On the semi-positive definition of the product of a
positive diagonal matrix and a symmetric semi-positive
definite matrix

Noélie Ramuzat - LAAS CNRS
January 2021

Problem statement: We have A a real symmetric semi-positive definite matrix and D a
real positive diagonal matrix (thus also symmetric). The product AD is a square matrix but
non-symmetric. We want to prove that AD quadratic form, 7 ADz, is semi-positive definite,
i.e. xTADz > 0Vz € R™\{0}.

If the elements of the diagonal D are equal, i.e. D = al with a € N, then the product
AD = aA is a real symmetric semi-positive definite matrix. Thus, for a diagonal D with

equal elements we have directly 2" ADz > 0Vz € R™\{0}.

For different elements on the diagonal, we have the following results:

— The eigenvalues of AD are real and non-negatives

— If M has non-negative eigenvalues, then the quadratic form of AD is semi-

positive definite

Proof. Let us recall some useful matrix definitions and properties:

Definition 1 (Real symmetric semi-positive definite matrix). A is a real symmetric matriz
(its eigenvalues are thus real): A is semi-positive definite <= all its eigenvalues are non-
negative.

Definition 2 (Quadratic form semi-positive definition). A matriz A is semi-positive definite
< 2TAx >0, Vo € R"\{0}
Property 1. If A is a real semi-positive definite matriz, then BT AB is semi-positive definite

for any matriz B.

Property 2 (Matrix congruent to a symmetric matrix). Any matriz congruent to a symmet-
ric matriz is again symmetric: If A is a symmetric matriz then so is BT AB for any matric

B.



Proof that the eigenvalues of AD are real and non-negatives

Because D is diagonal and positive we can write D = D%D%, D2 is also real positive and
symmetric thus invertible. Let us reformulate the matrix AD:

AD = AD:D: M
D~3(D3:ADz)D:3
It corresponds to a change of basis of D3. Because the eigenvalues (denoted \) are invariant

to change of basis we have: ) )
AMAD) = X(DzADz2) (2)

Using the Properties. 1 and 2, because A is a real symmetric semi-positive definite matrix,
(D2)TADz = DzAD? is a real symmetric semi-positive definite matrix. Thus its eigenvalues
are real and non-negatives (Definition.1) and so are the ones of AD because of Eq.2. Then
we have proven our first result: the eigenvalues of AD are real and non-negative.

Semi-positive definition of AD

In this part we look at a way to prove the semi-positive definition of AD by studying its
symmetric part in the Toeplitz decomposition:

Definition 3 (Toeplitz decomposition). Every square matriz A can be decomposed uniquely
as the sum of two matrices U and V', where U is symmetric and V is skew-symmetric.

A:U+V:%(A+AT)+%(A—AT) (3)

In our case A = AD and U = £(AD + (AD)7) is symmetric.
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We recall the fact that the quadratic form of a skew-symmetric matrix equals to zero.
Indeed, by definition V7 = —V and thus 27 Vz = (z7V7T2)T = —2TVz which holds only if
it equals to zero. Thus, the quadratic form of 7 ADz is the same one of 21Uz, i.e:

T
AD + 2(AD) Vi ()
One can thus prove the semi-positive definition of the symmetric matrix U to prove the
semi-positive definition of AD. Indeed, if 27Uz > 0, Vo € R"\{0}, using Eq.4, we obtain
rTADz > 0, Vz € R"\{0}: proving of the semi-positive definition of AD.

t"ADzx = 27 (

One way to prove the semi-positive definition of U is to look at its eigenvalues. Because U
is symmetric, if its eigenvalues are non-negative then U is semi-positive definite (see Definition
1). This gives our second result: if U has non-negative eigenvalues, then AD is semi-positive
definite.

On the eigenvalues of U

One may notice that we have further information on the eigenvalues of U with respect to
the ones of AD. Using the following theorem of Fan on matrices [1] (Chapter 10, Theorem
10.28):



Theorem 1. Let A be an n X n matriz with eigenvalues A\ (A), ..., \n(A) and RN (A) their
real parts. Then:

ZREAZ-(A) SZAi(AzA ) (5)

=1

Then, because the eigenvalues of AD are real and non-negatives (as proven in the first part),
we have using the Theorem 1:

0< i A(AD) < i () (6)

Thus, we know that the sum of the eigenvalues of U is non-negative, however to prove the
semi-positive definition of U it is needed to prove that all its eigenvalues are non-negatives.
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