On the semi-positive definition of the product of a positive diagonal matrix and a symmetric semi-positive definite matrix

Noëlie Ramuzat - LAAS CNRS

January 2021

Problem statement: We have Λ a real symmetric semi-positive definite matrix and D a real positive diagonal matrix (thus also symmetric). The product ΛD is a square matrix but non-symmetric. We want to prove that ΛD quadratic form, $x^{T} \Lambda D x$, is semi-positive definite, i.e. $x^{T} \Lambda D x \geq 0 \forall x \in \mathbb{R}^{n} \backslash\{0\}$.

If the elements of the diagonal D are equal, i.e. $D=a I$ with $a \in \mathbb{N}$, then the product $\Lambda D=a \Lambda$ is a real symmetric semi-positive definite matrix. Thus, for a diagonal D with equal elements we have directly $x^{T} \Lambda D x \geq 0 \forall x \in \mathbb{R}^{n} \backslash\{0\}$.

For different elements on the diagonal, we have the following results:

- The eigenvalues of ΛD are real and non-negatives
- If $\frac{\Lambda D+(\Lambda D)^{T}}{2}$ has non-negative eigenvalues, then the quadratic form of ΛD is semipositive definite

Proof. Let us recall some useful matrix definitions and properties:
Definition 1 (Real symmetric semi-positive definite matrix). A is a real symmetric matrix (its eigenvalues are thus real): A is semi-positive definite \Longleftrightarrow all its eigenvalues are nonnegative.
Definition 2 (Quadratic form semi-positive definition). A matrix A is semi-positive definite $\Longleftrightarrow x^{T} A x \geq 0, \forall x \in \mathbb{R}^{n} \backslash\{0\}$
Property 1. If A is a real semi-positive definite matrix, then $B^{T} A B$ is semi-positive definite for any matrix B.
Property 2 (Matrix congruent to a symmetric matrix). Any matrix congruent to a symmetric matrix is again symmetric: If A is a symmetric matrix then so is $B^{T} A B$ for any matrix B.

Proof that the eigenvalues of ΛD are real and non-negatives

Because D is diagonal and positive we can write $D=D^{\frac{1}{2}} D^{\frac{1}{2}}, D^{\frac{1}{2}}$ is also real positive and symmetric thus invertible. Let us reformulate the matrix ΛD :

$$
\begin{align*}
\Lambda D & =\Lambda D^{\frac{1}{2}} D^{\frac{1}{2}} \\
& =D^{-\frac{1}{2}}\left(D^{\frac{1}{2}} \Lambda D^{\frac{1}{2}}\right) D^{\frac{1}{2}} \tag{1}
\end{align*}
$$

It corresponds to a change of basis of $D^{\frac{1}{2}}$. Because the eigenvalues (denoted λ) are invariant to change of basis we have:

$$
\begin{equation*}
\lambda(\Lambda D)=\lambda\left(D^{\frac{1}{2}} \Lambda D^{\frac{1}{2}}\right) \tag{2}
\end{equation*}
$$

Using the Properties. 1 and 2 , because Λ is a real symmetric semi-positive definite matrix, $\left(D^{\frac{1}{2}}\right)^{T} \Lambda D^{\frac{1}{2}}=D^{\frac{1}{2}} \Lambda D^{\frac{1}{2}}$ is a real symmetric semi-positive definite matrix. Thus its eigenvalues are real and non-negatives (Definition.1) and so are the ones of ΛD because of Eq.2. Then we have proven our first result: the eigenvalues of ΛD are real and non-negative.

Semi-positive definition of ΛD

In this part we look at a way to prove the semi-positive definition of ΛD by studying its symmetric part in the Toeplitz decomposition:
Definition 3 (Toeplitz decomposition). Every square matrix A can be decomposed uniquely as the sum of two matrices U and V, where U is symmetric and V is skew-symmetric.

$$
\begin{equation*}
A=U+V=\frac{1}{2}\left(A+A^{T}\right)+\frac{1}{2}\left(A-A^{T}\right) \tag{3}
\end{equation*}
$$

In our case $A=\Lambda D$ and $U=\frac{1}{2}\left(\Lambda D+(\Lambda D)^{T}\right)$ is symmetric.
We recall the fact that the quadratic form of a skew-symmetric matrix equals to zero. Indeed, by definition $V^{T}=-V$ and thus $x^{T} V x=\left(x^{T} V^{T} x\right)^{T}=-x^{T} V x$ which holds only if it equals to zero. Thus, the quadratic form of $x^{T} \Lambda D x$ is the same one of $x^{T} U x$, i.e:

$$
\begin{equation*}
x^{T} \Lambda D x=x^{T}\left(\frac{\Lambda D+(\Lambda D)^{T}}{2}\right) x \tag{4}
\end{equation*}
$$

One can thus prove the semi-positive definition of the symmetric matrix U to prove the semi-positive definition of ΛD. Indeed, if $x^{T} U x \geq 0, \forall x \in \mathbb{R}^{n} \backslash\{0\}$, using Eq.4, we obtain $x^{T} \Lambda D x \geq 0, \forall x \in \mathbb{R}^{n} \backslash\{0\}$: proving of the semi-positive definition of ΛD.

One way to prove the semi-positive definition of U is to look at its eigenvalues. Because U is symmetric, if its eigenvalues are non-negative then U is semi-positive definite (see Definition 1). This gives our second result: if U has non-negative eigenvalues, then ΛD is semi-positive definite.

On the eigenvalues of U

One may notice that we have further information on the eigenvalues of U with respect to the ones of ΛD. Using the following theorem of Fan on matrices [1] (Chapter 10, Theorem 10.28):

Theorem 1. Let A be an $n \times n$ matrix with eigenvalues $\lambda_{1}(A), \ldots, \lambda_{n}(A)$ and $\mathcal{R}_{e} \lambda_{i}(A)$ their real parts. Then:

$$
\begin{equation*}
\sum_{i=1}^{n} \mathcal{R}_{e} \lambda_{i}(A) \leq \sum_{i=1}^{n} \lambda_{i}\left(\frac{A+A^{T}}{2}\right) \tag{5}
\end{equation*}
$$

Then, because the eigenvalues of ΛD are real and non-negatives (as proven in the first part), we have using the Theorem 1 :

$$
\begin{equation*}
0 \leq \sum_{i=1}^{n} \lambda_{i}(\Lambda D) \leq \sum_{i=1}^{n} \lambda_{i}(U) \tag{6}
\end{equation*}
$$

Thus, we know that the sum of the eigenvalues of U is non-negative, however to prove the semi-positive definition of U it is needed to prove that all its eigenvalues are non-negatives.

References

[1] Fuzhen Zhang. Matrix theory: basic results and techniques. Springer, 2011.

