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Introduction

A Poisson manifold is a smooth n-dimensional manifold endowed with a Poisson bivector field, viz., a skew-symmetric contravariant tensor P of rank 2 satisfying the Jacobi identity n ÿ l"1 pP lj BP ik Bx l `P li BP kj Bx l `P lk BP ji Bx l q " 0, where P is locally given by ř iăj P ij pxqB x i ^Bx j .

A Poisson structure P on a manifold defines geometric object, the Lichnerowicz differential d L discovered in r1s. It acts on multivector fields by the formula d L :" rrP, ´ss, where rr´, ´ss denotes the canonical Schouten bracket.

We are going to give a quantum analogy of d L based on the paper of Malikov, Schechtman and Vaintrob r2s, who introduced a sheaf of vertex superalgebras Ω ch attached to any smooth variety M, called the chiral de Rham complex, which is used in understanding the "stringy" invariants, such as the elliptic genera. If M is n-dimensional, the fibers of Ω ch are isomorphic as vertex superalgebras to a completion of the bc ´βγ system on n generators, or in physics terminology, to the tensor product of the bosonic and fermionic ghost systems.

We would like to outline here that the chiral de Rham complex is an example of the general localization pattern r3sr4s.

The paper r5s served as a main motive for this research. We would like to shed the light on mathematical part of r5s. On the contemporary state-of-the art, the interested reader is referred to r3 ´8s and references therein.

The corresponding cohomology of Lichnerowicz differential d L is called the Lichnerowicz -Poisson cohomology (or LP-cohomology). It is a useful tool in Poisson Geometry, as it provides framework to express deformation and quantization obstructions. For every smooth Poisson manifold there is a natural homomorphism from its de Rham cohomology to its Lichnerowicz-Poisson cohomology. For symplectic manifolds, this homomorphism is an isomorphism r7s. But, generally, the LP-cohomology space are very large and their structure is known only in some particular cases. The quantum version of d L helps to clarify this issue by encoding everything in OPEs (the operator product expansion).

Quantum Lichnerowicz differential

Consider Poisson n-dimensional manifold M with a Poisson tensor P " ř iăj P ij pxqB x i ^Bx j , where P ij are analytic functions. Let α i " γ i `bi dz, θ i " c i `βi dz, where b i , c i , γ i , β i is corresponding bc ´βγ system on n generators on M according to r2s.

Assign ¿ P ij pαqθ i θ j " ¿ P ij pγ `bdzqpc i `βi dzqpc j `βj dzq.
The last is equal to

¿ pP ij pγqpc i β j ´βi c j q `Bk P ij pγqc i c j b k qdz. Define d qL " t ¿ P ij pαqθ i θ j , ´u.
Proposition 1. d 2 qL " 0. Proof. The associated non-zero Operator Product Expansions (OPEs) for bc and βγ systems:

bpzqcpwq " z ´w , cpzqbpwq " z ´w ; βpzqγpwq " ´ z ´w , γpzqβpwq " z ´w .
Further, without loss of generality :" 1.

As P ij pγq is analytic function, it can locally be written via a convergent power series. Moreover, notice pγ k q n pzqβ kpwq " δ k, k npγ k q n´1 z ´w . Using Wick's theorem we obtain the following: Term P ij pγpzqqpc i pzqβ j pzq ´βi pzqc j pzqqP îĵ pγpwqqpc îpwqβ ĵ pwq ´βî pwqc ĵ pwqq yields 

1 z ´w B ĵ P ij pγqP îĵ pγqc i c îβ j ´1 z ´w B j P îĵ pγqP ij pγqc i c îβ ĵ ´1 pz ´wq 2 B ĵ P ij pγqB j P îĵ pγqc i c î1 z ´w B ĵ P ij pγqP îĵ pγqc j c îβ i `1 z ´w B i P îĵ pγqP ij pγqc j c îβ ĵ `1 pz ´wq 2 B ĵ P ij pγqB i P îĵ pγqc j c î1 z ´w B îP ij pγqP îĵ pγqc i c ĵ β j `1 z ´w B j P îĵ pγqP ij pγqc i c ĵ β î `1 pz ´wq 2 B îP ij pγqB j P îĵ pγqc i c ĵ 1 z ´w B îP ij pγqP îĵ pγqc j c ĵ β i ´1 z ´w B i P îĵ pγqP ij pγqc j c ĵ β î ´1 pz
pγqP ij pγqc j c îc ĵ b k ´1 z ´w P ij pγqB j P îĵ pγqc îc ĵ β i `1 pz ´wq 2 B i B j P îĵ pγqP ij pγqc îc ĵ 1 z ´w B ĵ B k P ij pγqP îĵ pγqc i c j b k c î `1 z ´w B îP ij pγqP îĵ pγqc i c j β ĵ `1 pz ´wq 2 B ĵ B îP ij pγqP îĵ pγqc i c j 1 z ´w B îB k P ij pγqP îĵ pγqc i c j b k c ĵ ´1 z ´w B ĵ P ij pγqP îĵ pγqc i c j β î ´1 pz ´wq 2 B îB ĵ P ij pγqP îĵ pγqc i c j .
Term B k P ij pγpzqqc i pzqc j pzqb k pzqB kP îĵ pγpwqqc îpwqc ĵ pwqb kpwq yields

1 z ´w B îP ij pγqB kP îĵ pγqc i c j c ĵ b k ´1 z ´w B ĵ P ij pγqB kP îĵ pγqc i c j c îb k1 pz ´wq 2 B îP ij pγqB i P îĵ pγqc j c ĵ ´1 pz ´wq 2 B îP ij pγqB j P îĵ pγqc i c ĵ 1 z ´w B k P ij pγ k qB i P îĵ pγqc j c îc ĵ b k ´1 z ´w B k P ij pγqB j P îĵ pγqc i c îc ĵ b k 1 pz ´wq 2 B ĵ P ij pγqB i P îĵ pγqc j c î `1 pz ´wq 2 B ĵ P ij pγqB j P îĵ pγqc i c î.
Grouping up, further we obtain: Terms of type ccβ:

1 z ´w P îĵ pγqB ĵ P ij pγqc i c îβ j ´1 z ´w P îĵ pγqB ĵ P ij pγqc i c j β î ´1 z ´w P îĵ pγqB ĵ P ij pγqc j c îβ i 1 z ´w P îĵ pγqB îP ij pγqc i c ĵ β j `1 z ´w P îĵ pγqB îP ij pγqc i c j β ĵ `1 z ´w P îĵ pγqB îP ij pγqc j c ĵ β i 1 z ´w P ij pγqB j P îĵ pγqc i c îβ ĵ `1 z ´w P ij pγqB j P îĵ pγqc i c ĵ β î ´1 z ´w P ij pγqB j P îĵ pγqc îc ĵ β i 1 z ´w P ij pγqB i P îĵ pγqc j c îβ ĵ ´1 z ´w P ij pγqB i P îĵ pγqc j c ĵ β î `1 z ´w P ij pγqB i P îĵ pγqc îc ĵ β j ,
where, as P is a skew-symmetric, i.e. P ij pγq " ´P ji pγq, under changing variables i Ø j first row is equal to second row and third one -to forth one.

Rearranging indexes accordingly we can see that second and forth lines are nothing but Jacobi identity:

´1 z ´w P îĵ pγqB îP ij pγqc i c ĵ β j ´1 z ´w P îj pγqB îP ĵi pγqc i c ĵ β j ´1 z ´w P îi pγqB îP j ĵ pγqc i c ĵ β j , `1 z ´w P ij pγqB i P îĵ pγqc j c îβ ĵ `1 z ´w P i îpγqB i P ĵj pγqc j c îβ ĵ `1 z ´w P i ĵ pγqB i P j îpγqc j c îβ ĵ . Terms of type cccb: ´1 z ´w B j B kP îĵ pγqP ij pγqc i c îc ĵ b k `1 z ´w B i B kP îĵ pγqP ij pγqc j c îc ĵ b k1 z ´w B ĵ B k P ij pγqP îĵ pγqc i c j b k c î ´1 z ´w B îB k P ij pγqP îĵ pγqc i c j b k c ĵ 1 z ´w B îP ij pγqB kP îĵ pγqc i c j c ĵ b k ´1 z ´w B ĵ P ij pγqB kP îĵ pγqc i c j c îb k1 z ´w B k P ij pγqB i P îĵ pγqc j c îc ĵ b k ´1 z ´w B k P ij pγqB j P îĵ pγqc i c îc ĵ b k ,
where due to antisymmetric variables first line is equal to second one and third line is equal to forth one under changing variables m Ø m. Moreover, first column is equal to the second under changing variables i Ø j, î Ø ĵ. Thus, we get

4 z ´w B i B kP îĵ pγqP ij pγqc j c îc ĵ b k `4 z ´w B k P ij pγqB i P îĵ pγqc j c îc ĵ b k .
But the last is derivative of Jacobi identity. Thus, it is zero. Terms of type cc do not also survive. Indeed, in OPE P ij pγqpc i β j ´βi c j qB kP îĵ pγqc îc ĵ b k Bk P ij pγqc i c j b k P îĵ pγqpc îβ ĵ ´βî c ĵ q they reduce one another due to symmetry of second derivatives.

Moreover, corresponding terms obtained from OPEs P ij pγqpc i β j ´βi c j qP îĵ pγqpc îβ ĵ ´βî c ĵ q and B k P ij pγqc i c j b k B kP îĵ pγqc îc ĵ b k reduce each other as well.

Remark. d qL is globally well-defined vertex operator, which raises the fermionic number by `1, as Poisson tensor and the bc´βγ system are globally well-defined. According to r4s the cohomology of the bc ´βγ system with differential d qL is again a vertex algebra.

Cohomology

While de Rham cohomology groups of manifolds of "finite type" (e.g. compact manifolds) are of finite dimensions, Lichnerowicz-Poisson cohomology groups may have infinite dimension in general. The problem of determining whether the LP-cohomology space is finite dimensional or not is already a difficult open problem for most Poisson structures. The quantum version of the differential settles down this issue, as c ´γ part of bc ´βγ system always emerges as subcomplex. Moreover, general procedure is the following. Due to OPEs of the bc ´βγ system differential complex pC " À k C k , d qL q admits filtration by degree of . The filtration is of finite length and the terms of the spectral sequence can be computed inductively.

For a non-negative integer n define space V n of all elements, containing order of derivatives of b ˚, c ˚, γ ˚, β ˚less or equal n. Then on first page of spectral sequence by degree of the defined filtration by maximal order of derivatives is compatible with the boundary map d 1 qL due to only single contractions. Accordingly, for the bc ´βγ system Drb ˚, c ˚, γ ˚, β ˚s we have such representation

Drb ˚, c ˚, γ ˚, β ˚s -V 0 ' 8 à n"0 V n`1 {V n As pV n , d 1 qL q is subcomplex of pV n`1 , d 1
qL q and there exists the short exact sequence

0 ÝÑ V n ÝÑ V n`1 ÝÑ V n`1 {V n ÝÑ 0,
it is sufficient to compute cohomology of pV n , d 1 qL q for any non-negative integer n. In addition

V n`1 -pV n b RrB n`1 c ˚, B n`1 γ ˚sq b RrB n`1 b ˚, B n`1 β ˚s,
where pV n b RrB n`1 c ˚, B n`1 γ ˚s, d 1 qL q is subcomplex of pV n`1 , d 1 qL q. Thus, mathematical induction can be used. Notice also that differential d 1 qL satisfies Leibniz rule and it raises the multiplicity degree by `2.

It is worthy to point out here that the complex pRrc ˚, γ ˚s, d

1
qL q is the classical LP-complex. To illustrate the machinery we will consider in detail one of quadratic Poisson structures on R 2 . All quadratic Poisson structures on R 2 were classified (their LP-cohomologies were also determined) in r9s: P 1 " B x ^By , P 2 " xy B x ^By , P 3 " px 2 `y2 q B x ^By , P 4 " y 2 B x ^By .

Corresponding quantum Lichnerowicz differentials are

d qL1 " t ¿ pc 1 β 2 ´β1 c 2 qdz, ´u, d qL2 " t ¿ γ 1 γ 2 pc 1 β 2 ´β1 c 2 qdz `pγ 2 b 1 `γ1 b 2 qc 1 c 2 dz, ´u, d qL3 " t ¿ ppγ 1 q 2 `pγ 2 q 2 qpc 1 β 2 ´β1 c 2 qdz `2pγ 2 b 1 `γ1 b 2 qc 1 c 2 dz, ´u, d qL4 " t ¿ pγ 2 q 2 pc 1 β 2 ´β1 c 2 qdz `2γ 2 b 1 c 1 c 2 dz, ´u.
First case is symplectic case: it is usual de Rham cohomology. We have only one non-zero cohomology group, namely H 0 -R, constants, since d 1 qL1 is monomial preserving and the complex can be represented as tensor product of c ´γ and b ´β parts.

For second case as well as for third one the LP-cohomology space is finite dimensional. Two cases are similar. We will consider the second case closely.

The LP-cohomology space is of infinite dimension for the last case. Indeed, c 2 Bc 2 B 2 c 2 . . . B m`1 c 2 , pγ 1 q m c 2 and pβ 1 q m , where m P Z ě0 , represent part of cohomology classes.

Let's inspect complex pDrb ˚, c ˚, γ ˚, β ˚s, d qL2 q on the first page of spectral sequence by degree of . To begin with, values of d 1 qL2 for all single elements are written below:

d 1 qL2 pγ 1 q " γ 1 γ 2 c 2 , d 1 qL2 pγ 2 q " γ 1 γ 2 c 1 ; d 1 qL2 pc 1 q " γ 2 c 1 c 2 , d 1 qL2 pc 2 q " γ 1 c 1 c 2 ; d 1 qL2 pb 1 q " γ 1 γ 2 β 2 `pγ 2 b 1 `γ1 b 2 qc 2 , d 1 qL2 pb 2 q " γ 1 γ 2 β 1 `pγ 2 b 1 `γ1 b 2 qc 1 ; d 1 qL2 pβ 1 q " γ 2 pc 1 β 2 ´β1 c 2 q `b2 c 1 c 2 , d 1 qL2 pβ 2 q " γ 1 pc 1 β 2 ´β1 c 2 q `b1 c 1 c 2 .
The complex pRrc ˚, γ ˚s, d 1 qL2 q is the classical LP-complex and from r9s we know its cohomology classes: 1, γ 1 c 1 , γ 2 c 2 , c 1 c 2 , γ 1 γ 2 c 1 c 2 . However, notice that in contrast with r9s we could obtain that directly and it would not be difficult.

The routine calculations are left for the reader, but we are about to highlight the key points. The complex pV 0 -Rrc ˚, γ ˚s b Rrb ˚, β ˚s, d 1 qL2 q is more complicated and twisted. Leibniz rule d 

c 1 c 2 β k 1 β m 2 , c 1 c 2 β k 1 β m 2 pβ 1 b 1 ´β2 b 2 q,
where k, m P Z ě0 .

Next step is pV 1 -pV 0 b RrBc ˚, Bγ ˚sq b RrBb ˚, Bβ ˚s, d 1 qL2 q, where pV 0 b RrBc ˚, Bγ ˚s, d 1 qL2 q is subcomplex of pV 1 , d 1 qL2 q. Notice that B Bz pγ 1 c 1 q, B Bz pγ 2 c 2 q, B Bz pc 1 c 2 q, B Bz pγ 1 γ 2 c 1 c 2 q represent part of cohomology classes, see the Remark in Chapter 2. Moreover, element c 1 c 2 Bc 1 Bc 2 . . . B m`1 c 1 B m`1 c 2 ,
where m P Z ě0 , determines a cohomology class of complex pDrb ˚, c ˚, γ ˚, β ˚s, d 1 qL2 q. Thus, there are infinitely many non-zero cohomology groups.

Chiral de Rham Operator

There is impossible to expect that the chiral de Rham differential (see r2s) is going to commute with constructed operator d qL , as it doesn't happen on classical level. That's why we consider another differential, which luckily commutes with d qL .

Using the same notions α i " γ i `bi dz, θ i " c i `βi dz and concept of variation we have " δpα i q " dpγ i q " B z γ i dz δpθ i q " dpc i q " B z c i dz

In other words, δpb i q " B z γ i , δpγ i q " 0,

δpβ i q " B z c i , δpc i q " 0.
Define the associated non-zero OPEs for bc and βγ systems to be (changing sign of βγ system from usual one):

bpzqcpwq " 1 z ´w , cpzqbpwq "

1 z ´w ; βpzqγpwq " 1 z ´w , γpzqβpwq " ´1 z ´w .
Then B z γpzqβpwq " 1 pz´wq 2 and the above operator of variation is equal to the following operator

δ dR " t ¿ pB z γ i c i qdz, ´u.
Proposition 2. δ 2 dR " 0, rδ dR , d qL s " 0.

Proof. First statement that δ dR is differential is obvious as there are no singular terms. Second one is not harder. We obtain integral of total derivative, indeed: Term B k P ij pγpzqqc i pzqc j pzqb k pzqB w γ îpwqc îpwq yields d dz pP ij pγqqc i c j . Term P ij pγpzqqpc i pzqβ j pzq ´βi pzqc j pzqqB w γ îpwqc îpwq yields P ij pγq d dz pc i c j q.

Appendix: Nambu-Poisson bracket

Let us come back to the concept of Poisson manifold. Let M be a smooth finite dimensional manifold and C 8 pM q be the algebra of smooth functions on this manifold. A bilinear mapping t˚, ˚u : C 8 pM q ˆC8 pM q Ñ C 8 pM q is said to be a Poisson bracket if for any smooth functions f, g, h P C 8 pM q it satisfies i) tf, gu " ´tg, f u (skew-symmetry); ii) tf g, hu " f tg, hu `gtf, hu (Leibniz rule); iii) tf, tg, huu `tg, th, f uu `th, tf, guu " 0 (Jacobi identity). For instance consider the 2-dimensional space R 2 with coordinates denoted by p, q and define the bracket by the formula

tf, gu " Bpf, gq Bpp, qq " B p f B q f B p g B q g
A generalization of Poisson bracket was proposed by Y. Nambu in [START_REF] Nambu | Generalized Hamiltonian mechanics[END_REF], where he introduced a ternary bracket of three smooth functions f, g, h defined on the three dimensional space R 3 , whose coordinates are denoted by x, y, z. This ternary bracket is defined with the help of the Jacobian of a mapping px, y, zq ÝÑ pf px, y, zq, gpx, y, zq, hpx, y, zqq as follows tf, g, hu "

Bpf, g, hq Bpx, y, zq "

B x f B y f B z f B x g B y g B z g B x h B y h B z h
Evidently this ternary bracket is totally skew-symmetric. It can be also verified that it satisfies the Leibniz rule

tgh, f 1 , f 2 u " gth, f 1 , f 2 u `htg, f 1 , f 2 u,
and the identity

tg, h, tf 1 , f 2 , f 3 uu " ttg, h, f 1 u, f 2 , f 3 u `tf 1 , tg, h, f 2 u, f 3 u `tf 1 , f 2 , tg, h, f 3 uu.
This identity is called Filippov-Jacobi identity and its n-ary version is the basic component of a concept of n-Lie algebra proposed by V. T. Filippov in [START_REF] Filippov | n-Lie algebras[END_REF]. So, Poisson bracket can be generalized to any number of arguments. A smooth manifold endowed with a n-ary Nambu-Poisson bracket is called a Nambu-Poisson manifold of nth order [START_REF] Takhtajan | On foundation of generalized Nambu mechanics[END_REF].

As was mentioned, Nambu-Poisson bracket is generalization of Poisson bracket, but there is opposite direction: Nambu-Poisson brackets can be defined inductively (see Proposition 3,[START_REF] Grabowski | Remarks on Nambu-Poisson and Nambu-Jacobi brackets[END_REF]). Proposition 3. An n-bracket, n ą 2, is Nambu-Poisson if and only if fixing an argument we get an pn ´1q-Nambu-Poisson bracket.

The widest generalization we shall need is the notion of a strong homotopy Lie (or L 8 ) algebra, which is well-known in algebraic homotopy theory, where it originated. This is obtained by allowing for a countable family of multilinear antisymmetric operations of all arities n ě 1, constrained by a countable series of generalizations of the Jacobi identity known as the L 8 identities. This notion admits specializations indexed by subsets S Ď N of arities and which are defined by requiring vanishing of all products of arities not belonging to S. This leads to the notion of L S algebra. The case S " tnu, when only a single product of arity n is non-vanishing, recovers the notion of n-Lie algebras. We refer the reader to [START_REF] Lazaroiu | Strong Homotopy Lie Algebras, Generalized Nahm Equations and Multiple M2-branes[END_REF] [START_REF] Dzhumadil | daev, Wronskians as n-Lie multiplications[END_REF] for more details.

Due to Leibniz rule Nambu-Poisson bracket acts on each factor as a vector field, whence it must be of the form tf 1 , f 2 , . . . , f n u " P pdf 1 , df 2 , . . . , df n q,

where P is a field of n-vectors on a smooth manifold M [START_REF] Vaisman | A survey on Nambu-Poisson brackets[END_REF]. It is called a Nambu-Poisson tensor.

Remember that if we use the same definition for n = 2, we get a Poisson tensor. The Nambu-Poisson tensor fields were characterized as follows by L. Takhtajan [START_REF] Takhtajan | On foundation of generalized Nambu mechanics[END_REF] (see additionally also [START_REF] Vaisman | A survey on Nambu-Poisson brackets[END_REF]) Proposition 4. The n-vector field P is a Nambu-Poisson tensor of order n pn ě 3q iff the natural components of P with respect to any local coordinate system x a of M satisfy the equalities:

n ÿ k"1 rP b 1 b 2 ...b k´1 ub k`1 ...bn P va 2 a 3 ...a n´1 b k `P b 1 b 2 ...b k´1 vb k`1 ...bn P ua 2 a 3 ...a n´1 b k s " 0, n ÿ u"1 rP a 1 a 2 a 3 ...a n´1 u B u P b 1 b 2 ......bn ´n ÿ k"1 P b 1 b 2 ...b k´1 ub k`1 ...bn B u P a 1 a 2 a 3 ...a n´1 b k s " 0.
A Nambu-Poisson tensor field P of an even order n " 2k satisfies the condition rrP, P ss " 0, where the operation is again the canonical Schouten bracket [START_REF] Vaisman | A survey on Nambu-Poisson brackets[END_REF]. This suggests the study of generalized Poisson structures: the Nambu-Poisson cohomology.

It is possible (using Proposition 4) to extend the concept of quantum Lichnerowicz differential to a Nambu-Poisson tensor P of an even order n " 2k. This way, we obtain universalization of Kontsevich's theory (to a smooth manifold one can associate the Lie algebras of multi-vector fields and multi-differential operators, where one can encode classical data (Poisson structures) and quantum data (star products); relating these two led Kontsevich to his famous formality theorem that establishes the deformation quantization of Poisson manifolds) [17][18] in the most direct and natural way. Thus, it opens the road for comprehensive pursuing of rational homotopy theory [START_REF] Quillen | Rational homotopy theory[END_REF].

Appendix: Gromov-Witten theory

The object of interest in Gromov-Witten theory is a holomorphic map φ : Σ Ñ X from genus g Riemann surface Σ to manifold (or orbifold) X. The number of such maps is equivalent to the Gromov-Witten invariant, which exhibits invariance under complex deformations on X. It has origin from topological string theory, namely in Witten's work [START_REF] Witten | On the structure of the topological phase of two-dimensional gravity[END_REF] on integrals in two dimensional gravity with enumerative meaning of counting instantons (non-trivial solutions of equations of motion) on X of topological string.

There is a formal definition of Gromov-Witten invariant in algebraic geometry, wherein it can be expressed through cohomology classes on Calabi-Yau manifold X. When the target space is an orbifold, the cohomology that is involved in the Gromov-Witten invariant theory is called Chen-Ruan cohomology. This is the type of cohomology that is sufficient [START_REF] Chen | A New Cohomology Theory of Orbifold[END_REF] for orbifolds, rather than the orbifold de Rham cohomology (in the sense that this enlarges the orbifold de Rham cohomology by keeping track of the automorphisms that the cohomology classes might have).

Quantum Lichnerowicz -Poisson complex is also connected to many geometrical invariants. As we have seen, finding its cohomologies requires enormous calculations. However, first page of spectral sequence by degree of is more handleable. For example, we can apply the general Künneth theorem to

V n b V 0 Rrb ˚, c ˚, γ ˚, β ˚, B n`1 b ˚, B n`1 c ˚, B n`1 γ ˚, B n`1 β ˚s,
where b V 0 means tensor product over ring V 0 " Rrb ˚, c ˚, γ ˚, β ˚s. Corresponding cohomologies yield new invariant.

1 qL2 pf gq " d 1 qL2 pf qg `f d 1 qL2

 111 pgq is useful here. Part of cohomology classes are

  ´wq 2 B îP ij pγqB i P Term P ij pγpzqqpc i pzqβ j pzq ´βi pzqc j pzqqB kP îĵ pγpwqqc îpwqc ĵ pwqb kpwqB k P ij pγpzqqc i pzqc j pzqb k pzqP

						îĵ	pγpwqqpc îpwqβ ĵ pwq ´βî pwqc ĵ pwqq
	yields								
	´1 z ´w B j B kP	îĵ	pγqP ij pγqc i c îc ĵ b k	`1 z ´w P ij pγqB i P	îĵ	pγqc îc ĵ β j	´1 pz ´wq 2 B j B i P	îĵ	pγqP ij pγqc îc ĵ	1
	z	´w B i B kP	îĵ						

îĵ pγqc j c ĵ .