) : ω ∈ Ω}. Then we can compute the fuzzy variance of the apple
weights (reflecting the variability of apple weights only) applying Definition
2.

The example seems to suggest that the Kruse view of fuzzy random vari-
able should be confined to the case when X0 is subjectively evaluated. How-
ever, the following example suggests it may apply to a wider range of situa-
tions where a measurement device is involved.

Example 4. Let us consider again the situation described in Example 1.
But let us now introduce a modification: the grocer now uses scales, but he
does not fully trust the obtained measurement. He considers the scales are
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“under control” 90% of the time, and in such situation the measurements are
within a 10g error margin. In the remaining 10% of the time, the scales are
“out of control” and we can only guarantee an error lower than 50g. Apples
are picked at random in a container, so that there is a uniform (Laplace)
probability on Ω. Let us denote by X0(ω) the ill-known quantity describing
the (true) weight of an arbitrary apple ω ∈ Ω. Suppose the weight of some
apple ω has been measured, and the displayed quantity is Xe(ω) = x∗.

The information of the grocer concerning the imprecision of his scales can
be described by a fuzzy interval ẽ, restricting the error e made when measuring
apple ω. It corresponds to the possibility distribution

πẽ(x) =


0 if x 6∈ [−50, 50]

0.1 if x ∈ [−50,−10) ∪ (10, 50]

1 if x ∈ [−10, 10].

(4)

In this example we are interested in representing our knowledge about the
true weight of the apple ω, X0(ω), based on the displayed quantity Xe(ω) and
the knowledge the grocer has about his scales.

Since X0(ω) + e = Xe(ω), and our imprecise knowledge about e is ex-
pressed by the membership function π of ẽ, our imprecise knowledge about
the fixed quantity X0(ω) can be described by x∗ − ẽ (in the sense of fuzzy
arithmetics) corresponding to the possibility distribution defined as:

X̃(ω)(x) =


0 if x 6∈ [Xe(ω)− 50, Xe(ω) + 50]

0.1 if x ∈ [Xe(ω)− 50, Xe(ω)− 10) ∪ (Xe(ω) + 10, Xe(ω) + 50]

1 if x ∈ [Xe(ω)− 10, Xe(ω) + 10].

(5)
yielding a fuzzy random variable X̃ in the sense of Kruse and Meyer. This
possibility distribution reflects the limited confidence of the grocer about his
scales. For each pair (ω, x), X̃(ω)(x) represents the grade of possibility that
the true weight of the object ω, X0(ω), is x. The fuzzy-valued variance will
now reflect the grocer’s limited trust on the accuracy of his scales.

In the case of collecting data representing imprecise measurements of
variable X0, one may have both a most plausible estimate of the real value
x̄i of X0 for each experiment i and an interval [ai, bi] surely containing it. It
can be modeled by a triangular fuzzy interval X̃i with mode x̄i and support
[ai, bi] [2]. FVar(X̃) is the right concept for computing the empirical fuzzy
variance of such a collection of fuzzy realizations. Methods to that effect are
devised in [14] for the fuzzy case.
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Remark 1. Variance-covariance matrix Kruse and Meyer’s procedure
can be applied without too many changes to the variance-covariance matrix.
Using similar reasoning methods as above, a possibility distribution over the
class of such matrices can be obtained. It models the imprecise knowledge
available about the variance-covariance matrix of the “original” underlying
random vector. In [34], Meyer proposes a definition of covariance following a
path similar to Kruse’s. As often when handling interval-valued information,
the combination of the information provided separately about the variance of
every component and about the covariance between them is more imprecise
that the straight information about the variance-covariance matrix.

3.3 Observable vs. potential variance

When the fuzzy random variable (or the random set) represents the imprecise
observation of a standard random variable, the description of the changes of
the observed sets or fuzzy sets via a “classical” variance is not enough to in-
form about the variability of the underlying phenomenon, as we have shown
in Examples 2, 3, 4. In fact, in the context of an imprecisely observed random
variable, the scalar variance of Section 2, when non-zero, may only account
for an “observable variance”, namely the part of the variance that can be
measured, despite the imprecision of the observation. It may sometimes par-
tially account for the variability of the underlying phenomenon. For instance,
if the fuzzy random variable represents an imprecisely observed random vari-
able with disjoint imprecise realizations, then it has a positive scalar variance
that reveals the non-deterministic nature of the underlying process (even if
only partially).

On the other hand, as the above examples show, a zero scalar variance is
not enough to conclude whether the observed phenomenon is random or not.
Example 2(a) leads to a zero observable variance, because the variability
of the weight is drowned in the imprecision of the observation. Likewise,
the Lubiano et. al. scalar variance applied to Example 4 would provide a
debatable estimation of the real variance of X0 because, in this particular case
involving symmetric fuzzy intervals that are identical up to a translation, it
would come down to assuming that its realizations lie at the midpoint Xe(ω)
of the core of the fuzzy observations. Moreover, a positive scalar variance
cannot reveal the actual randomness of the phenomenon if the realizations
are nested fuzzy sets. It only points out the variability of the imprecision of
the observed outcomes, as does the Körner scalar variance in Example 2(b).

In fact, one way of computing the observable variance as a scalar is to
choose an appropriate distance dmin between fuzzy sets in the scalar variance
(1), namely one that vanishes when the two fuzzy intervals overlap: consider
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two fuzzy intervals F and G, and let

dmin(Fα, Gα) = inf{|x− y|, x ∈ Fα, y ∈ Gα},

and (for instance) dmin(F,G) = infα>0 dmin(Fα, Gα). We can check that this
new scalar variance is less that the lower bound of Kruse variance. In Ex-
ample 2(b), the above scalar variance is now 0.

4 Interval-valued variance associated to a first-

order imprecise model

The interval-valued variance now introduced in this section is based on the
first order imprecise model presented in [1, 5, 10]. Suppose, as in the previous
example, that there is an imperfect measurement process that makes the
observation of each value X0(ω) noisy. So there is a sequence of two random
experiments whose sample spaces are Ω and R, respectively. Let us suppose,
on the one hand, that the probability distribution on (Ω,A, P ) : A → [0, 1],
is completely determined (in the preceding expression, A denotes a σ-algebra
of events over Ω.) On the other hand, the other experiment is only known via
a fuzzy relation which assigns, to each outcome ω of the first sub-experiment
in the sample set Ω, the fuzzy set X̃(ω) of possible outcomes of the second
experiment. Its membership function is a possibility distribution X̃(ω)(·) =
π(·|ω) that models knowledge about the relationship between the outcome
ω of the first sub-experiment and the possible outcomes of the second one.
π(·|ω) is called a conditional possibility distribution : if the result of the
first experiment is ω, then the possibility degree of x ∈ B occurring in
the second one is Π(B|ω) = supx∈B X̃(ω)(x). The family of conditional
probability measures Q(·|ω) (indexed by ω) encoded by Π(B|ω) is denoted
by C = {Q(·|·) : Q(B|ω) ≤ Π(B|ω) ∀B ∈ βR, ω ∈ Ω}.

As a consequence, we have partial information about the probability dis-
tribution P2 on (R, βR), resulting from the sequence of two random exper-
iments. The combination of both sources of information using natural ex-
tension techniques [47] allows to describe the available information about
this probability distribution by means of an upper probability. In fact, this
probability measure is given by the formula:

P2(B) =

∫
Ω

Q(B|ω) dP (ω),where

Q(B|ω) ≤ Π(B|ω), ∀ω ∈ Ω, ∀B ∈ βR.

The interval-valued variance is then naturally defined as follows:
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Definition 3. Consider a probability space (Ω,A, P ) , and a fuzzy random
variable defined over it, X̃ : Ω→ F(R). For each ω ∈ Ω, let Π(·|ω) denote the
possibility measure associated to the possibility distribution X̃(ω). We define
the first-order imprecise variance of X̃ as the (crisp) set IVar(X̃) ={

Var(Q2) : Q2(A) =
∫

Ω
Q(A|ω) dP (ω), ∀A ∈ βR s.t. Q(B|ω) ≤ Π(B|ω) ∀B ∈ βR

}
.

IVar(X̃) reflects the set of possible values of the variance of the second
sub-experiment, according to the available information.

Despite the fact that the present model is, like the one presented in the
previous section, associated to a possibilistic interpretation of fuzzy sets,
the meaning of the two definitions of variance derived from them are quite
different. In the previous section, the fuzzy random variable, X̃, represented
an imprecise observation of a particular (classical) random variable, X0. For
each possible result of the random experiment, ω ∈ Ω, the valueX0(ω) is fixed
but we have imprecise knowledge about it. However, in the present model, the
fuzzy random variable X̃ represents our (imprecise) knowledge about the link
between two steps of a random experiment. Thus, the same outcome ω in the
first step can be associated to different outcomes of the second step. Under
the above assumptions, we must combine the probability measure associated
to the first step with the probability measure that relates the first step with
the second one. As our knowledge about the latter conditional probability
measure is given by a credal set of probabilities, so is our knowledge about the
probability measure that governs the whole process. Thus, our knowledge
about the variability of the results of the second sub-experiment will be
characterized by a pair of lower and upper bounds.

It is obvious that this is a generalization of the concept of variance of
a classical random variable: in fact, let us suppose that the values of the
fuzzy random variable X̃ are real values. In other words, suppose that for
all ω ∈ Ω, Π(·|ω) is, in particular, the degenerated probability measure in
a point X(ω). It is easy to prove that the class of probability functions
D = {

∫
Ω
Q(·|ω) dP (ω), ∀Q(·|ω) ≤ Π(·|ω)}, is reduced to the singleton {PX}

(it is the only probability measure compatible with P and Π(·|·)).

Example 5. Let us turn back to the situation described in Example 4. We
assume that the observed value on the scale, say XE(ω), is noisy for a fixed
apple ω. If we choose the same apple again, our measurement could change.
These differences are attached to the randomness of the measurement process.
Here we are interested in describing our knowledge about the random quantity
XE(ω), regardless of having performed a measurement or not. This is dif-
ferent from the previous example where we observed the measured value (the
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estimated weight of an apple) and described our knowledge about the true
weight X0(ω). Here we describe our knowledge about the measured value,
based on randomly picking an apple, and measuring its weight with noisy
scales. The variance of XE is then a function of the variance of X0 and the
variance of the random error of the scales.

Namely, suppose
XE(ω) = X0(ω) + E,

where E is a random error due to the variability of the scales. If the probabil-
ity measure of the error is PE, then the conditional probability of the random
displayed quantity XE(ω) belonging to some A ⊆ R, for an apple ω, is

P (XE ∈ A|ω) = PE({x−X0(ω) : x ∈ A}).

The probability distribution PXE
is of the form

PXE
(A) =

∑
ω∈Ω

P (XE ∈ A|ω) · P ({ω}).

Unfortunately, the knowledge about PE is imprecise. All we know about it is
that

PE([−10, 10]) ≥ 0.9 and PE([−50, 50]) = 1.

According to Dubois and Prade [16] and Couso et al. [7], those constraints
are equivalently expressed by means of a fuzzy interval ẽ with possibility dis-
tribution πẽ(e) = 1 if e ∈ [−10, 10], and 0.1 if e ∈ [−50,−100]∪ [10, 50], and
0 otherwise (this is the same possibility distribution πẽ defined in Example 4,
now representing imprecise knowledge about a random phenomenon). It also
corresponds to the basic mass assignment m:

m([−10, 10]) = 0.9 and m([−50, 50]) = 0.1,

where 0.9 and 0.1 respectively represent the probabilities of being under/out
of control, and the focal sets [−10, 10] and [−50, 50] represent sets of values
among which the probabilities 0.9 and 0.1 can be shared. Our knowledge about
the conditional probability P (XE ∈ A|ω) is then of the form

P (XE ∈ A|ω) ≤ Π(A|ω) = sup
x∈A

X̃E(ω)(x).

The probability function PXE
is thus expressed by a mass function mXE

.
This mass function has focal sets of the form [X0(ω)− 10, X0(ω) + 10] with
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probability 0.9P ({ω}) and [X0(ω)−50, X0(ω)+50] with probability 0.1P ({ω})4,5.
The set of probabilities it encompasses reflects not only the random picking
process in Ω, but also the random error tainting the measurement process.
Hence the variance of the fuzzy random set corresponding to this problem is
the range of the variances of all probability distributions in the probability
family characterized by the mass assignment mXE

.
The difference with Example 4 is patent: with the latter we try to represent

our knowledge about X0(ω) after observing XE(ω) = x thus not considering
the added variability due to the error, just the grocer’s lack of knowledge about
it; here we represent our knowledge about the possible observed measured
apple weight that cumulate variability due to the measurement process and
the variability due to the choice of the apple.

5 Fuzzy versus interval-valued variance

In the last two sections, we have presented situations where each non-scalar
variance should be used. We have shown that the fuzzy variance in Kruse-
Meyer’s framework is natural when the goal is to describe the imprecise
information about the dispersion of an underlying classical random variable.
On the other hand, the interval-valued variance is appropriate when the goal
is to represent the range of the variance in a two-stepped random experiment,
if the fuzzy random variable is interpreted as a set of conditional probabilities
encoded by a conditional possibility measure. But we may try to investigate
the relationships between both definitions. On the one hand, we observe that,
when the fuzzy random variable reduces to a random set, the fuzzy variance
produces a crisp set of numbers. So we may ask ourselves whether the latter
is somehow related to the interval-valued variance of the random set. On the
other hand, intervals are easier to manage than fuzzy intervals, when they
are used in a decision process. Thus, it would be interesting to investigate
whether the interval-valued variance can be interpreted in Kruse & Meyer’s
context. In the following subsections, we deal with these two issues.

4Because the probability on Ω is uniform, this notation is a bit unusual in the sense
that we may have the same interval-valued focal set for different ω’s. In this case the
convention is to add the weights pertaining to the same focal set.

5Note that these focal sets are not the realizations of a random process, since when
measuring the weight of an apple only a precise value x∗ = Xe(ω) for a prescribed apple
ω and a prescribed error E = e, will be read on the scales. These focal sets only express
the available knowledge about the random “picking + measurement” process.
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5.1 The particular case of random sets

When the fuzzy random variable is a random set X̃ : Ω → ℘(R), the fuzzy
variance coincides with Kruse variance, FVar(X̃) = {Var(X) : X ∈ S(X̃)}.
Let us note that, for each measurable selection X ∈ S(X̃), the probability
measure PX satisfies the following restrictions: ∀A ∈ βR,

P X̃(A) = P ({ω : X̃(ω) ⊆ A}) ≤ PX(A) ≤ P X̃(A) = P ({ω : X̃(ω)∩A 6= ∅}),

where P X̃ and P X̃ respectively denote the Dempster lower and upper prob-
abilities associated to the random set X̃ (assuming that X̃ is strongly mea-
surable and X̃(ω) is never empty). Let Π(·|ω) be the Boolean conditional
possibility measure encoding X̃(ω). It is checked in [41] that the class of
probabilities D = {

∫
Ω
Q(·|ω) dP (ω), ∀Q(·|ω) ≤ Π(·|ω)} induced by an ill-

known conditional probability dominated by a Boolean possibility measure
coincides with the class of probability measures that are dominated by the
Dempster upper probability. In other words, the following inclusion holds:

P(X̃) = {PX : X ∈ S(X̃)} ⊆ D = {Q ≤ P X̃}.

The converse inclusion does not hold in general, as it is checked in [11, 35,
36, 39, 40]. Since Kruse variance is the class of classical variances induced by
P(X̃) and the interval-valued variance is induced by D, we conclude that the
Kruse variance of a random set X̃ is a set contained in the interval-valued
variance: FVar(X̃) ⊆ IVar(X̃). Let us give an example to clarify this idea:

Example 6. Let Ω be a singleton {ω} and let X̃ : Ω→ ℘(R) be the random
set defined as X̃(ω) = [a, b], where [a, b] denotes an arbitrary interval in the
real line (We assume that a < b). On the one hand, we can check that

P(X̃) = {PX : X ∈ S(X̃)} = {Dc : c ∈ [a, b]},

where Dc denotes the Dirac probability measure degenerated on c, i.e.:

Dc(A) =

{
1 if A 3 c
0 otherwise.

On the other hand, we can check that D = {Q : Q([a, b]) = 1}. Thus,
the class of probability measures associated to the random selections of X̃ is
a non-convex set strictly included in D. Such absence of convexity has an
important impact in the calculation of the variance. The fuzzy variance of X̃
(Kruse’s variance) is

FVar(X̃) = {Var(X) : X ∈ S(X̃)} = {0}.
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On the other hand, the interval-valued variance is

IVar(X̃) = {Var(Q) : Q([a, b]) = 1} =

[
0,

(b− a)2

4

]
.

For each p ∈ (0, 1), the probability measures Qp satisfying Qp({a}) = p,
Qp({b}) = 1− p belong to D but not to P(X̃). The upper bound of IVar(X̃)
is reached when p = 1

2
. The variance of a linear convex combination of

two probability measures is strictly greater than the convex combination of
the variances, except when they have the same expectation. Furthermore,
according to [10], the convex hull of the class P(X̃) is always contained in
the class D, used to compute the interval variance. This is the reason why
the upper bound of the interval-valued variance may be strictly greater than
the upper bound of Kruse’s variance, when X̃ is a random set.

The last example shows that the fuzzy variance generally does not co-
incide with the interval-valued variance, when X̃ is a random set. When
calculating the fuzzy variance, we are assuming that the final outcome in
R is univocally determined by the outcome in Ω, Q(·|ω) being degenerated.
Such a restriction on the conditional probability measure Q(·|ω) is not as-
sumed in the calculation of the interval-valued variance.

5.2 Reducing the fuzzy variance to the interval-valued
one

The definition of the fuzzy variance FVar of a general fuzzy random variable
is based on the concept of acceptability function introduced at the beginning
of Section 3, which is a possibility distribution over the class of all measur-
able mappings from Ω to R. Based on this concept, we have defined the
fuzzy variance of X̃ as the fuzzy set associated to the possibility distribu-
tion πFV ar : R+ → [0, 1] defined by Equation (3). The membership value
πFV ar(X̃)(s) represents the possibility grade that the variance of the underly-
ing random variable is equal to s. In a similar way, we can [8, 9] construct
a possibility measure over the class of all probability measures on R. It rep-
resents imprecise information about the probability measure PX0 induced by
the underlying random variable. This “second-order” possibility distribution,
ππ, is defined as follows:

ππ(Q) = sup{accX̃(X) : PX = Q}.

The quantity ππ(Q) represents the possibility grade that the probability mea-
sure induced by X0, namelyPX0 , coincides with Q.
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According to a procedure developed by Walley [48], any second-order
possibility measure can be reduced into a pair of (first-order) upper and
lower probabilities. Let us briefly describe Walley’s reduction in our context.
Let IΠ denote the second-order possibility measure associated to ππ. Let us
first notice that it is an upper probability over the class PR(Ω) of standard
probabilities, so it encodes a second-order credal set, i.e. a class of second-
order probability measures, IP = {IP : IP (Q) ≤ IΠ(Q), ∀Q ⊆ PR(Ω)}, where
IΠ is the possibility measure induced by ππ on the set PR(Ω) of probability
measures over Ω, and Q is a measurable set of probability measures. In other
words,

IΠ(Q) = sup{IP (Q) : IP ∈ IP}, ∀Q ⊆ PR(Ω).

In this setting, Walley derives a standard probability measure PIP from each
of the above second-order probability measures IP . To give a flavor of Wal-
ley’s procedure, let us assume, for the sake of simplicity, that ππ assigns
non-zero possibilities only to a finite class of first-order probability measures
{Q1, . . . , Qn} and let A denote an arbitrary measurable event. In Walley’s
context, fixing a second-order probability IP , the probability Qj(A) is under-
stood as the following conditional probability:

If the probability measure that governs the experiment on R is
Qj, then the probability of occurrence of the event A is Qj(A).

Then, according to the Total Probability Theorem, Walley calculates the
probability of occurrence of the event A as the following average:

PIP (A) =
n∑
j=1

Qj(A) · IP (Qj), ∀A ∈ βR,

where IP (Qj) is the probability that the correct probability measure is Qj.
Walley derives, in a natural way, a pair of upper and lower probabilities from
IΠ as follows:

PW (A) = inf
IP∈IP

PIP (A) and PW (A) = sup
IP∈IP

PIP (A), ∀A ∈ βR.

The above lower and upper probabilities can be understood as lower and
upper bounds for the probability of occurrence of A. But mind that two
different types of probabilities are combined within the same formula. In
fact, the first order probabilities Qj are objective and express the variability
of occurrence of events, while second-order probabilities IP are subjective and
qualify our confidence in first-order probability statements. Nevertheless,
following Kyburg [30], both of them can be combined into a joint probability
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space, even if they are conceptually different kinds of probabilities, whenever
a concrete application requires a “single-case” probability.

As a consequence, the second-order possibility measure associated to the
fuzzy random variable X̃, when Kruse & Meyer’s approach is followed, can
be reduced into a pair of upper and lower probabilities. Furthermore, it is
checked in [10] that the upper and lower probabilities associated to such a
reduction coincide with the upper and lower bounds induced by the class of
probability measures D = {

∫
Ω
Q(·|ω) dP (ω), ∀Q(·|ω) ≤ Π(·|ω)}. Specifi-

cally, let P and P denote:

P (A) = inf
P2∈D

P2(A) and P (A) = sup
P2∈D

P2(A).

They represent the (first-order) upper-lower model considered in the defini-
tion of the interval-valued variance. Then, according to Theorem 7.3 in [10],
the following equalities hold:

PW (A) = P (A), and PW (A) = P (A), ∀A ∈ βR,

when X̃α(ω) is an open or a closed set, for each α ∈ [0, 1] and each ω ∈ Ω.
These equalities allow us to reinterpret the interval-valued variance within
Kruse and Meyer’s context, since it comes down to generating the convex
hull of the probability set at work in the second approach.

Other possible reduction techniques exist in the literature:

• Walley [48] considers the cuts of the second-order possibility distri-
bution ππ induced from the acceptability function as a random set
of probability measures, namely a nested set of probability families
{Qα, α ∈ (0, 1]} where Qα ⊆ PR(Ω) is the α-cut of ππ. Let P ∗α(A) =
sup{P (A), P ∈ Qα}, for A ∈ βR. The following upper probability
function P ∗ is derived as

P ∗(A) =

∫ 1

0

P ∗α(A)dα.

Walley proved that P ∗ is the same upper probability as PW derived
above.

• The straightforward reduction of a random fuzzy set proposed in [1, 3]
looks different from Walley’s procedures but turn out to yield the same
results. Namely, consider a fuzzy random variable X̃ from (Ω,A, P ) to
R as a probability distributionQ over a set of fuzzy intervals x̃i inducing
possibility measures {Π1, . . .Πk}. This is done by letting Q({x̃i}) =
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P ({ω : X̃(ω) = x̃i}) (assuming a finite setting for simplicity). It can be
reduced to a probability family generated by the random set associated
to the Shafer plausibility function

Pl =
k∑
j=1

Πj · Q({x̃j}).

Couso and Sánchez [10] recently proved (in a more general setting)
that this function actually coincides with P ∗ (hence with PW ), which
is thus a Shafer plausibility function. This reduction from a fuzzy
random variable to a belief function and the ensuing interval-valued
variance can thus be considered as canonical.

Summarizing,

• On the one hand, the fuzzy variance represents a possibility distribu-
tion over the class of possible values for the variance of the underlying
random variable, when we follow Kruse & Meyer approach. It is the
kind of variance that we should use when “objective probabilities about
the occurrence of events” are distinguished from “belief degrees about
the values of the probability of events”, and both types of uncertainty
stay at two different levels.

• On the other hand, the interval-valued variance admits of two different
interpretations:

(a) It can be viewed as the range of the values for the dispersion of
the outcomes due to an ill-known second random sub-experiment,
modelled as a family of conditional probabilities encoded by the
fuzzy random variable.

(b) It can be also understood as the range of the values of the variance
of a probability family obtained by defuzzifying the higher-order
possibility distribution over probabilities present in Kruse-Meyer
view, and convexifying the resulting probability set.

The above discussion can be illustrated on Examples 4 and 5.

• The fuzzy variance of X̃ in Example 4 determines a possibility dis-
tribution on the real line. The membership value of some variance s
represents the grade of possibility that the variance of the (true) weights
of the apples in the container is equal to s. It does not account for the
measurement process variability.
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• The interval-valued variance of X̃E Example 5 represents, in a natural
way, the range of possible values for the variance of the numbers dis-
played by the scale, if we allow repeated measurements on the same
apple. It combines two sources of variability due to the picking proce-
dure in the apple container, and the measurement process, respectively.
We know with certainty that such a variance belongs to such an inter-
val.

But now, according to the ideas described in this section, we can also give
a meaningful interpretation to an interval-valued variance of X̃ in Example
4, derived as explained in this section. In fact, this interval-valued variance
combines two sources of dispersion: objective dispersion due to randomness
about the choice of the apple and potential dispersion tied to imprecision
in knowledge. Note that the latter dispersion is potential: it is accounted
for “as if” the lack of specificity regarding the knowledge of X0 were due to
an underlying ill-known additional random process, a feature that may or
not agree with the particulars of the considered application, and that makes
the obtained interval-valued variance wider than in the Kruse-Mayer original
view.

6 Concluding remarks

This paper has laid bare three different views of fuzzy random variables that
underlie different intuitions and lead to different extensions of the concept of
variance. None of them looks, in general terms, preferable to the others, but
they serve different purposes: they reflect different models of the observed
phenomenon, as well as different assumptions on the available knowledge
about this phenomenon. According to the problem under concern, it should
be decided whether the dispersion needs to be measured as a number, a
fuzzy set or a crisp set. The scalar variance measures the variability of the
membership function, considered as an observable entity, not the variability
of an underlying precise quantity it may possibly describe. This definition
is in the spirit of classical statistics and it does not take into account the
idea that the values of a fuzzy random variable model incomplete knowledge.
Some proposals for scalar variance are equivalent to considering first a repre-
sentative (numerical) element of every fuzzy realization of the fuzzy random
variable (the midpoint of the support, for instance) and then calculate the
dispersion of these numerical values. Part of the actual variability can be
observed and measured by means of scalar variance if the fuzzy outcomes
are precise enough and/or often disjoint. On the other hand, the average

23



precision of the fuzzy random variable, and the variance of this precision are
other useful evaluations.

On the contrary, interval-valued and fuzzy variances measure the poten-
tial variability of an ill-known random variable. If the fuzzy random variable
represents the ill-known measurement of some characteristics of a classical
random process, one of the two non-scalar definitions must be used.

• In the Kruse-Meyer view, a fuzzy random variable is a fuzzy set of pos-
sible classical random variables. It represents an ill-observed random
variable. The fuzzy values of the random variable represent nested con-
fidence intervals on the actual outcome of each trial. The fuzzy variance
represents knowledge, in the form of induced nested confidence inter-
vals, about the true dispersion of the random variable under study, due
to the variability inside the sample space.

• In the third view, the fuzzy random variable is viewed as a fuzzy rela-
tion between the sample space and the range of the random variable,
encoding a family of conditional probabilities, each of which potentially
representing a random measurement process. Hence a family of proba-
bility measures on the range of the random variable is obtained, leading
to an interval representing all potential values of the actual variance.
This interval variance represents the set of all possible values for the
dispersion of a random variable and its associated ill-known random
measurement process, thus combining two sources of variability.
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