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Introduction

• The idea of applying fuzzy sets in decision sciences comes from the seminal paper

of Bellman and Zadeh ”Decision-Making in a Fuzzy Environment” in Management

Sciences, 1970.

• That pioneering paper makes two main points:

1. Objective functions of criteria and constraints can be viewed as Membership

functions that can be aggregated by fuzzy set conjunctions, especially the

minimum

2. Multiple-stage decision-making problems can then been stated and solved by

means of dynamic programming.

• So according to this view fuzzy optimization comes down to max-min bottleneck

optimization

• Taken over by Zimmermann who developed multicriteria linear optimisation in the

seventies.
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Two optimisation paradigms

• Egalitarist : Maximizingmini µi(x)

– a feasible solution is one that satisfies all constraintsµi(x) ∈ {0, 1}

– Making the crisp environment fuzzyµi(x) ∈ [0, 1]

– µi defines a soft constraint.

– Belmann and Zadeh assume constraints are soft (see literature on constraint

satisfaction).

• Utilitarist: Maximizing
∑

i µi(x)

– Making fuzzy environment crispµi(x) ∈ {0, 1} :

– µi defines an ideal goal, an objective, a wish

– an optimal solution is one that satisfies as many objectives as possible.

• The choice of one or the other depends on the application;

• Hybrid cases: optimizing objectives under soft constraints.
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Beyond Bellman and Zadeh

• Other ingredients relevant to fuzzy decision-making have been proposed

1. Fuzzy preference relations (orderings, Zadeh, 1971) studied further by Orlowski,

Roubens, Fodor, De Baets, Susanna Diaz and others

2. Aggregation operations so as to refine the multicriteria technique of Zadeh :

t-norms symmetric sums, uninorms, leximin, Sugeno and Choquet integrals etc

3. Fuzzy interval computations so as to cope with uncertainty in numerical

aggregation schemes.

4. Fuzzy interval comparison techniques for selecting the best option in a set of

alternatives with fuzzy interval ratings

5. Linguistic variables, so as to get decision methods closer to the user cognition.

This talk takes a skeptical viewpoint on the fuzzy decision literature, so as to help

laying bare what is its actual contribution.
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What is a fuzzy environment ?

It is not clear that fuzzy sets have led to a new decision paradigm.

• Bottleneck optimisation and maximin decisions existed independently of fuzzy sets.

• In many cases, fuzzy sets have been added to existing techniques (fuzzy AHP

methods, fuzzy weighted averages, fuzzy extensions of Electre-style MCDM

methods)

• Fuzzy preference modelling is an extension of standard preference modelling and

must be compared to probabilistic preference modeling.

• Traditional decision settings can accommodate possibility theory instead of

probability theory (Savage act-based approach, for instance)

One cannot oppose ”fuzzy environment” to ”uncertain environment”: the former means

”using fuzzy sets”, while the latter refers to an actual decision situation.

4



What is the contribution of fuzzy sets to decision analysis?

In fact, it is not always the case that adding fuzzy sets to an existing method improves it

in a significant way. To make a real contribution one must show that the new technique

• addresses in a correct way an issue not previously handled by previous methods: e.g.

criterion dependence using Choquet integral

• proposes a new setting for expressing decision problems more in line with the

information provided by users: using qualitative scales instead of numerical ones,

CP-nets, possibilistic logic...

• possesses a convincing rationale and a sound formal setting liable to some

axiomatization (why such an aggregation method? ).

Unfortunately, many submitted or even published papers seem to contain no such

contribution.
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what next?

Examine the state of the art on some specific topics:

• Scales used for membership grades

• Linguistic variables and fuzzy intervals in decision analysis

• Ranking fuzzy numbers and preference relations

• Aggregation operations : going qualitative.
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Membership functions

• A membership function is an abstract notion, a mathematical tool. As such adding
membership functions to a decision problem does not enrich its significance.

• One must always declare what a given membership function stands for:

– A measure ofsimilarity to prototypes of a linguistic concept (this is related to
distance)

– A possibility distributionrepresenting our incomplete knowledge of a parameter,
state of nature, etc. that we cannot control

– A numerical encoding of apreferencerelation over feasible options, similar to a
utility or an objective function?

• Then the originality of the fuzzy approach may lie

– either in its capacity to translate linguistic terms into quantitative ones in a
flexible way

– or to explicitly account for the lack of information

– or in its set-theoretic view of numerical functions.
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Scales

The totally ordered set of truth-valuesL is also an abstract construct. Assumptions must

be laid bare if it is used as a value scale

• What is the meaning of the end-points ? has the mid point any meaning ?

– (0 = BAD, 1 = NEUTRAL): negative unipolar scale. For instance, a possibility

distribution, a measure of loss.

– (0 = NEUTRAL, 1 = GOOD):positive unipolar. For instance degrees of

necessity, a measure of gain.

– (0 = BAD, 1/2 = NEUTRAL,1 = GOOD):bipolar scale. For instance a degree

of probability.

This information captures what is good or bad in the absolute. A simple preference

relation cannot.

The choice of landmark points may have strong impact on the proper choice of

aggregation operations (t-norms, co-norms, uninorms...)
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Scales

• What is the expressive power of a scaleL ?

– Ordinal scales : only the ordering onL matters.

– Interval scales : a numerical scale defined up to a positive affine transformation
(aλ+ b, a > 0).

– Ratio scales : a numerical scale defined up to a positive linear transformationaλ

– (Finite) qualitative scales:L = {λ1 < λ2 < · · · < λn}

• Also influences the choice of aggregation operations :

– Ordinal invariance :a ∗ b > c ∗ d iff ϕ(a) ∗ϕ(b) > ϕ(c) ∗ϕ(d) for all monotonic
increasing transformationϕ of an ordinal scaleL (addition forbidden).

– Asking people to tick a value on a line segment does not yield a genuine number
(ordinal scale)

– Interval scales cannot express the idea of good and bad (neither bipolar nor even
unipolar)

– Small qualitative scales are cognitively easier to grasp and can be consensual.
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Evaluations by pairs of values

• Some authors like to extend number-crunching evaluation techniques using pairs of
values(µ, ν) ∈ [0, 1]2 with µ+ ν ≤ 1, following Atanassov. This representation
technique is ambiguous:

1. Uncertainty semantics: Either it expresses less information than point values: an
ill-known valueλ ∈ [µ, 1− ν]. Then it is better to use an uncertainty interval.

2. Argumentation semantics : Or it expresses more information than point values :
µ is the strength in favour of a decision,ν in disfavour of this decision.

• The standard injection[0, 1] → [0, 1]2 is not the same :λ 7→ (λ, 1− λ) is the first
case,λ 7→ (λ, 0) for a positive unipolar scale in the second case.

• It also affects the way information will be combined:

1. In the first case, you need to apply interval analysis methods to see the impact of
uncertainty on the global evaluation.

2. In the second case, you may separately aggregate positive and negative
information by appropriate (possibly distinct) methods.
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Linguistic vs. Numerical Scales

• A qualitative scale can represent an ordered set of linguistic value labels understood

as fuzzy intervals of[0, 1].

• There is a natural temptation to model this information by means of a fuzzy partition

on the unit interval. However:

1. If an aggregation operation is not meaningful on the underlying numerical scale,

the use of a linguistic variable does not make the extended operation more

meaningful.

2. It makes little sense to build a fuzzy partition on an abstract numerical interval

which is at best an ordinal scale. It is OK if the underlying scale is a concrete

measurable attribute.

3. Some fuzzy linguistic approaches are as quantitative as a standard

number-crunching method (e.g. the 2-tuple method that handles pairs(i, σ)
wherei denotes a label andσ ∈ [−0.5, 0.5) and it encodes the number

i+ σ ∈ [0, n].)
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Linguistic vs. Numerical Scales

• Building qualitative operations on a linguistic scale from fuzzy arithmetics +

linguistic approximation leads to a loss of algebraic properties (e.g. associativity) of

the resulting operation on the corresponding qualitative scale.

• Using discrete t-norms other than min on finite scales comes down to using

Lukasiewicz discrete t-norm, that is a truncated sum. It underlies assumptions on the

meaning of qualitative scaleL = {λ0, λ1, . . . , λn},

1. L is mapped to the integers:λ0 = 0, λ1 = 1 . . . λn.

2. λi is i times as strong asλ1

3. There is a saturation effect that leads to ties when aggregating objective functions

in this setting.

• So it is not really qualitative....
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Fuzzy Intervals in Decision Analysis

• Fuzzy intervals have been widely used in fuzzy decision analysis so as to account for

the fact that many evaluations are imprecise.

• In many cases, it comes down to applying the extension principle to existing

evaluation tools

– Fuzzy weighted averages using fuzzy interval weights

– Fuzzy extensions of Saaty’s Analytical hierarchical technique.

– Fuzzy extensions of numerical or relational MCDM techniques ( like TOPSIS,

PROMETHEE, ELECTRE,...)

• Many of these techniques are ad hoc, partially erroneous, and lack originality.

• Unjustified use of defuzzification (if the result is precise why run a sensitivity

analysis??)
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Fuzzy weighted averages

• The computation of fuzzy weighted averages cannot be done by means of fuzzy

arithmetics: it needs to solve (simple) linear programs and apply interval analysis.

• The problem is already present with imprecise (interval weights)

– Find sup{
∑n

i=1 xi·wi∑n
i=1 wi

: wi ∈ [ai, bi], xi ∈ [ci, di]} (alsoinf)

– Find

sup{
∑n

i=1 xi · pi : pi ∈ [ ai

ai+
∑

j 6=i bj
, bi

bi+
∑

j 6=i aj
], xi ∈ [ci, di],

∑n
i=1 pi = 1}

(alsoinf)

– The two expressions differ. Fast methods exist.

– Extensions to Choquet integrals with fuzzy-valued set-functions more difficult as

the issue of ranking intervals[c,di] must be addressed.
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Fuzzy weight vectors

One issue is: what is a normalized vector of interval weights

([a1, b1], [a2, b2] . . . , [an, bn])?

• It is a (fuzzy) set of possible normalized weight vectors, not a fuzzy or interval

substitute to a normalised set of weights.

• Specific conditions must be satisfied if all bounds are to be reachable by weight

vectors(p1, p2 . . . , pn) such that
∑n

i=1 pi = 1.

• Namely see the theory of probability intervals (De Campos and Moral)

1.
∑n

i=1 ai ≤ 1 ≤
∑n

i=1 bi

2. ai +
∑

j 6=i bj ≥ 1; bi +
∑

j 6=i aj ≤ 1.

• Computing FWA has more to do with constraint propagation than arithmetics with

fuzzy numbers.
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Fuzzy AHP

• There are many papers on fuzzy extensions of this technique.

• Again, most proposals are ad hoc and erroneous.

• Principle of AHP: compute a normalized weight vector from pairwise comparison

data

1. Given a set ofn items, provide for each pair(i, j) a valuevij ∈ {2, . . . 9} if i is

preferred toj, vij = 1 if there is indifference.

2. Build the matrixA with coefficientsaij = vij if vij ≥ 1; aij = 1/aij .

3. Find the largest eigenvalueλ of A.

4. If λ close enough ton, the derived weights form the eigenvector ofA

• Even if widely used, this method has been criticised by MCDM scholars as being ill

founded at the measurement level (Bouyssou et al., 2000).
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Fuzzy AHP

• The AHP method relies on the following ideal situation

1. Ann× n consistent preference matrixA is reciprocal in the sense that

aij = 1/aji and product-transitive (aij = aik · akj).

2. Then its eigen-value isn and there exists a normal weight vector

(p1, p2 . . . , pn)with aij = pi

pj

3. But in practice, pairwise comparison data do not provide consistent matrices and

are arguably imprecise.

• So many researchers (since Van Laaroven and Pedrycz, 1983) have considered fuzzy

valued pairwise comparison data, using fuzzy-valued matricesÃ with fuzzy

intervalsãij = ṽij if ṽij ≥ 1; ãij = 1/ãij .
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Fuzzy AHP

• However, it is hard to extend the computation scheme of Saaty with fuzzy intervals

1. How to properly write the reciprocal and transitivity conditions ?(e.g.

ãij = 1/ãji is not the same as̃aij · ãji = 1).

2. The transitivity property cannot hold in the form̃aij = ãik · ãkj for fuzzy

intervals.

3. Fuzzy eigen-values or vectors of fuzzy-valued matrices are hard to define in a

rigorous way (the usual definitions make no sense and are overconstrained)

• The bottom-line issue is that the natural extension of a crisp equationax = b is not a

fuzzy equation of the form̃ax̃ = b̃.

– The first equation refers to a constraint to be satisfied in reality

– Fuzzy intervals̃a, x̃, b̃ represent knowledge abouta, x, b

– Even ifax = b it is not clear why the knowledge aboutax should be equated to

the knowledge aboutb : only consistency is requested (ãx̃ ∩ b̃ 6= ∅).
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Fuzzy AHP : A constraint-based view

• Fuzzy pairwise preference data should be used as flexible constraints on non-fuzzy

coefficients, that define a fuzzy set of fully consistent preference matrices.

– The fuzzy matrixÃ has entries̃aij = ṽij or 1/ṽji andãii = 1.

– A given normal weight vector~p = (p1, p2 . . . , pn) satisfies the fuzzy preference

matrix Ã to degree

µ(~p) = min
i,j

µij(
pi

pj
) = min

i preferred toj
µṽji

(
pi

pj
)

whereµij is the membership function of̃aij .

– The degree of consistency of the preference data isCons(Ã) = supµ(~p)

– The best induced weight vectors are the Pareto maximal elements among

{~p, µ(~p) = Cons(Ã)}.
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Ranking fuzzy intervals

• There is a huge literature on the issue of ranking fuzzy intervals.

• Again the use of ad hoc methods is very common.

• There is a lack of first principles for devising well-founded techniques. However

1. Wang and Kerre ’s classification (2001) based on axioms like

– A ∼ A,

– If A ∩B = ∅ thenA > B orB > A.

– A > B impliesA+ C > B + C

2. Dubois Kerre et al. (2000) classification into

(a) scalar indices (based on defuzzification)

(b) goal-based indices : computing the degree of attainment of a fuzzy goal by

each fuzzy interval

(c) relational indices : computing to what extent a fuzzy interval dominates

another.
20



Ranking fuzzy intervals

• Another approach is to exploit links between fuzzy intervals and other settings:

possibility, probability theories, interval orders.

• There are methods forcomparing intervals

1. Interval orders: [a, b] >IO [c, d] iff a > d (Fishburn)

2. Interval extension of the usual ordering: [a, b] ≥C [c, d] iff a ≥ c andb ≥ d

3. Subjective(pessimistic/ optimistic Hurwicz) :[a, b] ≥λ [c, d] iff

λa+ (1− λ)b ≥ λc+ (1− λ)d.

• There are methods for comparingrandom variables

1. 1st Order Stochastic Dominance: x ≥ y iff ∀θ, P (x ≥ θ) ≥ P (y ≥ θ)

2. Comparing expected utilitesof x andy (= comparing expectations).

3. Stochastic preference relations: DefineR(x, y) = P (x ≥ y) and exploit it (e.g.

x > y iff R(x, y) > α > 0.5).
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Preference relations

• There is an important stream of works that extend preference modelling

(decomposition of an outranking relation into strict preference, indifference and

incomparability) to the gradual situation.

• What the fuzzy relational setting presupposes:

– It makes sense to compareR(x, y) toR(z, w) (e.g.x is more preferred toy in

the same way asz is more preferred tow).

– The degreeR(x, y) must capture a clear intuition : intensity of gradual

preference ? probability of crisp preference, possibility of crisp preference.

• The modelled situation enforces some basic properties of the preference scale

(bipolar or not)

– Probability of preference:R(x, y) +R(y, x) = 1 expresses completeness, and

no room for incomparability.

– Possibility of preference :max(R(x, y), R(y, x)) = 1 expresses completeness.
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Ranking fuzzy intervals

• The choice of a method can be dictated by the point of view on what is a fuzzy

interval :

Fuzzy intervals can be viewed as

1. Intervals bounded by gradual numbers

2. Ordinal possibility distributions

3. One point-coverage functions of nested random intervals

4. Families of probability functions

• According to the point of view methods for comparing intervals and probabilities

should be extended, possibly conjointly and thus define well-founded ranking

techniques for fuzzy intervals.
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Ranking fuzzy intervals as intervals of gradual numbers

• A gradual number̃r is a mapping from the positive unit interval to the reals :

α ∈ (0, 1] 7→ rα ∈ R

• For instance : the mid-point of a fuzzy intervalA with cuts[aα, bα] :

α 7→ rα = bα−aα

2 .

• Ranking gradual numbers :̃r ≥ s̃ iff ∀α, rα ≥ sα.

• A fuzzy interval is an interval of gradual numbers (picking one elements in each cut)

bounded byaα andbα.

• Retrieving ranking methods:

1. Interval extensionof > : A ≥C B iff inf Aα ≥ inf Bα andsupAα ≥ supBα.

2. Subjective approach(A. Gonzalez etc.):A ≥λ B iff

λ inf Aα + (1− λ) supAα ≥ λ inf Bα + (1− λ) supBα.

3. Comparing expectations(Fortemps and Roubens, ...)A ≥λ B iff∫ 1

0
(λ inf Aα + (1− λ) supAα)dα ≥

∫ 1

0
(λ inf Bα + (1− λ) supBα)dα.
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Ranking fuzzy intervals as ordinal possibility distributions

• Idea : Ill-known quantitiesx andy with ordinal possibility distributionsπx = µA

andπy = µB

• Probabilistic indices are turned into possibility indices.

1. Interval canonical extension of stochastic dominance :A ≥C B iff

∀θ,Π(x ≥ θ) ≥ Π(y ≥ θ) andN(x ≥ θ) ≥ N(y ≥ θ).

It comes down toA ≥C B iff m̃ax(A,B) = A (or m̃in(A,B) = B)

2. Compute the possibility and the necessity of reaching a fuzzy goalG using

possibility and necessity of fuzzy events.

3. Compute valued preference relations:

R(x, y) = N(x ≥ y) = 1− supv>u min(πx(u), πy(v)).

It extends interval orderings sinceN(x ≥ y) = 1− inf{α : Aα >IO Bα}.
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Ranking fuzzy intervals as numerical possibility distributions

• A fuzzy intervalA is viewed as the nested random set

([0, 1], Lebesgue measurè) → R : α 7→ Aα. Thenπx(u) = `({α, u ∈ Aα}) where

Aα = [aα, bβ ].

• More generally intervals limited by two random variablesẋ ≤ ẍ with disjoint

support. Thenπx(u) = Prob(ẋ ≤ u ≤ ẍ), where[ẋ, ẍ] = [aα, bβ ].

• You can probabilize interval ranking methods (Chanas)

1. Random interval order:RIO(A,B) = Prob([ẋ, ẍ] ≥IO [ẏ, ÿ])

2. Canonical interval extension of> : RC(A,B) = Prob(ẋ ≥ ẏ andẍ ≥ ÿ)

3. Subjective approach:Rλ(A,B) = Prob(λẋ+ (1− λ)ẍ ≥ λẏ + (1− λ)ÿ)
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Ranking fuzzy intervals as families of probability measures

• A fuzzy intervalA is viewed as the set of probabilities

PA = {P : ∀S, P (S) ≤ Πx(S)}

• A possibility (resp. necessity) measure is a coherent upper (resp. lower) probability

in the sense of Walley.

• Now one can extend probabilistic methods:

1. 1st Order Stochastic Dominance :x ≥ y iff ∀θ,Π(x ≥ θ) ≥ Π(y ≥ θ) and

N(x ≥ θ) ≥ N(y ≥ θ) again...

2. Comparing upper and lower expected utilites ofx andy (e.g. comparing mean

intervals[
∫ 1

0
inf Aαdα,

∫ 1

0
supAαdα]).

3. Construct interval- valued preference relations :

R∗(x, y) = P ∗(x ≥ y),

R∗(x, y) = P∗(x ≥ y).
and exploit them.
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Aggregation operations: qualitative or quantitative

When using a given value scale, its nature dictates what is or not a legitimate aggregation

operation. We are faced with a modeling dilemma

• Using quantitative scales,

– we can account for very refined aggregation attitudes, especially trade-off,

compensation and dependence between criteria

– supply a very fine-grained ranking.

– learn the aggregation operator from data.

– but numerical preference data are not typically what humans provide
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Aggregation operations: qualitative or quantitative

When using a given value scale, its nature dictates what is or not a legitimate aggregation

operation. We are faced with a modeling dilemma

• Using qualitative approaches (ordinal or qualitative scales)

– We are closer to what human can supply

– We can model preference dependence structures (CP-nets)

– But we areless expressivein terms of aggregation operations (from impossibility

theorems in ordinal case, to onlymin andmax in the qualitative case).

– In the case of finite value scales :strong lack of discrimination.

– what aboutbipolar information(pros and cons) ?

• In fact people make little sense of refined absolute value scales (not more 7 levels).

But if we build a preference relation on a setV of alternatives by pairwise

comparison, one may get chainsv1 < v2 < · · · < vm with m > 7.
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WHAT DOES QUALITATIVE MEAN ?

A qualitative aggregation operation only involves operations min and max on a

qualitative scaleL

• Negligibility Effect: steps in the evaluation scale are far away from each other.

– a focus on the most likely states of nature, on the most important criteria.

– It implies a lack of compensation between attributes.

– max(5, 1, 1, 1, 1) > max(4, 4, 4, 4, 4): many4’s cannot compensate for a5.

• Drowning effect: There is no comparison of the number of equally satisfied

attributes.

– max(5, 1, 1, 1, 1) = max(5, 5, 5, 5, 5), because of no counting.

The main idea to improve the efficiency of qualitative criteria is to preserve the
negligibility effect, but allow for counting.
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Refinements of qualitative aggregation operations

• On qualitative scales the basic aggregation operations aremin andmax.

• But comparing vectors of evaluations bymin or max aggregation operations does

not permit to satisfy a natural property: Pareto-Dominance

– Let ~u = (u1, u2, . . . , un), ~v = (v1, v2, . . . , vn) ∈ Ln

– ~u >P ~v iff ∀i = 1, . . . n, ui ≥ vi and∃j, uj > vj

– Pareto-dominance of aggregationf : Ln → L: ~u >P ~v impliesf(~u) > f(~v).

– One may havemini=1,...,n ui = mini=1,...,n vi while ~u >P ~v.

• In fact, there is no strictly increasing functionf : Ln → L.....
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Refinements of qualitative aggregation operations

• Two known methods to recover Pareto-dominance by refining the min-ordering:

– Discrimin: ~u >dmin ~v iff mini:ui 6=vi ui = mini:ui 6=vi vi

delete components that bear equal values in~u and~v

– Leximin : Rank~u and~v in increasing order :
~uσ = (uσ(1) ≤ uσ(2) ≤ . . . , uσ(n)); ~vτ = (vτ(1) ≤ vτ(2) ≤ . . . , vτ(n)) ∈ Ln

~u >lmin ~v iff ∃k,∀i < k, uσ(i) = vσ(j) anduσ(k) > vσ(k)

• ~u >P ~v implies~u >dmin ~v which implies~u >lmin ~v

• So by constructing a preference relation that refines a qualitative aggregation

operation, we recover a good behavior of the aggregation process without needing a

more refined absolute scale.
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Additive encoding of the leximax and leximin procedures

(L hasm+ 1 elements; such encoding is not possible in the continuous case)

• Consider abig-steppedmappingφ : L 7→ R such that:φ(λi) > nφ(λi−1). Then:

max
i=1,...n

ui > max
i=1,...n

vi implies
∑

i=1,...n

φ(ui) >
∑

i=1,...n

φ(vi)

e.g.φ(λi) = ki for k > n achieves this goal. It captures the worst case when
max(0, 0, . . . , 0, λi) > max(λi−1, . . . , λi−1)

Property: ~u �lmax ~v if and only if
∑

i=1,...n φ(ui) >
∑

i=1,...n φ(vi).

• Consider the big-stepped mappingψ(λi) = 1− k−i, k > n

min
i=1,...n

ui > min
i=1,...n

vi implies
∑

i=1,...n

ψ(ui) >
∑

i=1,...n

ψ(vi)

Property: ~u �lmin ~v if and only if
∑

i=1,...n ψ(ui) >
∑

i=1,...n ψ(vi).
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The weighted qualitative aggregation operations

Consider a weight distribution~π that evaluates the importance of dimensions, and

maxπi = 1.

Let ν(λi) = λm−i on a scale withm+ 1 steps.

Prioritized Maximum : P max(~u) = maxi=1,...n min(πi, ui)

• P max(~u) is high as soon as there is a totally important dimension with high rating

Prioritized Minimum : P min(~u) = mini=1,...n max(ν(πi), ui)

• P min(~u) is high as soon as all important dimensions get high rating.

Sugeno Integral:

Sγ,u(f) = maxλi∈L min(λi, γ(Uλi))

whereUλi = {i, ui ≥ λi} andγ : 2S 7→ L ranks groups of dimensions (γ(A) = degree

of importance ofA ⊆ {1, . . . , n}).

It is a capacity : IfA ⊆ B thenγ(A) ≤ γ(B).
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Leximax(�), Leximin(�) (Fargier, Sabbadin(2005))

Leximax(�) compares vectors inΩn using a totally ordered set(Ω,�).

Classical leximax: comparison of vectors of utility:Ω = L and� =≥

Comparison of matrices using lmax(lmin)H = [hi,j ] : Ω = Ln and� =�lmin for

comparing the rowsHj· of the matrix.

IDEA: Shuffle each matrix so that to rank entries on each line in increasing order, and

then rows top-down in decreasing lexicographic order. Then compare the two matrices

lexicographically, first the top rows, then if equal the second top rows, etc...

F �lmax(lmin) G⇔ or

 ∀j, F(j)· ∼lmin G(j)·

∃i t.q.∀j > i, F(j)· ∼lmin G(j)· and F(i)· �lmin G(i)·

whereH(i)· = ith row ofH w.r.t.�lmin .

It is a (very discriminative) complete and transitive relation.
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Take the minimum on elements of the lines, and the maximum across lines

A =

7 3 4 8 5

6 3 7 4 9

5 6 3 7 7

B =

8 3 3 5 9

3 7 3 8 4

7 3 8 5 5
maxi minj ai,j = maxi minj ai,j

Reordered in increasing order inside lines:

3 4 5 7 8

3 4 6 7 9

3 5 6 7 7

3 3 5 8 9

3 3 4 7 8

3 5 5 7 8
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Take the minimum on elements of the lines, and the maximum across lines

7 3 4 8 5

6 3 7 4 9

5 6 3 7 7

8 3 3 5 9

3 7 3 8 4

7 3 8 5 5
Lines reordered top down:

3 5 6 7 7

3 4 6 7 9

3 4 5 7 8

�lmax(lmin)

3 5 5 7 8

3 3 5 8 9

3 3 4 7 8
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Lexi-refinement of the prioritized maximum

TheLeximax(Leximin(≥)) procedure refines the ranking of matrices according to

maxi minj hi,j

If alternative~u is encoded as an× 2 matrixFu = [fij ] with fi1 = πi and

fi2 = ui), i = 1, . . . , n:

P max(~u) = max
i=1,n

min
j=1,2

fij

P max is refined by aLeximax(Leximin(≥)) procedure :

P max(~u) > P max(~v) =⇒ Fu �lmax(�lmin) F
v
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Weighted average refinement of the prioritized maximum

Claim :There exists a weighted averageAV+(~u) representing�lmax(�lmin) and thus

refiningP max. Define a transformationχ of the scaleL such that :

maxi min(πi, ui) > maxi min(πi, vi) implies

∑
i=1,...n χ(πi) · χ(ui) >

∑
i=1,...n χ(πi) · χ(ui)

Worst case:max(min(λj , λj), 0, . . . , 0) >
max(min(λj , λj−1),min(1L, λj−1), . . . ,min(1L, λj−1))

Sufficient condition:

∀j ∈ {0, . . . ,m− 1}, χ(λj)2 > (n+ 1)χ(λj−1) · χ(1L)
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Refining Sugeno integral

• The first idea is to apply the refinement ofP max to Sugeno integral and to refine

the capacityγ that estimates the importance of criteria.

• The second idea is to use a Choquet integral to refine a Sugeno integral.

Put the aggregation operation in the form

Sγ(~u) = maxA⊆N min(γ#(A),mini∈A ui)

whereγ#(A) is a “Qualitative” Moebius transform :

γ#(A) = γ(A) if γ(A) > maxB(A γ(B) and 0 otherwise.

40



Leximax refinement of a Sugeno integral

• The capacityγ is such thatγ(A) = maxE⊆A γ#(E)

• We can use use a super-increasing transformation ofγ# into a mass function

m# : 2S 7→ [0, 1] : m#(E) = χ(γ#(E))

• Similarly, we can refine the ordering provided by the capacity by applying the

leximax refinement to the vector ofγ#(E)’s.

• This refined ordering is representable by means of the belief function

Bel(A) =
∑

E⊆Am#(E)

• Whenγ is a possibility measure, the refining belief function is a probability measure.

• The Sugeno integral can then be refined by the Choquet integral of the form

Elsug
# (~u) =

∑
A⊆S m#(A) ·mins∈A χ(ui)
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Bipolar choice and ranking: a basic framework

1. A set ofn dimensions, viewed as arguments, whose domain is t

(a) The positive scale{0,+} for positive arguments

(b) The negative scale{0,−} for negative arguments

2. A set of potential decisions evaluated in terms of pro and con arguments~u,~v, . . .

3. A totally ordered scaleL expressing the relative importance of arguments

So we get

• If ui = +, theni is an argument for~u

• If ui = − theni is an argument against~u

• If ui = 0 theni does not matter for~u

LetU = {i, ui 6= 0} the arguments that matter for~u

List the pros (U+ = {i, ui = 1}) and the cons (U− = {i, ui = −1}) of ~u.

Compare~u and~v = comparing the pairs (U−, U+) and (V −, V +)
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Cumulative prospect theory and extensions

Cumulative Prospect Theory for multiaspect decision(Tversky & Kahneman, 1992):

• Measure the importance of positive affects and negative affects of decisions

separately, by two monotonic set functionsσ+(U+), σ−(U−)

• Compute the net predispositionN(a) = σ+(U+)− σ−(U−).

• Rank the decisions

If positive and negative affects are not independent :

• use bi-capacities on a bipolar scale:N(a) = g(U+, U−) increasing with the former,

decreasing with the latter (Grabisch-Labreuche)

• use bipolar capacitiesN(a) = (g+(U+, U−), g−(U+, U−)) on bivariate unipolar

scales (Greco-Slowinski)
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How to evaluate decisions fromqualitativebipolar information ?

Contrary to what classical decision theory suggests, people can make decisions in the

face of several criteriawithout numerical utility nor criteria importance assessments
(works by Gigerenzer, for instance): How to extend themin andmax rules if there are

both positive and negative arguments?

Qualitativeness assumption (focalisation): the order of magnitude of the importance

of a groupA of affects with a prescribed polarity is the one of the most important affect,

in the group.

Π(U) = max
x∈U

πi

Express preference between~u and~v in terms the pairs (Π(U−), Π(U+)) and (Π(V −),
Π(V +)) of positive and negative affects, based on the relative importance of these affects.

1. basic decision rules, complete and incomplete, usually weakly discriminative

2. refinements obeying a form of independence between affects

3. further (lexicographic) refinements counting affects of equal importance
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The Bipolar Possibility Relation

Principle at work : Comparability: When comparing~u and~v, any argument against~u

(resp. against~v) is an argument pro~v (resp. pro~u).

The agent focuses on the most important argument regardless of its polarity.

~u �Biposs ~v ⇐⇒ max(Π(U+),Π(V −)) ≥ max(Π(V +),Π(U−))

• �Biposs is complete, but only its strict part is transitive.

• This relation collapses to the maximin rule if all arguments are negative and to the

maximax rule if all arguments are positive.

• Similar to CPT:~u > ~v ⇐⇒ σ+(U+) + σ−(V −) > σ−(V +) + σ−(U−). Here, we

change+ into max.

This relation is sound and cognitively plausible but it is too rough (too many indifference

situations).
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The full lexi-bipolar rule

Idea (originally B. Franklin’s): Canceling arguments of equal importance for~u or
against~v, by arguments for~v or against~u until we find a difference on each side.

An even more decisive procedure, cancelling conflicts: A complete and transitive
refinement of�Bilexi

LetU+
λ = {i ∈ U+, πi = λ} be the arguments for~u with strengthλ. (resp.U−λ the

arguments against~u with strengthλ.).

~u �Lexi ~v ⇐⇒ ∃λ ∈ L such that

 (∀β > λ, |U+
β | − |U

−
β | = |V +

β | − |V
−
β |)

and (|U+
λ | − |U

−
λ | > |V +

λ | − |V
−
λ |)

This decision rule

• Generalizes Gigerenzer’s ”take the best” heuristic and can be encoded in the
cumulative prospect theory framework

• Was empirically tested, and proves to be the one people use when making decisions
according to several criteria.
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Conclusion

• Fuzzy set theory offers a bridge between numerical approaches and qualitative

approaches to decision analysis, but:

1. The use of linguistic variables encoded by fuzzy intervals does not always make

a numerical method more qualitative or meaningful.

2. Replacing numerical values by fuzzy intervals rather corresponds to a kind of

sensitivity analysis, not getting qualitative.

3. The right question is : how to encode qualitative techniques on numerical scales.

• There is a strong need to develop original approaches to multicriteria decision

analysis that are not a rehashing of existing techniques with ad hoc fuzzy

computations.

• Fuzzy set theory and its mathematical environment (aggregation operations, graded

preference modeling, and fuzzy interval analysis) provide a general framework to

pose decision problems in a more open-minded way, towards a unification of

existing techniques.
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Open questions

• Refine any qualitative aggregation function using discri-schemes or lexi-schemes

• Computational methods for finding discrimin-leximin solutions to fuzzy
optimization problems.

• Solving decision problems with fuzzy bipolar information

– With pros and cons

– multicriteria optimisation (positive preference) under fuzzy constraints (graded
feasibility)

• Behavioral axiomatization of aggregation operations in MCDM, decision under
uncertainty and fuzzy voting methods

• Principled general framework for ranking fuzzy intervals.

• Semantics of fuzzy preference modeling (probabilistic, probabilistic,
distance-based,....) and their learning from data.

• Fuzzy choice functions
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