A new algorithm for solving the rSUM problem A determined algorithm is presented for solving the rSU M problem for any natural r with a sub-quadratic assessment of time complexity in some cases. In terms of an amount of memory used the obtained algorithm is the n log 3 n order.

§ 1. Introduction

In computational complexity theory, the 3SU M problem asks if a given set of n integers, each with absolute value bounded by some polynomial in n, contains three elements that sum to zero. [START_REF] Gajentaan | On a class of O(n 2 ) problems in computational geometry[END_REF][START_REF] Erickson | Lower bounds for linear satisfiability problems[END_REF]. The generalized version, rSU M , asks the same question for r elements. [START_REF] Gajentaan | On a class of O(n 2 ) problems in computational geometry[END_REF][START_REF] Erickson | Lower bounds for linear satisfiability problems[END_REF].

The 3SU M problem was initially set in [START_REF] Gajentaan | On a class of O(n 2 ) problems in computational geometry[END_REF]. Gajentaan and Overmars collected a large list of geometric problems, which may be solved in an order of quadratic complexity, and nobody knows, how to do it faster [START_REF] Gajentaan | On a class of O(n 2 ) problems in computational geometry[END_REF].

Hereinafter, we understand the order of complexity as asymptotic complexity of the algorithm, namely: the computational complexity (number of operations) of a given algorithm is bounded from above with function f (n) (which is the order of complexity) with accuracy to the constant multiplier and for the sufficiently large input length n.

The 3SU M problem has a simple and obvious algorithm for solving in the order of n 2 operations [START_REF] Gajentaan | On a class of O(n 2 ) problems in computational geometry[END_REF][START_REF] Erickson | Lower bounds for linear satisfiability problems[END_REF].

There are a probabilistic, sub-quadratic algorithms [START_REF] Baran | Subquadratic algorithms for 3SU M[END_REF] in the computational model, which implies parallel memory operation.

A determined algorithm of solving the 3SU M problem based on the Fast Fourier Transformation was suggested in [START_REF] Cormen | Introduction to Algorithms[END_REF]. However it assumes that absolute values of these n numbers are limited by the number n 2 log n . There are a algorithms based on sorting with partial information [START_REF] Gronlund | Threesomes, Degenerates, and Love Triangles[END_REF]. A solution to the generalized version of the problem, rSU M , may be found in [START_REF] Erickson | Lower bounds for linear satisfiability problems[END_REF]. Its known order of complexity is n r 2 (the "meet-in-the-middle" algorithm). The paper suggests a determined algorithm of solving the rSU M problem for any r ∈ N, which is of the order of n log 3 n in terms of the amount of memory used, with computational complexity of the sub-quadratic order in some cases.

The idea of the obtained algorithm is based not considering integer numbers, but rather k ∈ N successive bits of these numbers in the binary numeration system. It is shown that if a sum of integer numbers is equal to zero, then the sum of numbers presented by any k successive bits of these numbers must be sufficiently "close" (see Lemma 2,[START_REF] Baran | Subquadratic algorithms for 3SU M[END_REF] to zero. This makes it possible to discard the numbers, which a fortiori, do not establish the solution.

c Valerii Sopin, 2015 § 2. Algorithm for solving the rSU M problem Hereinafter, |y| designates an absolute value of integer number y, ⌈y⌉ is the smallest integer greater than or equal to y, ⌊y⌋ is the smallest integer smaller than or equal to y. A mapping sign(y) returns the sign of integer y (it returns zero for zero).

Introduce mapping P k j : Z → F k 2 for any k ∈ N and j ∈ N ∪ {0} as follows:

P k j (z) = sign(z)z j , ∀z = sign(z) ∞ i=0 z i 2 ik ∈ Z,
i.e. j digit of integer z in a numeral system with base 2 k . Given: set Ω of n integer numbers, m is the degree of a polynomial, which bounds the maximum absolute value of input numbers (n m = 2 m log 2 n ).

Algorithm 1. 1) From among the numbers in question, find ζ, which is the maximum in terms of its absolute value. Calculate l = ⌈log 2 (ζ)⌉.

2) In a cycle on j from 0 to ⌊ l+⌈log 2 r⌉ 3⌈log 2 r⌉ ⌋ perform the following: 2.1) Consider the numbers in Ω upon application of P 3⌈log 2 r⌉ j and set them down in array Φ j so that the number of identical elements would not exceed r.

With each γ ∈ Φ j group such ordinals of elements in Ω, where numbers with such ordinals in Ω and only these numbers would be equal to γ after using of P 3⌈log 2 r⌉ j . We associate it with table Π j .

Brute force to find all y 1 ∈ Φ j , where ∃y 2 , y 3 , . . . , y r ∈ Φ j :

| r i=1 P 3⌈log 2 r⌉ j (y i )| < r mod 2 3⌈log 2 r⌉ ,
for j = 0, strict comparison to zero must be performed. The gotten r-tuples, namely, their ordinals in Φ j , are to be set down in

Υ j . 3) Return Υ = { Υ j } and Π = { Π j }.
Algorithm 2. Algorithm for solving the rSUM problem 1) Perform Algorithm 1:

Υ 1 , Π 1 .
2) Shift the elements of Ω cyclically by ⌈log 2 r⌉ bits to the right, that the sign bit is retained for all numbers.

3) Perform Algorithm 1 on conditions that for j = 0 inequality must be performed rather than comparison, and assume the last ⌈log 2 r⌉ bits of numbers from Ω to be zero bits:

Υ 2 , Π 2 .
4) Shift the elements of Ω cyclically by ⌈log 2 r⌉ bits to the right, that the sign bit is retained for all numbers.

5) Perform Algorithm 1 on conditions that for j = 0 inequality must be performed rather than comparison, and assume the last 2⌈log 2 r⌉ bits of numbers from Ω to be zero bits: Υ 3 , Π 3 . 6) Shift the elements of Ω cyclically by 2⌈log 2 r⌉ bits to the left, that the sign bit is retained for all numbers. 7) Return i,j Υ i j relative to elements of Ω.

We are now to prove that the presented algorithms are correct.

Lemma 1. For any y i ∈ Z, i = 1, . . . , r, it is true that:

1) if r i=1 y i = 0, then r i=1 y i ≡ 0 mod 2 k , where k ∈ N. 2) if r i=1 y i ≡ 0 mod 2 l , l = max i (⌈log 2 (|y i |)⌉ + ⌈log 2 r⌉), then r i=1 y i = 0.
Proof. Obvious. This forms the basis of computer algebra.

The second statement is right because of

r i=1 2 t = r2 t .
Lemma 2. For any

y i ∈ Z, i = 1, . . . , r, it is true that: if r i=1 y i = 0, then | r i=1 P k j (y i )| < r mod 2 k , j = 0, . . . , ⌊ l k ⌋, l = max i (⌈log 2 (y i )⌉ + ⌈log 2 r⌉), k > ⌈log 2 r⌉ ∈ N.
Proof. For j = 0 the condition of Lemma 2 is met by virtue of Lemma 1.

Assume the opposite meaning that for a value j = s, for some r numbers meeting the condition of Lemma 2, the required inequality is wrong. At the same time, by virtue of Lemma 1:

r i=1 y i ≡ 0 mod 2 sk .
Present each y i mod 2 sk as a sum of the value P k s (the last k bits of numbers sign(y i )(|y i | mod 2 sk )) and the residue by module 2 (s-1)k , then

2 (s-1)k r i=1 P k s (y i ) ≡ -( r i=1 sign(y i )(|y i | mod 2 (s-1)k )) ≡ δ2 (s-1)k mod 2 sk ,
where |δ| < r, as the sum of r numbers, the absolute value of which is smaller than 2 j for a natural j, cannot exceed r2 jr. Besides, we know from Lemma 1 that r i=1 y i ≡ 0 mod 2 (s-1)k . From here, we obtain the required.

Lemma 3. For any y i ∈ Z, i = 1, . . . , r, it is true that: if r i=1 y i = 0, then for ỹi the inequality | r i=1 P k j (ỹ i )| < r mod 2 k is true, where ỹi is obtained from y i by arithmetic shift to the right by t bits.

t, k > ⌈log 2 r⌉ are any natural numbers, and j is any non-negative integer.

Proof.

2 t+k(j-1)

r i=1 P k j (ỹ i ) ≡ -( r i=1 sign(y i )(|y i | mod 2 t+k(j-1) )) mod 2 t+kj .
Further on, the proof totally replicates the proof of Lemma 2.

Theorem 1. Algorithm 2 will issue the solution of the rSU M problem.

Proof. As follows from Lemmas 1, 2, 3, if there exists a solution of the rSU M problem then, after execution of Algorithm 2, and even more so after execution of Algorithm 1, these numbers will stay within Ω.

The cycle on j in Algorithm 1 finishes at iteration ⌊ l+⌈log 2 r⌉ 3⌈log 2 r⌉ ⌋ by virtue of the second if-clause in Lemma 1.

After step 1), for each y 1 , y 2 , . . . , y r ∈ Ω takes place |

r i=1 P 3⌈log 2 r⌉ j (y i )| < r mod 2 3⌈log 2 r⌉
for any j under consideration, for j = 0 comparison to zero is performed.

It is about the numbers as such, not some values of P 3⌈log 2 r⌉ j of various numbers at each step on j; this is why we remembered ordinals in r-tuples for to coincide at each step of cycle j.

Hence

r i=1 y i = ⌊ l+⌈log 2 r⌉ 3⌈log 2 r⌉ ⌋ i=1 z i 2 3i⌈log 2 r⌉ , where |z i | < 2r -1,
as, considering y i after using of P Yet, at step 3), the sum P 3⌈log 2 r⌉ j of ỹ1 , ỹ2 , . . . , ỹr , where ỹi is y i at step 2) cyclically shifted to the right by ⌈log 2 r⌉, will not meet the necessary inequality for module 2 3⌈log 2 r⌉ (see Lemma 3) for the first j : z j = 0, if z j < r, as in the latter case, this z j will not be constituted by the least significant ⌈log 2 r⌉ bits of a 3⌈log 2 r⌉-bit number in the binary numeral system, but by more significant bits, which is determined by the fact that

r i=1 ỹi = t + ⌊ l+⌈log 2 r⌉ 3⌈log 2 r⌉ ⌋ i=1 z i 2 3i⌈log 2 r⌉-⌈log 2 r⌉ , where |t| < r.
The correctness of this presentation of the sum ỹi follows from ideas presented in Lemmas 2, 3, as, with a cyclic shift of numbers y i , we may lose r -1 carry bits by absolute value.

At step 5) we will exclude these y 1 , . . . , y r , if the first z j = 0 is larger than r -1, for the same considerations. § 3. Computational complexity of suggested algorithm Lemma 4. Algorithm's 1 order of complexity is n log n.

Proof. Calculating the maximum element by absolute value is n operations. Applying P 3⌈log 2 r⌉ j to elements of Ω is no more than 2n operations (taking in modulus and cyclic shift). Adding the obtained values to Φ j after applying of P 3⌈log 2 r⌉ j , containing no more r identical elements, using insertion sort with binary search, is not more than n(r2 3⌈log 2 r⌉ + 4⌈log 2 r⌉) operations, where we use 4⌈log 2 r⌉ to assess the complexity of binary search, r2 3⌈log 2 r⌉ is the number of shifts of elements in an array for insertion to a proper place.

At step 2.1) we solve the rSU M problem by modulus 2 3⌈log 2 r⌉ for a quantity of different numbers not exceeding r2 3⌈log 2 r⌉ , though there may be more than one solution. The exhaustive enumeration of all the variants requires r r 2 3r⌈log 2 r⌉ operations.

All the above-calculated was a single iteration on cycle of j.

As l = m⌈log 2 n⌉ + ⌈log 2 r⌉ and r, m are fixed numbers, we obtain the required assessment.

Remark 1. It is convenient to assume that each element in the r-tuple from Υ j (where elements of the r-tuple are ordinals of elements in Φ j , as determined by us) is a column of such ordinals of elements in Ω, that the numbers corresponding to these ordinals in Ω upon application of P 3⌈log 2 r⌉ j will be equal to an element with this ordinal. We may assume so, because we have a table of association of the elements in Φ j with elements in Ω.

Theorem 2. Algorithm's 2 order of complexity is sub-quadratic for some cases.

Proof. All steps of the Algorithm 2 except step 7) do not exceed the n log n order (see Lemma 4).

How to compute i,j Υ i j relative to elements of Ω?

All r-tuples from Υ i j are tables, see Remark 1. Υ i j contains no more 2r!r2 3⌈log 2 r⌉(r-1) items. Comparing a r-tuple with another according to ordinals in Ω will not make more than rn log 2 n operations. Consider log 2 n as elements in Ω are read successively, and hence, ordinals of elements of Ω, related to an element of Φ j , are set down in an orderly way, which means that we may use binary search. Every time we create new r-tuple with common ordinals of Ω in columns in one r-tuple and the other, if there is at least one common element in each column.

As cycle j ends ⌈ m⌈log 2 n⌉ 3⌈log 2 r⌉ ⌉ in Algorithm 1 and there are 3 execution of Algorithm 1 in Algorithm 2, we get upper bound of vertices of such comparing r-tuples tree:

(2r!r2 3(r-1)⌈log 2 r⌉ ) ⌈ m⌈log 2 n⌉ ⌈log 2 r⌉ ⌉ .
It's a lot, that's why we compute

Γ s = i, j=sh,...,(s+1)h-1 Υ i j , where i = 1, 2, 3, h = ⌈ ⌈log 2 log 2 n⌉ 9r⌈log 2 r⌉ ⌉, s = 0, . . . , ⌈ m⌈log 2 n⌉ 3h⌈log 2 r⌉ ⌉.
Cardinality of Γ s is less than

(2r!r2 3⌈log 2 r⌉(r-1) ) ⌈ ⌈log 2 log 2 n⌉ 3r⌈log 2 r⌉ ⌉ log 2 2 n.
So, the order of complexity of the computation of all Γ s is less than n log 3 2 n. Find ⌈ log ⌈log 2 n⌉ n 3 ⌉ sets Γ s with the smallest number of elements (it is of the order of n log n operation) and compute confluence of them Θ (it is of the order of n 5 3 log 2 n operations). To count the quantity of all variants produced by each r-tuple from Θ, relative to elements of Ω, takes no more than 2rn 5 3 operations (amount of options generated by fixed r-tuple is the product of the number of items in a columns of this r-tuple).

If the total number of r-tuples from Θ, relative to elements of Ω, is less than n 3 2r , we get sub-quadratic time for our algorithm (brute force all of variants).

If the total number of r-tuples from Θ, relative to elements of Ω, is less than , brute force still would be faster than using known algorithms.

Theorem 3. Algorithm 2 requires an amount of memory of an order n log 3 n relative to storage of integers.

Proof. As will readily be observed, the most memory-consuming step is 7).

Step 7) of Algorithm 2 requires some memory for Υ i j (constant quantity) and Π i j associating elements in Υ i j with elements in Ω (not more than the order of n), i = 1, 2, 3, j = 0, . . . , m log n + log r.

All together Γ s require the order of n log 3 n memory, see Theorem 2.

Remark 2. What is it about the constant in asymptotic complexity? As follows from Theorem 2 and Lemma 4 the constant would not exceed 3mr 4r .

Remark 3. As time and memory complexity of suggested algorithm is of the sub-quadratic order, it seems to be useful to perform it at the beginning of any other known algorithm.
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(y i ) r - 1 carry

 1 bits by absolute value relative to the sum P 3⌈log 2 r⌉ j ( r i=1 y i ) (see the proof in Lemma 2); besides, the very inequality from Lemma 2 makes it possible to differentiate from zero by absolute value to r -1.