Valerii Sopin

= Ph

2014 Pspace

Hal-

Keywords: Computational Complexity, Polynomial hierarchy, QBFs, PSPACE, BQP MSC classes: 03G05, 03B70, 68Q12, 68Q15, 68Q25

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

In computational complexity theory, NP is one of the most fundamental complexity classes. The complexity class NP is associated with computational problems having solutions that, once given, can be efficiently tested for validity. It is customary to define NP as the class of languages which can be recognized by a non-deterministic polynomial-time machine.

A decision problem is a member of co-NP if and only if its complement (the complement of a decision problem is the decision problem resulting from reversing the "yes" and "no" answers) is in the complexity class NP. In simple terms, co-NP is the class of problems for which efficiently verifiable proofs of "no" instances, sometimes called counterexamples, exist. Equivalently, co-NP is the set of decision problems where the "no" instances can be accepted in polynomial time by a non-deterministic Turing machine.

On the other hand, PSPACE is the set of all decision problems that can be solved by a Turing machine using a polynomial amount of space.

An oracle machine is an abstract machine used to study decision problems. It can be visualized as a Turing machine with a black box, called an oracle, which is able to solve certain decision problems in a single operation. We use notation L O , where O is the oracle.

On the contemporary state-of-the-art, the interested reader is referred to [START_REF] Arora | Computational Complexity: A Modern Approach[END_REF] and references therein.

Our result resolves some of unsolved problems in Computer Science.

The essential idea of the proof is to show that for any (fully) quantified Boolean formula φ we can obtain a formula φ which is in the fourth level of the polynomial hierarchy, no more than polynomial in the size of a given φ, such that the truth of φ can be determined from the truth of φ . The idea is to skolemize, and then use additional formulas from the second level of the polynomial hierarchy inside the skolemized prefix to enforce that the skolem variables indeed depend only on the universally quantified variables they are supposed to. However, some dependence is lost when the quantification is reversed. It is called "XOR issue" in the paper because the functional dependence can be expressed by means of an XOR formula. Thus, it is needed to locate these XORs. The last can be done locally, when all arguments are specified (keep in mind the algebraic normal form (ANF)), i.e. as a polynomial subroutine.

The paper is organized as follows. Chapters 2-4 refresh basic definitions. Chapter 5 contains the proof.

Quantified Boolean formula

The Boolean Satisfiability Problem (abbreviated as SAT) is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. In other words, it asks whether the variables of a given Boolean formula can be consistently replaced by the values true or false in such a way that the formula evaluates to true. SAT was the first known NP-complete problem, as proved by Stephen Cook [START_REF] Cook | The Complexity of Theorem-Proving Procedures[END_REF] and independently by Leonid Levin [START_REF] Levin | Universal search problems[END_REF].

One simple example of a co-NP-complete problem is tautology, the problem of determining whether a given Boolean formula is a tautology; that is, whether every possible assignment of true/false values to variables yields a true statement.

For a Boolean formula φ(x 1 , . . . , x n), we can think of its satisfiability as determining the true of the statement

∃x 1 ∈ {0, 1} ∃x 2 ∈ {0, 1} . . . ∃x n ∈ {0, 1} φ(x 1 , . . . , x n).
The SAT problem becomes more difficult if both "for all" (∀) and "there exists" (∃) quantifiers are allowed. It is known as the quantified Boolean formula problem or QSAT. QSAT is the canonical complete problem for PSPACE [START_REF] Arora | Computational Complexity: A Modern Approach[END_REF].

We have seen the classes NP and co-NP, which are defined as follows [START_REF] Arora | Computational Complexity: A Modern Approach[END_REF]:

L ∈ NP if there is a deterministic Turing machine M running in time polynomial in its first input, such that x ∈ L ⇔ ∃w M (x; w) = 1, w has length polynomial in x.

L ∈ co-NP if there is a deterministic Turing machine M running in time polynomial in its first input, such that x ∈ L ⇔ ∀w M (x; w) = 1, w has length polynomial in x.

It is natural to generalize the above [1][4].

Let i be a positive integer. L ∈ Σ i if there is a deterministic Turing machine M running in time polynomial in its first input, such that

x ∈ L ⇔ ∃w 1 ∀w 2 . . . Q i w i i times M (x; w 1 ; . . . ; w i) = 1,
where

Q i = ∀ if i is even, and Q i = ∃ if i is odd.
Let i be a positive integer. L ∈ Π i if there is a deterministic Turing machine M running in time polynomial in its first input, such that

x ∈ L ⇔ ∀w 1 ∃w 2 . . Q i w i i times M (x; w 1 ; . . . ; w i) = 1,
where

Q i = ∀ if i is odd, and Q i = ∃ if i is even.
As in the cases of NP, co-NP, we require that w i each have length polynomial in x.

The polynomial hierarchy PH consists of all those languages of the form defined above. Note also the similarity to QSAT. The crucial difference is that QSAT allows an unbounded number of alternating quantifiers, whereas Σ i , Π i each allow (at most) i quantifiers. From here, PH ⊆ PSPACE.

Alternating Turing machine

An alternating Turing machine (ATM) is a non-deterministic Turing machine (NTM) with a rule for accepting computations that generalizes the rules used in the definition of the complexity classes NP and co-NP. The concept of an ATM was set forth by Ashok Chandra, Larry Stockmeyer and Dexter Kozen [START_REF] Chandra | Universal search problems[END_REF].

The definition of NP uses the existential mode of computation: if any choice leads to an accepting state, then the whole computation accepts. The definition of co-NP uses the universal mode of computation: only if all choices lead to an accepting state, then the whole computation accepts. An alternating Turing machine (or to be more precise, the definition of acceptance for such a machine) alternates between these modes.

An alternating Turing machine with k alternations is an alternating Turing machine which switches from an existential to a universal state or vice versa no more than k -1 times. The complexity class PH is a special case of hierarchy of bounded alternating Turing machine [START_REF] Chandra | Universal search problems[END_REF].

AP = PSPACE, where AP is the class of problems alternating machines can solve in polynomial time [START_REF] Chandra | Universal search problems[END_REF].

Main result

Next theorem shows that QBF is indeed a generalisation of the Boolean Satisfiability Problem, where determining of interpretation that satisfies a given Boolean formula is replaced by existence of Boolean functions that makes a given QBF to be tautology. Such functions are called the Skolem functions.

Theorem 1. The quantified Boolean formula

Ω 1 x 1 ∈ {0, 1} Ω 2 x 2 ∈ {0, 1} . . . Ω n x n ∈ {0, 1} φ(x 1 , . . . , x n),
where φ(x 1 , . . . , x n) is a Boolean formula, Ω s , s = i 1 , . . . , i j , is the quantifier ∃ and Ω t , t = i 1 , . . . , i j , is the quantifier ∀, j is the number of variables with the quantifier ∃, is a true quantified Boolean formula if and only if there are Boolean functions y q , where y q depends only on variables with the quantifier ∀ and indexes less i q , q = 1, . . . , j, that after substituting x iq := y q the given quantified Boolean formula becomes tautology.

Proof. It follows from a simple recursive algorithm for determining whether a QBF is true. We take off the first quantifier and check both possible values for the first variable:

A = Ω 2 x 2 ∈ {0, 1} . . . Ω n x n ∈ {0, 1} φ(0, . . . , x n), B = Ω 2 x 2 ∈ {0, 1} . . . Ω n x n ∈ {0, 1} φ(1, . . . , x n).
If Ω 1 = ∃, then return A disjunction B (that's it, A or B is true; to avoid unambiguous, if A and B is true, take A for determining the function, so the value depends only on values of previous variables). If Ω 1 = ∀, then return A conjunction B (A and B is true).

Notice that a Boolean function determines the truth

y 3 : {0, 1} 3 → {0, 1} that φ(x 1 , y 1 (x 1), x 2 , y 2 (x 1 , x 2), x 3 , y 3 (x 1 , x 2 , x 3
)) is tautology. [START_REF] Jain | QIP = PSPACE[END_REF] we know that without loss of generality we can assume a quantified Boolean formula to be in form (prenex normal form), where existential and universal quantifiers alternate. We assume it, for simplicity. We wish that a quantified Boolean formula

Theorem 2. 4 = (co-NP) NP (co-NP) NP = PSPACE Proof. From [1]
∀x 1 ∈ {0, 1} ∃y 1 ∈ {0, 1} ∀x 2 ∈ {0, 1} ∃y 2 ∈ {0, 1} . . . ∀x n ∈ {0, 1} ∃y n ∈ {0, 1} φ(x 1 , y 1 , . . . , x n , y n)
would be equivalent (equisatisfiable, more correctly) to

∀(x 1 , x 2 , . . . , x n) ∃(y 1 , . . . , y n){ φ(x 1 , y 1 , x 2 , y 2 , . . . , x n , y n) ∧ ∧ ∀(x n) ∃(z n) φ(x 1 , y 1 , x 2 , y 2 , . . . , x n-1 , y n-1 , xn , z n) ∧ ∧ ∀(x n-1 , xn) ∃(z n-1 , z n) φ(x 1 , y 1 , x 2 , y 2 , . . . , x n-2 , y n-2 , xn-1 , z n-1 , xn , z n) ∧ ∧ ∀(x 2 , . . . , xn) ∃(z 2 , . . . , z n) φ(x 1 , y 1 , x2 , z 2 , . . . , xn-2 , z n-2 , xn-1 , z n-1 , xn , z n) }
Namely, iterations of ∀x∃y reduce to conjunctions of separated ∀x∃z, as in the beginning we fix values of {y q , q = 1, . . . , n} and conjunctions jointly check that for predetermined {y l , l < q} suitable continuation {y l , l ≥ q} can be found. In each conjunction we consider {y l , l < q} as functions dependent on all {x i , i < q} and {z l , l ≥ q} as functions dependent on every {x i , i = 1, . . . , n} (if ∀x 1 F (x 1 , 0) = F (x 1 , 1), then variable x 2 is dummy variable for Boolean formula F (x 1 , x 2)). From here, if it is a true quantified Boolean formula, the above confirms it. However, another implication is not always true. Let's exam when two parts are different, allowing φ to have also odd number of variables with preserving alternations for quantifiers for foregoing induction. m = 1: for a Boolean formula of one variable the equivalence obviously holds. m = 2: inconsistency can possibly happen only with ∃y ∀x φ(y, x); we have 16 different Boolean formulas of two variables and the equivalence is violated only for XOR : (y ⊕ x), ¬(y ⊕ x).

Example 3. ∃y ∀x x • y is FALSE as well as ∀x ∃y x • y Example 4. ∃y ∀x x + y is TRUE as well as ∀x ∃y x + y Example 5. ∃y ∀x x ⊕ y is FALSE, but ∀x ∃y x ⊕ y is TRUE m ≥ 3: taking off the first quantifier and checking both possible values for the first variable in way we did in Theorem 1, we come to the m -1 case. Indeed, for example, considering m = 3, we have ∀z ∃y ∀x φ(z, y, x) ≡ ∃y ∀x φ(0, y, x) AN D ∃y ∀x φ(1, y, x), ∃t ∀x ∃y φ(t, x, y) ≡ ∀x ∃y φ(0, x, y) OR ∀x ∃y φ(1, x, y), where the second expression can be viewed as negation of the first expression. Consequently, it is enough to inspect only the first expression due to double negation.

If ∃y ∀x φ(0, y, x) ≡ ∀x ∃y φ(0, y, x) and ∃y ∀x φ(1, y, x) ≡ ∀x ∃y φ(1, y, x), then ∀z ∃y ∀x φ(z, y, x) ≡ ∀z ∀x ∃y φ(z, y, x) ≡ ∀z ∃ξ ∀x ∃y φ(z, y, x). Otherwise, the equivalence is false due to XOR issue from m = 2. Then ∃y ∀x φ(0, y, x) or ∃y ∀x φ(1, y, x) is false. Therefore, ∀z ∃y ∀x φ(z, y, x) is false.

Thus, using mathematical induction we have shown that XOR issue from m = 2 appears whenever the equivalence we want doesn't work and the emergence means that the real value is false, but the displayed formula says that it is true (there is no need to locate all chains with XORs: any chain includes a XOR of only two variables). The algebraic normal form (ANF, Zhegalkin normal form) is used here, i.e. the fact that any Boolean formula can be rewritten using only conjunctions and XORs.

Indeed, as we have 2n variables, XOR issue from m = 2 appears not only lonely, it can be some polynomial from ANF representation, i.e., (x 1 AN D . . . AN D x s AN D x) XOR (y 1 AN D . . . AN D y t AN D y) XOR . . . , which is needed to be detected. However, despite the exponential number of such polynomials, the AN D allows to examine them as a polynomial subroutine.

So, for

∀(x 1 , x 2 , . . . , x n) ∃(y 1 , . . . , y n) ∀(x i , . . . , xn) ∃(z i , . . . , z n) φ(x 1 , y 1 , x 2 , y 2 , . . . , xi , z i , . . . , xn-1 , z n-1 , xn , z n)
we additionally need to verify that for specific x 1 , . . . , x i-1 and xi , . . . , xn and found y 1 , . . . , y i-1 and z i , . . . , z n the given formula φ with the above fixed arguments except any variable with universal quantifier and any variable with existential quantifier is not equivalent to ∃y ∀x (x ⊕ y) or ∃y ∀x ¬(x ⊕ y) (there are n 2 formulas to examine in total). The idea is the following: if something1 XOR something2 XOR . . . causes unequisatisfiability, then for certain values of variables the expression something1 XOR something2 XOR . . . must become ∃y ∀x (x ⊕ y) or ∃y ∀x ¬(x ⊕ y). And, otherwise, if something1 XOR something2 XOR . . . does not cause unequisatisfiability, then there are not values of variables such that the expression something1 XOR something2 XOR . . . becomes to be in the form ∃y ∀x (x ⊕ y) or ∃y ∀x ¬(x ⊕ y). This finds some analogy with Full (Perfect) Disjunctive Normal Form.

To conclude, definition of alternating Turing machine shows that (co-NP) NP (co-NP) NP is enough and this way we solve complete problem for PSPACE. Remark 2. Maximal Satisfying Assignment odd , the problem of indicating, that the lexicographical maximum x 1 , . . . , x n ∈ {0, 1} n , that satisfies a given Boolean formula, is odd (is x 1 odd?), is complete for P NP .

BQP (bounded-error quantum polynomial time) is the class of decision problems solvable by a quantum computer in polynomial time, with an error probability of at most 1/3 for all instances, see [1][6]. Remark 4. The polynomial hierarchy is infinite relative to a random oracle with probability 1 and there exists an oracle separation of PH and PSPACE, see, for example, [START_REF] Raz | Oracle Separation of BQP and PH[END_REF]. However, note that an oracle separation does not necessarily imply the ordinary separation. There is no contradiction.

The proof of Theorem 2 relies strongly on Boolean algebra (the exchange is possible due to finite possibilities for arguments) and that defeats the relativization. Moreover, one useful reformulation is that PH = PSPACE if and only if second-order logic over finite structures gains no additional power from the addition of a transitive closure operator.

BPP (bounded-error probabilistic polynomial time) is the class of decision problems solvable by a probabilistic Turing machine in polynomial time with an error probability bounded away from 1/3 for all instances, see [START_REF] Arora | Computational Complexity: A Modern Approach[END_REF]. If the access to randomness is removed from the definition of BPP, we get the complexity class P. Proof. If P = NP, then NP = co-NP, since P = co-P. Moreover, a P machine with the power to solve P problems instantly (a P oracle machine) is not any more powerful than the machine without this extra power. Thus, we obtain that P = PH.

BPP can be treated in the same manner, as it is known that BPP is closed under complement and low for itself, meaning that BPP BPP = BPP.

Corollary 3. If NP = co-NP, then NP = PSPACE. Proof. It is known that if NP = co-NP, then NP = PH.
PP is the class of decision problems solvable by a probabilistic Turing machine in polynomial time, with an error probability of less than 1/2 for all instances, see [1][9]. PP has natural complete problems, for example, MAJSAT. It is a decision problem, in which one is given a Boolean formula φ. The answer must be "yes" if more than half of all assignments make φ true and "no" otherwise. Remark 5. By adding postselection to BQP (BQP ⊆ PP), a larger class is obtained [START_REF] Aaronson | Quantum computing, postselection, and probabilistic polynomial-time[END_REF]. It is known that it is equal to PP [START_REF] Aaronson | Quantum computing, postselection, and probabilistic polynomial-time[END_REF]. Is it true that BQP = PP, PP = PSPACE?

Corollary 5. If NP ⊆ BQP, then BQP = PSPACE.
Proof. BQP is low for itself, which means BQP BQP = BQP [START_REF] Bernstein | Quantum Complexity Theory[END_REF]; BQP ⊆ PSPACE. Remark 6. Dependency quantified Boolean formulas (DQBFs) are a generalization of ordinary quantified Boolean formulas [START_REF] Peterson | Multiple-person alternation[END_REF]. While the latter is restricted to linear dependencies of existential variables in the quantifier prefix, DQBFs allow arbitrary dependencies, which are explicitly specified in the formula. This makes decision problem with a DQBF to be NEXP-complete [START_REF] Peterson | Lower bounds for multiplayer non-cooperative games of incomplete information[END_REF].

Theorem 2 is not applicable to the case of DQBFs directly as the looping is possible (the linear order is used in Theorem 2). Is it within reach to generalise Theorem 2 for it? Notice that NEXP ⊆ EXP NP . Remark 7. Theorem 2 opens the road for comprehensive pursuing of all exponential complexity classes and their relationships with probabilistic Turing machines and the polynomial hierarchy. The beginning of such kind of research can be found in [START_REF] Babai | BPP has subexponential time simulations unless EXPTIME has publishable proofs[END_REF] Remark 8. The complexity of the ATL (Alternating-time Temporal Logic) satisfiability problem was proven to be EXP-complete by van Drimmelen [START_REF] Van Drimmelen | Satisfiability in alternating-time temporal logic[END_REF] for a fixed number of agents (notice that even with an unbounded supply of agents it is true [START_REF] Walther | Atl satisfiability is indeed ExpTime-complete[END_REF] and that gives another insight about collapsing of the polynomial hierarchy).

There is fixed point representation of ATL via QBF encoding, i.e., Unbounded Model Checking, see [START_REF] Kacprzak | Unbounded model checking for Alternating-Time Temporal Logic[END_REF]. Hence, there exists a translation of ATL formulas into propositional formulas.

According to Remark 6 and Corollary 6 decision problem with a certain type DQBF is EXP-complete. What could possibly be in-between these extremes? Notice that if EXP = NEXP, then P = NP.

Multiset {P, NP, NP NP , NP NP NP , NP NP NP NP } shows that there is always a key.

Acknowledgments

The author would like to thank Lew Gordeew [START_REF] Gordeew | Proof Compression and NP Versus PSPACE[END_REF][23], Zhaohui Wei, Emil Jeřábek, James Cook and the anonymous reviewers for their comments and suggestions.

Remark 1 .

 1 PSPACE = P? PSPACE = NP? PSPACE = P NP ? PSPACE = NP NP ? PSPACE = NP NP NP ?

Corollary 1 .Remark 3 .

 13 The polynomial hierarchy collapses and BQP ⊆ PH.Proof. See Chapter 3 and Theorem 2. It is known that BQP ⊆ PSPACE. The relationship between BQP and PH has been an open problem since the earliest days of quantum computing[START_REF] Aaronson | BQP and the Polynomial Hierarchy[END_REF].

Corollary 2 .

 2 If P = NP, then P = PSPACE. If BPP = NP, then BPP = PSPACE.

Corollary 4 .

 4 P PP = PSPACE. Proof. By Toda's theorem PH ⊆ P PP [1][10]. Further, P PP ⊆ P PSPACE = P PH = PH.

 [START_REF] Impagliazzo | P = BPP if E requires exponential circuits: Derandomizing the XOR Lemma[END_REF][START_REF] Mocas | Separating classes in the exponential-time hierarchy from classes in PH[END_REF][START_REF] Walther | Atl satisfiability is indeed ExpTime-complete[END_REF][START_REF] Schewe | ATL* Satisfiability Is 2EXPTIME-Complete[END_REF]. Corollary 6. PSPACE = EXP. Proof. EXP = EXP EXP by the time hierarchy theorems, but PSPACE PSPACE = PH PH = PH due to Theorem 2.

 table (one-to-one correspondence). Let only the quantifier for x k , k ≥ 1, be existential, then y 1 is some function of variables x 1 , . . . , x k-1 , as QBF means in that case that for any possible values of x 1 , . . . , x k-1 there exists value of x k that for all possible values of x i>k the given formula is true. It is indeed the truth table, where values of x 1 , . . . , x k-1 determine the value x k .Example 2. ∀x 1 ∃z 1 ∀x 2 ∃z 2 ∀x 3 ∃z 3 φ(x 1 , z 1 , x 2 , z 2 , x 3 , z 3) is a true QBF if and only if there exist such Boolean functions y 1 : {0, 1} → {0, 1}, y 2 : {0, 1} 2 → {0, 1},

	Example 1.