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Introduction

The notion of fuzzy set and its extensions have been understood in various ways in the

literature: there are several notions that are appealed to in connection with fuzzy sets

• Gradualness: the idea that many categories (in natural language) are a matter of

degree, including truth. Against the Boolean tradition

• Epistemic Uncertainty : the idea of representing partial or incomplete information

by sets. Possibility theory, modal logic, against the probabilistic tradition.

• Vagueness: the idea that the extension of natural language predicates lack clear

truth conditions. A nightmare for classical logic.

among others
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Introduction

Gradualness, Epistemic Uncertainty, Vagueness seem to interact closely with one another

within fuzzy set theory:

• A fuzzy set may account for epistemic uncertainty since it extends the notion of a

set.

• Epistemic uncertainty is gradual since belief is often a matter of degree.

• Sometimes, membership functions may account for an ill-known crisp boundary and

can be seen as modeling vagueness

• Higher order fuzzy sets try to capture ill-known membership functions of linguistic

categories, and this seems to refer again to vagueness

A source of confusion in the field.
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Aim of the talk

• recall basic issues so as to disentangle the notions of gradualness, and epistemic

uncertainty,

• recall the information-oriented view of vagueness that enables some form of

classification

• argue that the initial intuition behind fuzzy sets has little to do with some aspects of

vagueness studied in the literature

• propose a tentative explanation on some controversies about vagueness and the role

of fuzzy sets, based on the point of view of agents uttering non-Boolean statements

or receiving them.
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Conjunctive vs. disjunctive sets

A setS defined in extension, is often denoted by listing its elements, say, in the finite

case{s1, s2, . . . , sn}. What can such a notion represent ?

1. a collection of (sometimes physical) items that refer to some actualwell-known

complex object, formed byconjunctionof its elements.

2. an epistemic construction representing incomplete information about anill-known

object. In this case, a set is used as adisjunctionof its elements one of which is the

right one.

Examples:

1. Conjunctive: A set-valued attribute, a region in an image, a time-interval spanning

the course of a well-known activity.

2. Disjunctive : An event, a piece of incomplete information, an error or tolerance

interval representing an imprecise measurement.
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Conjunctive vs. Disjunctive fuzzy sets

A fuzzy setS is often denoted by its membership functionµF : S → L, a complete
lattice, the unit interval, a finite chain...

In the finite case{(s1, µF (s1)), (s2, µF (s1)), . . . , (sn, µF (s1))}.

• Conjunctive fuzzy sets: precise entities (real things). A region in a grey-levelled
image, a profile of ratings according to several criteria, the result of a fuzzy
clustering procedure, the meaning of a linguistic term.

• Disjunctive fuzzy sets: higher order entities representing epistemic states. The
membership function represents a possibility distributionπ = µF on setS of
possible worlds = a fuzzy set of mutually exclusive more or less possible values one
of which is the right one.

The wordTall refers to a conjunctive fuzzy setµTall of human sizes that can be qualified
as tall.

If all I know is thatJohn is tall, thenTall becomes a disjunctive fuzzy set describing
knowledge, and we useπ = µTall as a possibility distribution.
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Reasoning with disjunctive sets

Used to represent incomplete information, a disjunctive set is a higher-order

construction: this set is an epistemic entity , only the ill-known object referred to is real.

• An element inside a disjunctive setD is a possible candidate for being the real value

or state of the world, while elements outsideD are considered impossible.

• A disjunctive setD representing an epistemic state underlies epistemic modalities of

plausibility and certainty, which are special cases of modal possibility and necessity.

• an eventA is considered

– possible(plausible)if it is consistent withD (A ∩D 6= ∅), denoted|= 3A;

– certain (necessary)if its negationAc is inconsistent withD (hence it is entailed

by D : D ⊆ A), denoted|= 2A.

Supervaluation by Van Fraassen, as a mending of partial logic is like Boolean possibility

theory: super-true = certainly true (D is then a partial interpretation).
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Reasoning with disjunctive fuzzy sets

• Gradual notions of certainty and plausibility extend the modal notions to when the

epistemic state is a fuzzy set .

– The degree of possibility of an eventA is Π(A) = maxs∈A π(s),

– its degree of necessity isN(A) = mins 6∈A ν(π(s)) = ν(Π(Ac), whereν is the

order-reversing map onL.

This is possibility theory, a theory of epistemic uncertainty devoted to the handling

of incomplete information (initiated by Zadeh in 1978 to represent natural language

statements with fuzzy predicates),

• Variants of it were proposed, sometimes earlier

– by G.L.S Shackle (the theory of potential surprise, 1949 on)

– David Lewis (comparative possibility, 1973)

– Peter G̈ardenfors (epistemic entrenchment, mid-80’s) and A. Grove.

– and Spohn (ordinal conditional functions, 1988).
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Consequences of the distinction between conjunctive and disjunctive
fuzzy sets

Scalar distance between fuzzy sets :d : LS × LS → R+

• Scalar distances between fuzzy setsd(F,G) make sense for conjunctive fuzzy sets

(measure how similarF andG are).

• The scalar distanced(π1, π2) does not properly inform about the distance between

the two ill-known valuesx1 andx2 referred to byπ1, π2.

• This distanceδ(x1, x2) : S × S → R+ is itself ill-known : a disjunctive fuzzy set of

possible distances computed fromπ1, π2 via the extension principle.
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Truth-values, uncertainty, and ill-known sets

The confusion between gradualness and uncertainty pervading fuzzy set theory : a
variant of a confusion between truth values and belief degrees in logic.

• truth is in some sense objective (a representation convention); belief is a higher order
construct (subjective, epistemic).

• From the inception of many-valued logics, it has been a temptation to attach an
epistemic flavor to truth degrees.

– Lukasiewicz ’s 3d truth-value interpreted as “possible”

– Partial logic based on Kleene’s 3-valued logic, capturing ill-known models

– Belnap’s four-valued logic capturing inconsistency.

• A source of confusion : Elkan criticising the usual fuzzy connectivesmax,min, 1−,
as leading to an inconsistent approach.

• Claim We cannot consistently reason under incomplete or conflicting information
about propositions by augmenting the set of ”ontological” truth-valuestrueandfalse

with epistemic notions
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Degrees of truth and degrees of belief.

Presenting classical (propositional) logic PL as the logic of the true and the false neglects

the epistemic accounts of this logic

If a setB of well-formed Boolean formulae is understood as abelief (or knowledge)

base:

1. p is believed (or known), ifB impliesp;

2. its negation is believed (or known), ifB implies¬p;

3. neitherp nor¬p is believed, ifB implies neither¬p norp.

Belief refers to the notion of validity ofp in the face ofB and is a matter of

consequencehood, not truth-values. It is a ternary notion.

Belief (or knowledge if information is correct) corresponds to epistemic values, is

induced by information states.
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Belief/information states assubsets of possible truth-values

One can provide a semantic account of belief in PL by means ofdisjunctive subsets of

possible truth-valuesleft possible by a belief baseB.

• Full belief inp corresponds to the singleton{1} (only ’true” is left)

• full disbelief inp corresponds to the singleton{0}

• total ignorance aboutp for the agent corresponds to the set2 = {0, 1} (both0 and1
are possible)

The characteristic function of{0, 1} is viewed as a possibility distributionπ on
truth-values.

Confusing truth-values and epistemic states comes down to confusing elements and

subsets of a set.

NOTE: Subsets of truth-values may also be interpreted conjunctively:{0, 1} is
understood as thesimultaneousattachment of ”true” and ”false” top expressing a
contradiction (Dunn). This is another convention based on necessity degrees.
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Ill-known sets

Introducing uncertainty in crisp set theory : attaching to elementss ∈ S one of the three
non-empty subsets of2 : L = 22 \ {∅} (= intervals on2 )

An ill-known setdenotedÂ which is also an interval-valued set :

µÂ(s) = {1} if s belongs for sure to the set

{0} if s for sure does not belong to the set

{0, 1} if it is unknown whethers belongs or not to the set

• It encodes a pair of nested sets(A∗, A
∗), whereA∗ is the set of sure elements,A∗

the set of sure and unsure elements.A∗ \A∗ contains the elements with unknown
membership.

• Compositionality assumption: Extending the standard Boolean connectives to
such three-valued sets by means of interval computation yields Kleene three-valued
logic (encoding{0, 1} as1/2).

• Â∪ B̂ = (A∗ ∪B∗, A
∗ ∪B∗) ; Â∩ B̂ = (A∗ ∩B∗, A

∗ ∩B∗); Âc = ((A∗)c, (A∗)c).
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Ill-known sets

• Â is not an object in itself, it is a representation of the incomplete knowledge of an

agent about a setA of which all that is known is thatA∗ ⊂ A ⊂ A∗.

• The Kleene algebra structure does not address (but in a very approximate way) the

issue of reasoning about the ill-known setA.

• Exampleof Âc = ((A∗)c, (A∗)c), obtained by switching{0} and{1}.

– NoteÂ ∩ Âc = (A∗ ∩ (A∗)c, A∗ ∩ (A∗)c), whereA∗ ∩ (A∗)c = ∅ while

A∗ ∩ (A∗)c 6= ∅ are the uncertain elements : Boolean tautologies are lost!

– Despite the fact thatA is ill-known, A ∩Ac = ∅ sinceA is known to be Boolean

(no reason to lose tautologies: supervaluation approach again)

Conclusion: Information is lost by considering subsets of truth-values as truth-values

and acting compositionally. Uncertainty never goes along with compositionality.
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Traditional views of vagueness

Following Keefe & Smith, there are three features of vagueness in natural language

• The existence of borderline cases: violation of the law of excluded middle,

difficulty of making a decision as to the truth or the falsity of a vague sentence, even

if a precise description of the case is available.

• Unsharp boundaries: possibly a specialisation of the above (for predicates

referring to continuous scales). Against Boolean tradition.

• Susceptibility to Sorites paradoxes.Inappropriate for long inference chains.

But is vagueness

• a defect of natural language (it is not appropriate for devising formal proofs),

• or is it a quality (tolerance to error, flexibility in communication purpose)?

The main dispute seems to oppose those who claim a vague predicate to have unknown

standard extension, vs. those who deny the existence of a decision threshold.
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Zadeh insists that fuzziness is not vagueness

• Fuzziness: the transition between membership and non-membership is gradual

rather than abrupt(Zadeh, 1965).

• Zadeh (1978) argues in “PRUF: A meaning representation language for natural

languages, Int. J. of Man-Machine Studies, 10, 395-460”:

”Although the terms fuzzy and vague are frequently used interchangeably in the

literature, there is, in fact, a significant difference between them. Specifically, a

proposition,p, is fuzzy if it contains words which are labels of fuzzy sets; andp is

vague if it is both fuzzy and insufficiently specific for a particular purpose. For

example, ”Bob will be back in a few minutes” is fuzzy, while ”Bob will be back

sometime” is vague if it is insufficiently informative as a basis for a decision. Thus,

the vagueness of a proposition is a decision-dependent characteristic whereas its

fuzziness is not. ”

For Zadeh, fuzziness is gradualness, and vagueness is fuzziness + lack of specificity
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An information setting for non-dichotomous representations of sets

UNIFYING PRINCIPLE

• A clear-cut crisp concept induces a dichotomy of the universe of discourse

• A vague concept induces a trichotomy of the universe (borderline cases)

Notations

• A finite set of objects or entitiesO

• A finite setA of attributesa : O → Da each with domainDa

• A propertyP referring to attributea

• For a clear-cut property there is a non-empty subsetYP ⊂ Da, so that

Ext(P ) = {o ∈ O|a(o) ∈ YP }.
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Situations leading to trichotomic representations

If ¬P denotes the opposite property letExt(¬P ) = {o ∈ O|a(o) ∈ Na} for some

subsetNa of A. Then a property is classical if

• excluded-middle law:Ext(P ) ∪ Ext(¬P ) = O (EML)

• the non-contradiction law:Ext(P ) ∩ Ext(¬P ) = ∅ (NCL)

We consider non-classical properties where EML or NCL does not seem to apply.

1. Gradual properties

2. Tolerant properties based on similarity

3. Vagueness due to ignorance or truth-value gap

4. Multiagent or voting approach

5. Ill-known attribute values

6. Insufficient language
17



Gradual properties

PropertiesP like tall, young, etc., seem to define an implicit complete ordering on the

attribute domainDa:

• A gradual propertyP is defined by a pair(DP
a ,≥P ), whereDP

a ⊂ Da such that

– u = a(o) ∈ DP
a means thato is somewhatP .

– u = a(o) 6∈ DP
a means thatP is clearly false foro, and∀u, v 6∈ DP

a , u =P v

– ∀u ∈ DP
a , v 6∈ DP

a , u >P v

– ∀u, v,∈ u ∈ DP
a , u >P v whereu = a(o) andu′ = a(o′) means thato is more

P thano′.

– Moreover, for the opposite¬P , u ≥¬P v if and only if v ≥P u.

• Then the role of the membership functionµP of P is to provide a numerical

representation of this ordering. (the consistency profiles of Black as well)?
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Gradual properties

• What can be the extension ofP ?

– one may admit there is no Boolean extension but a gradual oneẼxt(P ) with

membership functionµP

– or one may defineExt(P ) = C(P ){o ∈ O, a(o) maximal according to≥P }
(the prototypes ofP )

– or one may useDP
a .

• It leads to a trichotomy of the set of objects:

the prototypes ofP (C(P ) as above),

the prototypes of¬P , i.e.,C(¬P ) = (DP
a )c

and the borderline cases (O \ (C(P ) ∪ C(¬P ))

• A precise boundary separating objects such thatP holds from those where¬P holds

does not existunder the gradual view. EML and CL do not hold.
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Some reasons for gradualness in natural language

• Some predicates refer to anunderlying continuous measurement scaleDa for the

attribute (tall : height; young: age). So there is no threshold on the real line

separating theP ’s from the nonP ’s (too precise to be cognitively relevant).

– A test for detecting this kind of predicates:very Pmakes sense.

– The use of the unit interval as a truth set is a just a way of rescaling the attribute

domainDa.

– Truth-functionality for such fuzzy predicates is mathematically consistent

(algebraic structures different from a Boolean algebra) even if not compulsory

• Some concepts underlie atypicality ordering within examples: Bird, Chair.

– A penguin is a less typical bird than a swallow.

– No clear membership function, just an ordering.
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Similarity and tolerance

• A propertyP is clear-cut, but one is able to measure how close or similar is one
element of the domainDa to another.

• So it is possible to applyP to objects with some tolerance : even whenP is false for
o, it makes sense to say thatP is not far from being true.

• Typically, whena(o) is close to the boundary ofP .

• One may model this situation as follows

– Supposed the distance function onDa, and define a similarity relation onDa as

S(u, v) = f(d(u, v))

with f(0) = 1, f decreasing andf(x) = 0 if x ≥ θ.

– The membership gradeµP (o) is computed as the degree of similarity betweeno

and those objects for whichP is true:

µP (o) = sup{S(a(o), a(o′)), a(o′) ∈ YP }.
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Similarity and tolerance

• max(µP (o), µ¬P (o)) = 1,∀o ∈ Bo(p) (EML holds, not really NCL)

• But one may defineBo(P ) = {o,min(µP (o), µ¬P (o)) > 0}

• This is an example of truth-value glut.

• C(P ) = {o, µP (o) = 1} \Bo(P ).

• This setting is a possible encoding of the idea of approximate truth by Weston (1987)

• There is no vagueness proper here, just the idea of gradual tolerance with respect to

truth (or graceful degradation thereof).
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Vagueness as ignorance or truth-value gaps

Vague propertiesP are such that the truth or falsity ofP can be claimed for some
objects, but not for all.

• Truth ofP is not viewed as gradual.

• The borderline elements are those for which the truth or falsity ofP is out of reach.
For instance,

– This truth-value does not exist (truth-value gaps: Kit Fine)

– Or it exists but is unknown (epistemic view : Williamson)

• Truth ofP can be asserted for an objecto

– Supervaluation : when it is true for all ways of makingP sharp (super-truth for
Fine)

– Epistemic view : when it is known thatP is true (Clearly true for Williamson)

In both approaches, the truth ofP is established in the same conditions : the only
difference is whether the “true” sharpening ofP exists or not : the extension ofP is
either an ill-known set or a partially defined one
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Vagueness as ignorance and truth-value gaps

• These views of vagueness also partition the set of objects into 3 subsets:

C(P ), C(¬P ), Bo(P );

– C(P )= objects for whichP is definitely true;C(¬P )= objects for whichP is

definitely false;

– Bo(P ) = borderlines cases.

• ThenP is clearly true or supertrue foro if ∀S : C(P ) ⊆ S ⊆ C(P )∪Bo(P ), o ∈ S.

• The merit of these approaches is to preserve the laws of classical logic : it holds for

each sharpening ofP ; it holds for the “real” extension ofP
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Truth-value gap: The voting paradigm

• Different crisp representations ofP provided by a set ofn agents.

• each agenti perceivesP as a classical property defining a partition(Y i
P , N i

P ) of Da.

• Then the trichotomyC(P ), C(¬P ), Bo(P ) is retrieved letting

– C(P ) = {o ∈ O, a(o) ∈ ∩i=1,...,nY i
P }

– C(¬P ) = {o ∈ O, a(o) ∈ ∩i=1,...,nN i
P }

• “o is P” is super-true (false) if true (false) for all agents. Otherwise the truth-value is

not defined.

• One may define the membership functionµP (u) = |{i,u∈Y i
P }|

n . But it will not be

truth-functional.

• Dually, one may ask for each agenti and each objecto if “ o is P” or not and

computeProb(P |u).

• ThenµP (u) = Prob(P |u) if each agenti declares “o is P” wheneveru ∈ Y i
P .
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Unknown threshold : limited perception

• One reason for vagueness maybe the difficulty to perceive the difference between

close values inDa : if d(u, v) ≤ ε thenu is perceived as being the same value asv

(Parikh).

• If the real extension ofP is Ext(P ), two objectso ando′ such that

o ∈ Ext(P ), o′ ∈ Ext(P ′) will be borderline forP wheneverd(a(o), a(o′)) ≤ ε.

• the boundary of the extension ofP exists but it will be perceived as thick (of width

2ε).

• it corresponds to the epistemic view
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Unknown extension : ill-known attribute values

• Suppose a clear-cut propertyP defining a partition on the corresponding attribute

domainDa : (YP , NP )

• The attribute valuesa(o) are ill-known:a(o) ∈ E(o) ⊂ Da.

• Then the set of objects such that “o is P” is ill-known :

– “o is P” is certainly true ifE(o) ⊂ YP

– “o is P” is certainly false ifE(o) ⊂ NP

– The truth of “o is P” is unknown otherwise.

In this case one may say that the reason for vagueness is that the objects to which

predicates are applied are themselves ill-known.
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Unknown extension: insufficient language

• Suppose a subset of objects given in extensionS = {o1, . . . , on} corresponding to a

conceptP : “o is P” if and only if o ∈ S.

• Suppose a setA = {a1, . . . , ak} of attributes. It defines a partition ofO into subsets

O1, . . . , ON induced by the equivalence relationoRo′ if and only if

aj(o) = aj(o′)∀j = 1, . . . k.

• The setS defining propertyP cannot be precisely described by means of the

attributes inA supposedly known for all objects ( aPawlak rough set)

– The setP∗ = ∪Oi⊆SOi is the set of objects that are certainlyP ;

– The setP ∗ = ∪Oi∩S 6=∅Oi ⊇ P∗ is the set of objects that are possiblyP .

– Bo(P ) = P ∗ \ P∗

• The setS remains out of reach, so that the truth ofP for a given object remains

unknown, due the lack of expressivity of the language in whichP is expressed. Only

P∗, P
∗ can be precisely expressed.
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Connectives

• Connectives can be truth-functional under the gradual semantics, extending

truth-tables to the unit interval, up to a loss of properties of the Boolean algebra.

• Connectives are not truth-functional under the epistemic and truth-value gap

semantics, but the Boolean nature of extensions (or precisiations) is retained. This is

not surprising because truth-functionality is lost under partial ignorance.

• Connectives are not truth-functional for rough sets (except for union), ill-known sets

and the like.

• Connectives are not truth-functional under the similarity semantics of gradual

properties (except for union).
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Is there a threshold underlying a fuzzy concept?

How to reconcile the epistemic and the gradual views on fuzzy concepts ? we suggest

that it all depends on the situation in which a vague statement is used.

Two different situations:

• Asserting a gradual statement: an agent declares “Jon is tall”. This claim is

unambiguous so (s)he must use an implicit threshold.

• Receiving a gradual statement: an agent receives a piece of information of the

form “Jon is tall”. There is no need for any threshold when interpreted this

statement as being gradual.
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Asserting a gradual statement

• Asserting a statement “P =o is F” is a Boolean event (the agent asserts it or not)

whether the statement is vague, gradual, or not.

• If F is a fuzzy set (gradual statement) then there must be a thresholdα in [0, 1] such

that statement “P =o is F” was asserted becauseµF (a(o)) ≥ α.

• This threshold according to whichF is a fuzzy label appropriate for objecto may

not be stable across several such asserted statements .

• In any case this threshold (that makesP temporarily crisp) is ill-known (epistemic

view).

In practice, when asserting a gradual statement gradualness can be dispensed with, and

membership degrees may then just reflect the probability that a label is appropriate to an

object (like in the voting paradigm).
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Assertional approaches to vagueness

Several approaches refer to assertional vagueness

• The likelihood view of membership functions (Hisdal, Scozzafava and Coletti) :

µF (o) = Prob( Assertingo is F |o).

• The voting paradigm (conflict between individual crisp representations on the

attribute domain)

• The betting approach of Giles, the game-theoretic view of Fermueller: membership

degrees = money involved in commitment to assert vague propositions.

• Jon Lawry ’s label semantics : collecting from a group of individuals the sets of

labels that are appropriate to be attached to objects.
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Receiving a gradual statement

• The receiver, upon hearing “P =o is F”, knows thatF is gradual.

• Its acceptance does not require any decision pertaining to an underlying threshold

separatingF andnon− F

• The only decision made is one of accepting the statement as true (its reliability is

high enough, above a reliability threshold.

• The receiver assumes that his/her membership function ofF is close enough to the

one of the emitter (= mutual understanding of the context and vocabulary).

• The membership functionµF is viewed as a possibility distribution overDa, hence

over possible objects:π(o) = µF (a(o)).

• It expands or revises the prior epistemic state of the receiver.

• The issue of representing gradual information with a receiver’s point of view is the

purpose of Zadeh ’s possibility theory.
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Bivalence vs. gradualness

• There seems to be a strong tradition for Bivalence in logic that would need an

investigation of its own

• The existence of a decision threshold in the epistemic view is a realistic point of

view a la Plato ???.

• The status of truth in philosophy is so prominent that it is taken as an objective

notion whose perfection cannot go along shades of truth.

• Yet, bivalence of propositions can be viewed as a convention (thanks, De Finetti),

not at all a matter of actual fact. Hence, truth-valuesTrue, Falseare also a matter of

convention.

• Gradual truth is another convention more in agreement with the use of some terms in

natural language.
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The epistemic view on gradual predicates

Is there a contradiction between gradualness and the epistemic view of vagueness ? NO.

• Even if a gradual predicate should rather be modelled by a fuzzy set than a crisp set,
it is not clear at all that this membership function is well-known.

• A “ gradual epistemic viewof vagueness could postulate that the membership
function of a gradual, but one is partially ignorant about it.

• As it looks much more difficult to define membership functions of gradual precisely
than crisp extensions of clearly bivalent ones, it is natural that most gradual concepts
sound more vague than crisp ones.

• The vagueness of a fuzzy concept can be modelled via intervals of truth-values, or
even fuzzy sets thereof.

• Likewise, the super-valuationism of Kit fine could be accommodated in a gradual
setting: a vague statement is super-α-true if it is at leastα-true in all of its gradual
precisiations (precise membership functions).

Vagueness is uncertainty about meaning of categories that maybe gradual. 35



The case of Interval-valued fuzzy sets

An interval-valued fuzzy setF is defined by an interval-valued membership function:

F (u) = [F∗(u), F ∗(u)],∀u ∈ U .

• Under the epistemic view: there exists a real membership functionf ∈ F .

• Supervaluationism : allf ∈ F are to be used as none is the true one.

The union, intersection and complementation of IVF’s is obtained by canonically

extending fuzzy set-theoretic operations to interval-valued operands in the sense of

interval arithmetics.

F ∩G(u) = [min(F∗(u), G∗(u)),min(F ∗(u), G∗(u))];

F ∪G(u) = [max(F∗(u), G∗(u)),max(F ∗(u), G∗(u))];

F c(u) = [1− F ∗(u), 1− F∗(u)].

An IVF is also a special case of type 2 fuzzy set (also introduced by Zadeh).
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Paradoxes of Interval-valued fuzzy sets

Paradoxes of IVFs are less blatant than those of ill-known sets because the lack of

excluded-middle law for Boolean concepts is a striking anomalous feature.

But interval-valued fuzzy sets have a weaker structure than the fuzzy set algebra they

extend

For instance, the weak form of the contradiction law (min(F (u), F c(u)) ≤ 0.5) does not

hold for IVFs

• F (u) = [0, 1] impliesmin(F (u), 1− F (u)) = [0, 1] (loss of information).

• if t(p) = F (u) = [a, b], the truth-functional calculus yields

t(p ∧ ¬p) = min(F (u), 1− F (u)) = [min(a, 1− b),min(b, 1− a)], sometimes not

included in[0, 1
2 ].

Like the Kleene calculus applied to ill-known set, the paradox of IVF theory is that it

consider sets of truth-values as (new) truth-values. Same flaw with type 2 fuzzy sets

calculi.
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Reasoning with ill-known truth-values

The interval-valued membership functionF is generally not theknownmembership

function of an IVF. It representswhat we know aboutan ill-knownstandardmembership

functionµ ∈ F .

• The generic reasoning problem in interval-valued fuzzy logic viewed as a problem

of uncertainty management is of the following form:

Given a set of weighted many-valued propositional formulas

{(pi, [ai, bi]), i = 1, . . . , n}, find the most narrow interval[a, b] such that(p, [a, b])
can be deduced. It corresponds to the following optimization problem: maximize

(resp. minimize)t(p) under the constraintst(pi) ∈ [ai, bi], i = 1, . . . , n.

• For instance computing the truth-value range of a fuzzy logic formulaΦ given the

range of truth-values of its atomic constituents is a matter of constrained

optimisation, not of applying IVF’s truth tables.
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Reasoning with ill-known truth-values

Example : finding the interval range of the membership functionF ∩ F c whenF is an

IVF representing an ill-known membership functionµ comes down to solving for each

element of the universe of discourse the following problem:

maximize (resp. minimize)f(x) = min(x, 1− x)

under the constraintx ∈ [a, b].

Since the functionf is not monotonic, the solution is obviously not (always) the interval

[min(a, 1− b),min(b, 1− a)] suggested by IVF connectives, it is as follows:

f(x) ∈ [a, b] if b ≤ 0.5;

f(x) ∈ [min(a, 1− b), 0.5] if a ≤ 0.5 ≤ b;

f(x) ∈ [1− b, 1− a] if a ≥ 0.5.
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IVF’s: interval-truth values vs. ill-known truth-values

There are two ways of interpreting interval membership grades:

• Truth values ARE intervals:t(p) = F (u). Then, apply the truth-functional calculus

of IV-fuzzy set theory. (see triangle algebras , by Van Gasse, Kerre....). IVFs are

then a special case of L-fuzzy sets in the sense of Goguen.

• Truth -values BELONG to [0, 1] but they areconstrainedby intervals (because

ill-known): t(p) ∈ F (u).

Claim Fuzzy sets equipped with fixed connectives have a given well-defined structure.

This structure should be valid whether the membership grades are known or not.

So the operations and algebra of IVF’s (L-fuzzy sets withL = {[a, b], 0 ≤ a ≤ b ≤ 1})
CANNOT faithfully account for the handling of ill-known membership functions.

They only calculate a conservative approximation of the range of uncertainty of truth

values
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Conclusion

• Fuzziness refers to gradual truth, not to vagueness regarded as uncertainty about

meaning.

• Crisp sets whose boundaries are ill -known may account for some form of

vagueness.

• Gradual predicates do not underlie an ill-known crisp sets (hence are not Boolean

and may fail to satisfy EML NCL)

• Membership functions summarizing uncertainty about an ill-known threshold are

not systematically compositional.

• Perspectives for vagueness

– The study of vagueness might benefit from being cast in context : asserting vs.

receiving vague information.

– Neither the epistemic view of vagueness nor supervaluationism look

incompatible with the idea of gradual predicates : they can be combined.
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