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Problem statement: We have Λ a real symmetric semi-positive definite matrix and D a
real positive diagonal matrix (thus also symmetric). The product ΛD is a square matrix but
non-symmetric. We want to prove that ΛD quadratic form, xTΛDx, is semi-positive definite,
i.e. xTΛDx ≥ 0∀x ∈ Rn\{0}.

If the elements of the diagonal D are equal, i.e. D = aI with a ∈ N, then the product
ΛD = aΛ is a real symmetric semi-positive definite matrix. Thus, for a diagonal D with
equal elements we have directly xTΛDx ≥ 0∀x ∈ Rn\{0}.

For different elements on the diagonal, we have the following results:

− The eigenvalues of ΛD are real and non-negatives

− If ΛD+(ΛD)T

2
has non-negative eigenvalues, then the quadratic form of ΛD is semi-

positive definite

Proof. Let us recall some useful matrix definitions and properties:

Definition 1 (Real symmetric semi-positive definite matrix). A is a real symmetric matrix
(its eigenvalues are thus real): A is semi-positive definite ⇐⇒ all its eigenvalues are non-
negatives.

Definition 2 (Quadratic form semi-positive definition). A matrix A is semi-positive definite
⇐⇒ xTAx ≥ 0, ∀x ∈ Rn\{0}

Property 1. If A is a real semi-positive definite matrix, then BTAB is semi-positive definite
for any matrix B.

Property 2 (Matrix congruent to a symmetric matrix). Any matrix congruent to a symmet-
ric matrix is again symmetric: If A is a symmetric matrix then so is BTAB for any matrix
B.
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Proof that the eigenvalues of ΛD are real and non-negatives

Because D is diagonal and positive we can write D = D
1
2D

1
2 , D

1
2 is also real positive and

symmetric thus invertible. Let us reformulate the matrix ΛD:

ΛD = ΛD
1
2D

1
2

= D− 1
2 (D

1
2ΛD

1
2 )D

1
2

(1)

It corresponds to a change of basis of D
1
2 . Because the eigenvalues (denoted λ) are invariant

to change of basis we have:
λ(ΛD) = λ(D

1
2ΛD

1
2 ) (2)

Using the Properties. 1 and 2, because Λ is a real symmetric semi-positive definite matrix,
(D

1
2 )TΛD

1
2 = D

1
2ΛD

1
2 is a real symmetric semi-positive definite matrix. Thus its eigenvalues

are real and non-negatives (Definition.1) and so are the ones of ΛD because of Eq.2. Then
we have proven our first result: the eigenvalues of ΛD are real and non-negatives.

Semi-positive definition of ΛD

In this part we look at a way to prove the semi-positive definition of ΛD by studying its
symmetric part in the Toeplitz decomposition:

Definition 3 (Toeplitz decomposition). Every square matrix A can be decomposed uniquely
as the sum of two matrices U and V , where U is symmetric and V is skew-symmetric.

A = U + V =
1

2
(A+ AT ) +

1

2
(A− AT ) (3)

In our case A = ΛD and U = 1
2
(ΛD + (ΛD)T ) is symmetric.

We recall the fact that the quadratic form of a skew-symmetric matrix equals to zero.
Indeed, by definition V T = −V and thus xTV x = (xTV Tx)T = −xTV x which holds only if
it equals to zero. Thus, the quadratic form of xTΛDx is the same one of xTUx, i.e:

xTΛDx = xT (
ΛD + (ΛD)T

2
)x (4)

One can thus prove the semi-positive definition of the symmetric matrix U to prove the
semi-positive definition of ΛD. Indeed, if xTUx ≥ 0, ∀x ∈ Rn\{0}, using Eq.4, we obtain
xTΛDx ≥ 0, ∀x ∈ Rn\{0}: proving of the semi-positive definition of ΛD.

One way to prove the semi-positive definition of U is to look at its eigenvalues. Because
U is symmetric, if its eigenvalues are non-negatives then U is semi-positive definite (see
Definition 1). This gives our second result: if U has non-negative eigenvalues, then ΛD is
semi-positive definite.

On the eigenvalues of U

One may notice that we have further information on the eigenvalues of U with respect to
the ones of ΛD. Using the following theorem of Fan on matrices [1] (Chapter 10, Theorem
10.28):
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Theorem 1. Let A be an n× n matrix with eigenvalues λ1(A), ..., λn(A) and Reλi(A) their
real parts. Then:

n∑
i=1

Reλi(A) ≤
n∑

i=1

λi

(A+ AT

2

)
(5)

Then, because the eigenvalues of ΛD are real and non-negatives (as proven in the first part),
we have using the Theorem 1:

0 ≤
n∑

i=1

λi(ΛD) ≤
n∑

i=1

λi(U) (6)

Thus, we know that the sum of the eigenvalues of U is non-negative, however to prove the
semi-positive definition of U it is needed to prove that all its eigenvalues are non-negatives.
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