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Problem statement: We have Λ a real symmetric semi-positive definite matrix and D
a real positive diagonal matrix (thus also symmetric). The product ΛD is a square matrix
but non-symmetric. We want to prove that ΛD quadratic form, xTΛDx, is semi-positive
definite, i.e. xTΛDx ≥ 0∀x ∈ Rn\{0}.

The proof is the following:

Proof. Let us recall some useful matrix definitions and properties:

Definition 1 (Real symmetric semi-positive definite matrix). A is a real symmetric matrix
(its eigenvalues are thus real): A is semi-positive definite ⇐⇒ all its eigenvalues are non-
negative.

Definition 2 (Quadratic form semi-positive definition). A matrix A is semi-positive definite
⇐⇒ xTAx ≥ 0, ∀x ∈ Rn\{0}

Property 1. If A is a real semi-positive definite matrix, then BTAB is semi-positive definite
for any matrix B.

Property 2 (Matrix congruent to a symmetric matrix). Any matrix congruent to a symmet-
ric matrix is again symmetric: If A is a symmetric matrix then so is BTAB for any matrix
B.

Let us prove that ΛD is semi-positive definite with respect to the Definition 2.

First, we prove that the eigenvalues of ΛD are reals and non-negatives:
Because D is diagonal and positive we can write D = D

1
2D

1
2 , D

1
2 is also real positive and

symmetric thus invertible. Let us reformulate the matrix ΛD:

ΛD = ΛD
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(1)

It corresponds to a change of basis of D
1
2 . Because the eigenvalues (denoted λ) are

invariant to change of basis we have:

λ(ΛD) = λ(D
1
2ΛD

1
2 ) (2)

Using the Properties.1 and 2, because Λ is a real symmetric semi-positive definite matrix,
(D

1
2 )TΛD

1
2 = D

1
2ΛD

1
2 is a real symmetric semi-positive definite matrix. Thus its eigenvalues
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are real and non-negatives (Definition.1) and so are the ones of ΛD because of Eq.2. Then
we have proven that the eigenvalues of ΛD are are real and non-negative.

Now, let us prove the semi-positive definition of ΛD:

Property 3 (Types of Quadratic Forms ). Quadratic forms can be classified according to the
nature of the eigenvalues of the matrix of the quadratic form:

• If all λi are positive, the form is said to be positive definite.

• If all λi are negative, the form is said to be negative definite.

• If all λi are non-negative (positive or zero), the form is said to be positive semi-definite.

• If all λi are non-positive (zero or negative), the form is said to be negative semi-definite.

• If the λi represent a mixture of positive, zero, and negative values, the form is said to
be indefinite

Using the Property 3 of [1], because the the eigenvalues of ΛD are are real and non-
negative we have directly the semi-positive definition of the quadratic form.

This property can be proven as follows:

Definition 3 (Toeplitz decomposition). Every square matrix A can be decomposed uniquely
as the sum of two matrices U and V , where U is symmetric and V is skew-symmetric.

A = U + V =
1

2
(A+ AT ) +

1

2
(A− AT ) (3)

In our case A = ΛD and U = 1
2
(ΛD + (ΛD)T ) is symmetric.

We recall the fact that the quadratic form of a skew-symmetric matrix equals to zero.
Indeed, by definition V T = −V and thus xTV x = (xTV Tx)T = −xTV x which holds only if
it equals to zero. Thus, the quadratic form of xTΛDx is the same one of xTUx, i.e:

xTΛDx = xT (
ΛD + (ΛD)T

2
)x (4)

One can thus prove the semi-positive definition of the symmetric matrix U to prove the
semi-positive definition of ΛD.

We use the following theorem on matrices [2] (Chapter 10, Theorem 10.28):

Theorem 1. Let A be an n× n matrix with eigenvalues λ1(A), ..., λn(A) and Reλi(A) their
real part. Let λ(A) =

∑n
i=1 λi(A) and Reλ(A) =

∑n
i=1Reλi(A). Then:

Reλ(A) ≤ λ
(A+ AT

2

)
(5)

Then, because the eigenvalues of ΛD are real and non-negative (as proven in the previous
part), we have using the Theorem 1:

0 ≤ λ(ΛD) ≤ λ(U) (6)

Thus, the eigenvalues of U are non-negative, delivering the proof of the semi-positive
definition of U , because U is symmetric (see Definition 1). Then, xTUx ≥ 0, ∀x ∈ Rn\{0}
and using Eq.4, we obtain xTΛDx ≥ 0, ∀x ∈ Rn\{0}: proving of the semi-positive definition
of ΛD.
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