Liang Gong
email: gongliangmi@sjtu.edu.cn

Te Sun

Xudong Li

⇤ Ke Lin

Natalia Díaz-Rodríguez

David ⇤⇤

⇤⇤ Filliat

Zhang Zhengfeng

Junping ⇤⇤⇤

⇤⇤⇤ Zhang

Demonstration Guided Actor-Critic Deep Reinforcement Learning for Fast Teaching of Robots in Dynamic Environments

Keywords: deep learning, deep reinforcement learning, learning from demonstration (LfD), actor-critic framework, robotics

Using direct reinforcement learning (RL) to accomplish a task can be very ine cient, especially in robotic configurations where interactions with the environment are lengthy and costly. Instead, learning from expert demonstration (LfD) is an alternative approach to gain better performance in an RL setting, which also greatly improves sample e ciency. We propose a novel demonstration learning framework for actor-critic based algorithms. Firstly, we put forward an environment pre-training paradigm to initialize the model parameters without interacting with the target environment, which e↵ectively avoids the cold start problem in deep RL scenarios.Secondly, we design a general-purpose LfD framework for most of the mainstream actor-critic RL algorithms that include a policy network and a value function like PPO, SAC, TRPO, A3C. Thirdly,we build a dedicated model training platform to perform the humanrobot interaction and numerical experimentation. We evaluate the method in six Mujoco simulated locomotion environments and our robot control simulation platform. Results show that several epochs of pre-training can improve the agent's performance over the early stage of training. Also, the final converged performance of the RL algorithm is also boosted by external demonstration. In general the sample e ciency is improved by 30% with the proposed method. Our demonstration pipeline makes full use of the exploration property of the RL algorithm, which is feasible for fast teaching robots in dynamic environments.

INTRODUCTION

The actor-critic (AC) framework has been extensively used in reinforcement learning (RL) algorithms. This framework combines policy gradient methods and value functions, namely the actor and the critic. However, most actor-critic algorithms such as Proximal Policy Optimization (PPO) [START_REF] Schulman | Proximal policy optimization algorithms[END_REF] and Asynchronous Advantage Actor-Critic (A3C) [START_REF] Mnih | Asynchronous methods for deep reinforcement learning[END_REF] heavily rely on agent-environment interaction to improve its performance. Especially during the early stage of learning, the model development requires large amounts of exploration experience, which can be very expensive and time-consuming. Over the course of training from scratch, a reinforcement learning model could not internalize the expert knowledge and human behavioral prior which leads to useless and expensive exploration at early stages, which ends up usually reaching the sub-optimum at much later stage. Thus, there has been plenty of research focusing on the combination of RL algorithms with expert demonstrations. Pre-training the policy network and critic network may be the most common way to leverage expert demonstrations. However, in the case of limited demonstrations, it is prone to overfit during the course of training, resulting in ill-conditioned network parameters and poor performance.

In this study, we proposed a novel strategy (Fig. 1) for learning from demonstration (LfD, Schaal (1997)) that is available for all actor-critic based algorithms, accelerating the convergence of reinforcement learning and improving the final performance. We first construct two separate demonstration environments aimed at pre-training the actor network and the critic network. We then create an auxiliary value function to assist the pre-training of the policy network. After the demonstration process, we use the pre-trained parameters as model initialization, and perform the standard reinforcement learning procedure until convergence in the target environment. training environments are constructed based on expert replay data. We pre-train the "actor" and "critic" network separately in these two demonstration environments. We train the policy network along with the "Surrogate value function" to fit the policy environments.The final RL model is initialized with the pretrained network afterwards. We aim at solving tasks in various environments, combining human demonstration with reinforcement learning. We investigate the performance of our method both in standard simulation benchmark environments and in simulated humanoid robotic configuration. The results show that our method has improved sample e ciency and achieved better performance in benchmark environments. The main contributions of our work can be summarized as:

• The demonstration process augments the episode rewards at early stage during training, i.e., the algorithm costs less samples to reach convergence. The sample e ciency is improved in most benchmark environments. • Learning behaviors through reinforcement learning is more stable via demonstration even without careful hyperparameter tuning. • The model with demonstration can achieve higher episode rewards that cannot otherwise be acquired through simple exploration by the RL model itself.

The knowledge is distilled from demonstration data through pre-training.

In the following sections, we will first present reinforcement learning, background and related LfD work. Then we will explain our demonstration framework. Next, we will show our experimental configuration and results that manifest the improvement. The article concludes with a brief discussion and possible future works.

BACKGROUND

Actor-critic framework Traditional reinforcement learning methods can generally be divided into value-based methods and policy-based methods [START_REF] Arulkumaran | Deep reinforcement learning: A brief survey[END_REF]. The former includes the classical Q-Learning [START_REF] Watkins | Q-learning[END_REF] algorithm and its deep learning based variants like DQN [START_REF] Mnih | Playing atari with deep reinforcement learning[END_REF] and Double-DQN (van Hasselt et al., 2015). These methods have better sample e ciency and can update parameters for every time step,but value-based methods often cannot handle high dimensional or continuous control environments. The latter approaches parameterize the policy model and use policy gradient based optimization to guide the agent to explore the environment. These methods present more stable behavior during training and can be easily implemented to solve continuous, high-dimensional problems. However, policy-based methods usually su↵er from low sample e ciency since the model can only update parameters after collecting enough interactions.

The actor-critic algorithm [START_REF] Konda | Actor-critic algorithms[END_REF] is proposed to combine the strong points of policy-based and value-based methods. At each training step, it applies an actor model to choose an action at a given environment state. The critic part aims at estimating the expectation of accumulated rewards at specific states. The actor continuously iterates to increase the probability of choosing a suitable action in di↵erent states, and the critic keeps iterating to give a more accurate value assessment. Hence, the actor-critic framework maintains the characteristics of single-step updates and fast learning, and can be applied to the continuous action space. Most state-of-the-art model free reinforcement learning algorithms such as TD3 [START_REF] Fujimoto | Addressing function approximation error in actorcritic methods[END_REF], SAC [START_REF] Haarnoja | Soft actor-critic algorithms and applications[END_REF], DDPG [START_REF] Lillicrap | Continuous control with deep reinforcement learning[END_REF] and PPO [START_REF] Schulman | Proximal policy optimization algorithms[END_REF] are based on the actor-critic framework.

Reinforcement Learning with LfD Reinforcement learning algorithms rely on trial and error mechanisms to leverage the agent exploration and exploitation [START_REF] Sutton | Introduction to reinforcement learning[END_REF] of the environment. Then collected interaction experiences will be used to optimize the model. However, sparse reward signal can cause the ine cient and random attempts during the early stage of training [START_REF] Parisi | Long-term visitation value for deep exploration in sparse reward reinforcement learning[END_REF], which will slow down the training of the model.

When acquiring new skills, human beings usually start with learning from expert demonstrations. Inspired by this idea, learning from demonstration is proposed to accelerate robot learning process. Within LfD framework, the robot decision policy learns from examples or demonstrations that are provided by a teacher [START_REF] Argall | A survey of robot learning from demonstration[END_REF]. LfD has been applied to improve robot performance in real life [START_REF] Safavi | Teaching the user by learning from the user: personalizing movement control in physical human-robot interaction[END_REF], [START_REF] Konidaris | Robot learning from demonstration by constructing skill trees[END_REF]. At the same time, this kind of technique is also studied as an alternative against low sample e ciency of reinforcement learning in some cases. [START_REF] Hester | Learning from demonstrations for real world reinforcement learning[END_REF]) use demonstration data to pre-train the Q-function network in a DQN model. [START_REF] Vecerík | Leveraging demonstrations for deep reinforcement learning on robotics problems with sparse rewards[END_REF] seek to use priority replay bu↵er to leverage the ratio of demonstration data for training the network. By using demonstration dataset as part of replay experiences reflects the o↵-policy characteristic of a model being able to learn from other experiences. However, we need a large amount of demonstration data to maintain the performance. Some approaches to reduce this burden train a student network from several teaching networks in a continuous learning manner through policy distillation [START_REF] Traoré | DISCORL: Continual reinforcement learning via policy distillation[END_REF] or use intrinsic motivation to LfD [START_REF] Nguyen | Bootstrapping intrinsically motivated learning with human demonstrations[END_REF]. Other studies evaluate the artificial expert providing help on demand [START_REF] Bennetot | Should artificial agents ask for help in human-robot collaborative problem-solving?[END_REF]. [START_REF] Zuo | Continuous reinforcement learning from human demonstrations with integrated experience replay for autonomous driv[END_REF] and [START_REF] Lin | Exploration-e cient deep reinforcement learning with demonstration guidance for robot control[END_REF] both modify the objective function of reinforcement learning to evaluate the similarity of sampled data and demonstration data. The algorithms motivate the agent to act as expert when there are similar frames in the demonstration dataset. However, these approaches may fail in high dimensional observation spaces. On the one hand, demonstration data becomes sparser due to the curse of dimensionality [START_REF] Bellman | Dynamic programming[END_REF], which renders data less representative. On the other hand, enumerating the demonstration dataset becomes infeasible with large size dataset. High dimensional states will invalidate this approach through the curse of dimensionality.

Works in [START_REF] Cruz | Pretraining neural networks with human demonstrations for deep reinforcement learning[END_REF] and [START_REF] Nair | Overcoming exploration in reinforcement learning with demonstrations[END_REF] apply ideas of imitation learning to fit the demonstration dataset in a supervised manner. [START_REF] Xiang | Task-oriented deep reinforcement learning for robotic skill acquisition and control[END_REF] use the mean episode rewards in demonstration data as a baseline to amplify the incentive in high reward zone. Another work [START_REF] Vasan | Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning[END_REF] trains mechanical prostheses with AC framework agents to imitate complex movements through demonstration methods. However, the idea behind this implementation is to fit the demonstration trajectory using a RL model. However, this approach may degrade the RL's exploration behaviors into a supervised way. The model in [START_REF] Zhao | Model-free optimal control based intelligent cruise control with hardware-in-the-loop demonstration [research frontier[END_REF] projects demonstration data into a nonlinear control model to assist actor-critic learning. Despite the promising results, the method is not easily applicable into other non-robotic domains.

Our demonstration pipeline makes full use of the exploration property of the RL algorithm, which equips the model with strong robustness. Instead of forcing the agent to fit the demonstration data, we create two demonstration environments from expert experience to simulate natural RL learning process. We will explain our method in detail in the next section.

METHODOLOGY

Pre-training Environments

When performing learning from demonstration under the actor-critic RL framework, two artificial demonstration environments are needed during the pre-training phases. The first, actor demonstration environment, is for training the policy network. In the common actor-critic framework, the actor model includes a policy network that takes current sate as input and outputs a corresponding action. Thanks to the Markovian assumption within the RL scope, only the current state is su cient for the agent to take an action.

Actor demonstration environment is built as follows: We firstly load all demonstration data which preserves sequential time order of observation during expert replay. Then we recreate this demonstration scenario in the pre-training environment. Under the reset command, the environment will randomly choose one episode from the dataset. It will continuously feed the model with time step frames during demonstration, formatted as {s D t , s D t+1 , r D t , a D t }. D denotes data coming from demonstrations. Regardless of the action that the model takes, the feeding order of time step data remains the same in order to simulate the demonstration process. After receiving actions, the demonstration environment returns a reward signal r ⇡ that describes the distance in probability between the action given by the model and the action taken during demonstration. The reward is also leveraged by the reward signal collected in demonstration dataset. This encourages the agent to imitate expert behavior. We reformulate the actor demonstration environment E ⇡ as:

E ⇡ (a t |s D t) ! {s D t+1 , r D t+1 , a D t+1 } r ⇡ t+1 = P ⇡ 0 (s D t 1) (a D t) ⇥ r D t (1
)
where P is the probability to choose the action a D t at the given state s D t 1 . ⇡ denotes the expert policy. And we note r ⇡ the reward function in E ⇡ . The second demonstration environment is dedicated to pre-training the "critic" part of the model. The value function takes an environment state as input and outputs the expectation of future accumulated rewards based on the input. The critic demonstration environment interacts with the model in the following way: At first, the environment chooses randomly an episode from the demonstration dataset. Data frames can be provided either in expert replay order or in random order. That is because the value function fits the states to episode returns and can be trained in a supervised way. Since the value function generates no action, the model will continuously receive states and rewards from the demonstration environment while the environment runs alone by itself. The interaction in the critic demonstration environment E v can be formulated as:

E v (;|s D t) ! {s D t+1 , r D t+1 } r v t+1 = r D t (2)
where r v t denotes the reward function in E v at time step t.

Pre-training Method

The reward function during demonstration is not the same as in the RL setting, which demands for another value function v 0 ⇡ 0 to assist the pre-training of the policy network. This is because the policy network training requires a value function as baseline guidance. Yet, the reward signal will change along with the switch from pretraining with LfD to training in the target environment and thus, this auxiliary value function will be discarded once the pre-training is finished. Di↵erent from the original PPO clipped loss function, we use this assistant value function to compute the GAE (Generalized Advantage Estimation) [START_REF] Schulman | High-dimensional continuous control using generalized advantage estimation[END_REF] style advantage.

The policy ⇡ 0 will be optimized by minimizing the following loss function in original PPO algorithm:

L CLIP ⇡ 0 (✓) = Êt [min(R 0 t (✓) Â0 t , clip(R 0 t (✓), 1 ✏, 1 + ✏) Â0 t)]
(3) where,

R 0 t = ⇡ 0 (a t |s D t) ⇡ 0 old (a t |s D t) (4) Â0 t = T t 1 X l=0 () l (r ⇡ t+l + v 0 ⇡ 0 (s D t+l+1) v 0 ⇡ 0 (s D t+l)) (5)
R 0 t denotes the ratio between the probability of current action under the updated and the old policy distribution.

And Â0

t represents the advantage evaluated with v 0 ⇡ 0 . As for the value function pre-training, the parameters are optimized in a supervised way. The value estimation adapts in a way of minimizing L v 0 in order to fit the incremental rewards. After all pre-training, the reinforcement learning model will be initialized with the pre-training parameters.

L v 0 = ||v 0 (s D t) T X i=t T i r v i || 2 (6)

Algorithm

Proximal Policy Optimization (PPO, Schulman et al. (2017)) algorithm has achieved state-of-the-art performance in many control and gaming tasks. And it adopts actor-critic structure in the model. Although we develop our demonstration learning algorithm mainly based on PPO framework, our method is applicable for most actorcritic reinforcement learning algorithms that include a policy network and a value function like SAC, TRPO, A3C etc.

Firstly, we initialize our student model, which has similar structure with PPO, with random parameters. Besides, we initialize our auxiliary value function network to provide states estimation for policy pre-training.

Secondly, we follow the steps described in subsection 3.1 to create demonstration environments. Then, LfD training is based on pre-training ⇡ 0 and v 0 in the constructed environments.

Third, we initialize PPO model with pre-trained parameters and perform the standard PPO training procedure until the return converges.

We summarize our demonstration algorithm as Algorithm 1

Algorithm 1 LfD training algorithm Input:Initialize parameters for demonstration model ⇡ 0 , v 0 . Initialize parameters for auxiliary value estimation network v 0 ⇡ 0 . Load demonstration data {s D t , s D t+1 , r D t , a D t }; Procedure:

1: Create E ⇡ and E v with r ⇡ t and r v t as their step rewards:

r ⇡ t+1 = P ⇡ 0 (s D t 1) (a D t) ⇥ r D t r v t+1 = r D t 2: //Perform LfD training for ⇡ 0 with v 0 ⇡ 0 in E ⇡ 3: for k 1 = 1, . . . , K ⇡ do 4:
Update ⇡ 0 and v 0 ⇡ 0 by gradient descent to minimize

L P P O (⇡ 0 , v 0 ⇡ 0) 5: end for 6: //Perform demonstration v 0 in E v 7: for k 2 = 1, . . . , K v do 8:
Update v 0 to minimize L v 0 , where

L v 0 = ||v 0 (s D t) T X i=t T i r v i || 2
9: end for 10: Initialize parameter for PPO model ⇡, v with pretrained parameters stored in ⇡ 0 , v 0 11: Perform standard PPO training procedure in target environment E until convergence

Output: Trained PPO model and parameters

EXPERIMENTS

This section will mainly answer three core questions in the following:

(1) Can our proposed method outperform the original RL algorithm in most environments with few expert demonstration episodes? And how much better results can we expect? (2) Under what circumstances does our proposed method exhibit better performance? (3) Is our demonstration framework applicable to real robotic setup in an opening scene?

We will present our experimental results to investigate these questions in order.

Simulated robotic experiments

Results on standard benchmark environments First, we examine the performance of our method across 6 Ope-nAI gym environments Brockman et al. (2016

D t , s D t+1 , r D t , a D t }.
We then create the demonstration environments described in Section 3.1. To reset one demonstration environment episode, we bootstrap by sampling data from the demonstration dataset.

We choose PPO algorithm as the target algorithm to be trained from scratch; we pre-train a PPO model with the demonstration dataset and train standard PPO in the target environment. We ran each RL experiments with 10 di↵erent random seeds per environment. Other hyperparameter information can be found in Table A.1 and the learning curve in Fig. 3: When the learning curve bends towards top-left, the RL model needs less interactions with the environment to Fig. 3. Learning curve of RL with PPO and LfD training(ours). X-axis describes the interaction steps; y-axis shows the cumulative episode rewards.

Table 1. Time steps to reach the same level of performance (ratio between the time steps of our approach and PPO). Each row represents the time needed for our method to reach x% of the maximum rewards PPO gets. Table 2, Table 3 along with Fig. 4 compare mean episode rewards from early training stages and after the algorithm's convergence. Thanks to our approach, the model warms up through the expert demonstration dataset and thus, the performance at the very beginning of training is improved. In the meanwhile, we also improve RL's final performance with the help of the demonstration dataset.

The know-how is distilled from the demonstration dataset and internalized by the PPO model. The model acquires performance that can not be achieved by simple exploration. Therefore, the expert demonstration can guide the original model out of sub-optima and so achieve better performance. In summary, we boost the performance of the PPO model on three aspects:

(1) Rewards at initial stage of training are raised.

(2) The final episode rewards becomes higher.

(3) Stability and sample e ciency become stronger. Experiments demonstrate the fact that the initial performance tends to be better with more pre-training, but the model may also overfit the demonstration dataset with too many demonstration epochs. The overfitting causes a 68% drop in terms of the final performance (Table 4). Hence, a trade-o↵ exists between the pre-training epochs, the model initial and final performances. Although the model's performance is sensitive to the number of pretraining epochs, the choice of 20-50 epochs works robustly for all kinds of environments within our experimental scope.

Results in simulated robotic configuration We also inspect the performance of our approach in a simulated humanoid robotic scenario. The environment (Fig. 5) consists of a robot that aims to reach out the fruit in front of it. The robot model is a re-designed open-source InMooV The state given by environment consists of 53 joint angles that are limited by the robot intrinsic functionality. The reward signal depends on the distance between the end of robot's index finger and the center of the fruit. The action generated by the model provides a control signal for all robot joints and is characterized by 53 dimensions as well. Therefore, states and actions are presented as a 53 dimension vector, and the reward is the minus distance to motivate robot to approach the target. Thus, the problem can be reformulated as:

s t 2 R 53 , a t 2 R 53 , r t = d(finger, fruit) 2 R (7)
In our robotic simulation configuration, the robot has to figure out the dynamics mechanism beneath the states, actions and the rewards, which involves a high dimensional inverse problem for robotic control. The reward signal only provides information about the distance between the robot and the target. This converts the problem in a "learning to coordinate" task.

For the experiments in this part, we firstly obtain our expert model by training a well converged PPO model. We reload the model that is trained from demonstrations and save the replay experiences into the demonstration dataset. Implementation details and hyper-parameters, pretraining epochs and network structure, are the same as described in Section 4.1.1.

1 https://inmoov.fr Open source 3D printed life-size robot

CONCLUSION

To summarize our contributions, we present a novel pipeline for learning from demonstration based actor-critic RL models. In six standard Mujoco locomotion simulation environments , our method could improve agent learning speed in a more stable manner and achieve better sample e ciency in complex behaviors. The demonstrations can guide the model towards better performance both at early stage and final stage of training. We also perform experiments on InMoov open source robot , which shows that our method can as well be e↵ective in the real life setting.

In terms of future work, we would like to test the performance of our demonstration strategy when the environment states consist of raw pixels, both in end to end approaches and state representation learning [START_REF] Lesort | State representation learning for control: An overview[END_REF]. Implementation of demonstration learning across other actor-critic RL algorithms could also be helpful to boost the current performance.

Fig. 1 .

 1 Fig. 1. Demonstration Learning procedure: Two pre-training environments are constructed based on expert replay data. We pre-train the "actor" and "critic" network separately in these two demonstration environments. We train the policy network along with the "Surrogate value function" to fit the policy environments.The final RL model is initialized with the pretrained network afterwards. We aim at solving tasks in various environments, combining human demonstration with reinforcement learning. We investigate the performance of our method both in standard simulation benchmark environments and in simulated humanoid robotic configuration. The results show that our method has improved sample e ciency and achieved better performance in benchmark environments. The main contributions of our work can be summarized as:

 Fig. 2. 2D and 3D robot models used as benchmark environments: Ant-v2, HalfCheetah-v2, Hopper-v2, Humanoid-v2, Swimmer-v2, Walker2d-v2 environment, an expert agent is obtained by training an SAC algorithm until the convergence. We collect demonstration data by replaying the expert model during 20 episodes. The demonstration frame in dataset is recorded as {sD t , s D t+1 , r D t , a D t }.We then create the demonstration environments described in Section 3.1. To reset one demonstration environment episode, we bootstrap by sampling data from the demonstration dataset.

Fig. 4 .

 4 Fig. 4. Learning curve in 6 environments during first 0.4M time steps out of total 40M . The figures represent a zoom-in for the Fig 3. humanoid robot Langevin (2014) 1 . InMoov is a life-size robot with 87 joints structure that can be produced by 3D printing. We partly re-designed the robot structure for human-robot synchronized control system (Gong et al., 2017), of which 53 joints can be actively controlled. This robotic simulation is built based on PyBullet (Coumans and Bai, 2016-2019), an open source real-time physics simulation engine. And we developed the RL interface through the idea of Ra n et al. (2018).

Fig. 5 .

 5 Fig. 5. Robotic fruit picking task in simulation and real life.

Fig. 6 .

 6 Fig. 6. Learning curve for RL in the InMoov environment From Fig. 6, LfD training exhibits both strong stability and sample e ciency. This phenomenon consolidates our conclusion in previous sections.

Table 2 .

 2 Initial rewards per episode.

		Ant-v2	HalfCheetah-v2	Hopper-v2
	PPO Ours	112 ± 14.0 35.1 ± 20.4 Humanoid-v2	346 ± 53.3 215 ± 80.9 Swimmer-v2	1 4 .1 ± 5.48 2 4 3± 95.1 Walker2d-v2
	PPO Ours	106 ± 8.03 109 ± 7.12	2.14 ± 17.4 25.0 ± 1.72	1 .59 ± 2.50 7.92 ± 7.41

Table 3 .

 3 Final rewards per episode.In our ablation study, we investigate the question: how the demonstration process can influence the initial episode rewards and the final rewards? We test our method in the Ant-v2 environment since the training both with PPO and our method presents stable behaviors.

		Ant-v2	HalfCheetah-v2	Hopper-v2
	PPO Ours	5682 ± 356 5891 ± 130 Humanoid-v2	4648 ± 1749 7027 ± 611 Swimmer-v2	2785 ± 708 2362 ± 604 Walker2d-v2
	PPO Ours	5193 ± 463 4985 ± 806		132 ± 1.3 132 ± 0.7	5 2 0 3± 1143 6 2 9 6± 1136
	4.2 Ablation study	
	Table 4. Influence of pretraining epochs on
	episode rewards at di↵erent RL training stages
	in the Ant-v2 environment. Results over 5 runs
		using di↵erent random seeds
			20 Eps	50 Eps	100 Eps
	Early Reward Final Reward	35.1 ± 20.4 5891 ± 130 200 Eps	319± 102 5916 ± 157 500 Eps	463 ± 122 3835 ± 89
	Early Reward Final Reward	581 ± 73 3004 ± 212	623 ± 77 1879 ± 47
	Table 4 shows that increasing the number of pre-training
	episodes can enhance the model's initial performance.
	Demonstrations before the actual RL training can help
	the agent to imitate the expert behavior, leading to higher
	rewards at early training stages. Nevertheless, excessive
	pre-training leads to overfitting. This overfitting problem
	traps the RL algorithm within a local optimum, which
	restricts the rewards at a low level.

ACKNOWLEDGEMENTS

This work was supported by National Natural Science Foundation of China (Grant No.51775333), the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No.18391901000) and National Key Research and Development Project (2018YFB1305104).

Appendix A. HYPERPARAMETER