
HAL Id: hal-03434169
https://hal.science/hal-03434169

Submitted on 18 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Grammatical Inference to Build Privacy
Preserving Data-sets of User Logs

Victor Connes, Colin de La Higuera, Hoel Le Capitaine

To cite this version:
Victor Connes, Colin de La Higuera, Hoel Le Capitaine. Using Grammatical Inference to Build Privacy
Preserving Data-sets of User Logs. International Conference on Grammatical Inference, Aug 2021,
Nantes, France. �hal-03434169�

https://hal.science/hal-03434169
https://hal.archives-ouvertes.fr

Proceedings of Machine Learning Research 153:176–190, 2021 Proceedings of the 15th ICGI

Using Grammatical Inference to Build Privacy Preserving
Data-sets of User Logs

Victor Connes victor.connes@univ-nantes.fr

Colin De La Higuera cdlh@univ-nantes.fr

Hoël Le Capitaine hoel.lecapitaine@univ-nantes.fr

LS2N Université de Nantes - faculté des Sciences et Techniques (FST)

Bâtiment 34, 2 Chemin de la Houssinière, 44322 Nantes.

Editors: Jane Chandlee, Rémi Eyraud, Jeffrey Heinz, Adam Jardine, and Menno van Zaanen

Abstract

In many web applications, user logs are extracted to build a user model which can be part
of further development, recommendation systems or personalization. This is the case for
education platforms like X5gon. In order to obtain community collaboration, these logs
should be shared, but logical privacy issues arise. In this work, we propose to build a user
model from a data-set of logs: this will be a timed and probabilistic k-testable automaton,
which can then be used to generate a new data-set having statistically close characteristics,
yet have in which the original sequences have been sufficiently chunked the original data
to not be able to identify the original logs. Following ideas from Differencial Privacy, we
provide a second algorithm allowing to eliminate any strings whose influence would be too
great. Experiments validate the approach.

Keywords: Open education, privacy data publishing, probabilistic finite automata, se-
quential data

1. Introduction

With websites more and more interactive, applications using user navigation traces or logs
are abundant. This is the case in many settings and specifically in that of education.
The recent political commitments in favor of open education, the COVID-19 pandemic
context and the growing success of online learning platform constitute a major turning
point for online education. In this context, large amounts of Open Educational Resources
(OER) are available today on the web but these resources are disseminated on multiple
repository websites. This dissemination of the resources does not facilitate the access and
the navigation through the OER for the learner and constitutes an important obstacle to
the diversity of resources in terms of providers, modality, language and cultures. A major
challenge for open education is today to connect these repositories to make this diversity
accessible and enjoyable for everyone.

It is in this spirit that project X5gon1 was launched. X5gon aims to index these
resources in a Global OER Network (GON) and to provide educational-driven tools to users
for navigation through this network. Elaborating these tools is an important challenge, and
allowing researchers to design their owns solutions and to compare them is arguably the best

1. For more information about project X5gon, its search engine, its recommendation engine, its APIs, refer
to www.x5gon.org.

© 2021 V. Connes, C.D.L. Higuera & H.L. Capitaine.

www.x5gon.org

Using Grammatical Inference to Build Privacy Preserving Data-sets of User Logs

way to achieve this goal. Logically, gathering and sharing user data is therefore a crucial
issue to promote research and initiatives on this issue. This is all the more true since there
is a lack of free data-sets on data related to open education in the state-of-the-art (Drachsler
et al., 2015). This lack of data-sets can be explained by several factors at the forefront of
which is the need to preserve the users privacy.

Indeed, the publication of user data sets cannot be done without guaranteeing the
protection of users’ personal data. Classical approaches anonymising a subset of the actual
user data and publishing it have been shown to be very ineffective in terms of privacy (Mayer
et al., 2016; Riederer et al., 2016; Cecaj et al., 2016). Unfortunately, the anonymisation
process remains a challenging open question: It is difficult to ensure with certainty that
an effective anonymisation process does not degrade the data too much and, at the same
time, ensures total anonymisation of the users. Taking into consideration this statement,
we choose to focus on another kind of approach to obtain a shareable data-set. We train a
probabilistic model on real user activities and to use this model to generate artificial user
activities which mimic as closely as possible the characteristics of the real data-set.

The model we choose is a new type of finite state machine, both timed and probabilistic
(Section 2). Then, we show how this automaton is able to generate an arbitrarily large
data-set with statistical characteristics close to the initial data-set. In order to deal with
privacy issue, we use ideas from a very popular privacy framework to analyze the obtained
automaton and remove data-points which would have a too big importance and could there-
fore be identified from the automaton or the newly generated data (Section 3). We also give
some properties of this algorithm. Finally, we apply our method on a set of user interactions
over OERs coming from the X5gon project (Section 4). These methods have been applied
with success on data from the X5gon data-set which was built in 2020 for an international
hackathon2.

2. From sequential data-sets to Probabilistic Timed k-Testable Automata

Log data-set and data-set of strings The data for user logs can come in many forms.
We will use an abstraction where a user session is a sequence of events, each event oc-
curring during some specific time. We will suppose that the number of possible events
is finite, corresponding to specific web-pages visited or resources consulted. A timed se-
quence X is X = (d1, s1), . . . , (di, si), where (di, si) are duration and event pairs of the
log. Consequently a data-set of timed sequences is a multi-set of timed sequences (e.g:
DL = {X1, X2, . . . , X|DL|}). The usual definition of timed sequence uses time instead of
duration but since in a practical setup it is easy to transform time into duration, we choose
duration, more convenient for our purpose.

With each Log data-set we can also associate a multi-set of strings over the alphabet of
events by forgetting the times. And we define a data-set of sequences D of size |D| composed
of a multi-set of events sequences, that are simply strings, D = {w1, w2, . . . , w|D|}.

Frequency Deterministic Finite State Automata (FDFA) Fdfa have been intro-
duced by de la Higuera (2010) as a model counting how many times a state or a transition is

2. https://www.x5gon.org/event/hackathon/

177

https://www.x5gon.org/event/hackathon/

Using Grammatical Inference to Build Privacy Preserving Data-sets of User Logs

used when parsing a particular data-set. They can easily be transformed into Probabilistic
Deterministic Finite State Automata (Pdfa) through normalization.

Definition 1 A frequency deterministic finite state automaton (FDFA) is a 6-tuple
〈Q, q0,Σ, δ, C, I〉 where Q = {q0. . . qn} is the set of states with q0 the initial state, tran-
sition function is δ : Q×Σ→ Q. Counts are given by C : (Q×Σ) ∪Q→ N where C(q, a)
indicates the number of times strings use transition, and C(q) ∈ N indicates the number of
times state q is used for ending. I ∈ N indicates how many strings have started. A specific
consistency condition ensures that the counts entering a state equal those exiting it. The
following constraint holds:

∀q ∈ Q, C(q) +
∑
a∈Σ

C(q, a) =
∑

q′∈Q,b∈Σ s.t. δ(q′,b)=q

C(q′, b) + I if q = q0

Counts are frequencies, and through normalization we can obtain relative frequencies which
can be interpreted as probabilities. Hence both of the local transition and of each indi-
vidual string: We write PQA(q, a) = C(q,a)

C(q)+
∑

b∈Σ C(q,b) and PQA(q) = C(q)
C(q)+

∑
b∈Σ C(q,b) for the

probabilities to generate symbol a and (resp.) to halt when in state q.
The probability PA(s) of (generating) by finite state automaton A a string s ∈ Σ∗ can

be computed by first extending δ: δ(q, λ) = q; δ(q, (a1 . . . an)) = δ(δ(q, a1), a2 . . . an)).
And with the frequencies we can also associate probabilities recursively:

P(q, λ) = PQ(q)

P(q, a1 . . . an) = PQ(q, a1) ·P(δ(q, a1), a2 . . . an)
(1)

A Pdfa A models a distribution DA. And by extension, so does a Fdfa. We will drop
the subscript A when there is no ambiguity. Fdfa can be easily derived from Pdfa in linear
time.

K-testable machines K-testable languages in the strict sense (k-TSS) were introduced
by McNaughton and Papert (1971). Intuitively, a k-TSS language is determined by a finite
set of sub-strings of length at most k that are allowed to appear as sub-strings in the strings
of the language. It has been proved that, unlike for regular languages, algorithms can learn
k-TSS languages in the limit from text (Garcia et al., 1990) which has made these models
attractive and used in many applications. A k-TSS language is determined by sets of strings
of length k − 1 that are allowed as prefixes and suffixes and by sets of stringth of length
k sub-strings, respectively, together with all the short strings (with length at most k − 1)
contained in the language.

Readers interested in explanation about how to build a Deterministic Finite-state Au-
tomaton (Dfa) recognizing a k-TSS language may refer to (de la Higuera, 2010).

Probabilistic Timed k-Testable Automata The goal of this work is to obtain a gen-
erative model for timed sequences. For this, we introduce Probabilistic Timed k-Testable
Automata (PTk-TA) which is a timed extension of Probabilistic Finite State Automata,
with a k-testable structure, allowing to model the duration of the transitions. In a PTk-
TA the Pdfa properties are directly issued from the k-test vector. In classical timed au-
tomata (Lasota and Walukiewicz, 2008), time is measured upon transitions and guards are

178

Using Grammatical Inference to Build Privacy Preserving Data-sets of User Logs

used mainly to determine the acceptance or the rejection of a timed word. Our model is
generative, so guards are not used. Instead, a (different) time distribution is associated
with each transition, given by the mean and the variance of a Normal distribution.

Definition 2 A Probabilistic Timed k-Testable Automata (PTk-TA) is a six-tuple
〈Q, q0,Σ, δ,P,∆t〉 where 〈Q, q0,Σ, δ,P〉 is a Dfa and ∆t is a probabilistic model for duration
of transitions given by ∆t : Q× Σ→ R

+ ×R+.

Each transition (q, a), ∆t(q, a) is a pair (µ, σ), used as parameters of a positive Gaussian
N+(µ(q,a), σ(q,a)), where µ(q,a) is the average duration for this transition and σ(q,a) is its
variance.

Algorithm 1 can be used to generate a random timed sequence with a PTk-TA.

Algorithm 1: Sequence generation algorithm

Input: A: timed Pdfa
Result: a timed sequence X
q = q0

while not end do // Iterate until F is drawn
a ∼ next(q)
µ, σ ← ∆t(q, a)
d ∼ N+(µ, σ)// d is drawn from the positive Gaussian distribution N+(µ, σ)
X ← X ∪ (a, d)
q ← δ(q, a)

end
Return X

Statistics can also be extracted for each PTk-TA, and we can compute the expected
duration of a sequence, for example.

The usual algorithm allowing to build a k-testable automaton can be adapted to com-
pute, from a data-set of timed sequences, probabilities for transitions and final states and
to estimate all the parameters for the different ∆t functions. The result will thus be a
Probabilistic Timed k-Testable Automata.

q0start

a

b

aa

bc

ac

cb bd

a : 0.3
N+(25, 7)

b : 0.7
N+(30, 5)

a : 0.4
N+(15, 2)

c : 0.6
N+(28, 6)

c : 1
N+(40, 10)

c : 1
N+(38, 9)

b : 0.9
N+(21, 7)

c : 1
N+(18, 6)

d : 1
N+(23, 9)

Figure 1: Toy example of Probabilistic Timed k-Testable Automata

179

Using Grammatical Inference to Build Privacy Preserving Data-sets of User Logs

In Figure 1 we represent a simplified Probabilistic Timed 2-Testable Automaton. The
alphabet is {a, b, c, d}. Event c, when taking place in state (a), leads us to state (ac). Its
probability is 0.4 and the duration is a value drawn from a Normal distribution N+(28, 6).

From this automaton a typical sequence generated by this PTk-TA could be
(b, 22), (c, 27), (b, 15), (d, 21). Such a sequence would correspond to user browsing page b
for 22 seconds, then page c for 27 seconds, then page b again for 15, and finally the page d
for 20seconds and halting.

3. Dealing with privacy issues

Given the Probabilistic Timed k-Testable Automata obtained from the proposed construc-
tion can be used to generate new strings: the distribution of these strings is close to the
original distribution (from the data-set). The k-testable method chunks data and therefore
will not preserve the long term dependencies: this is sometimes seen as an obstacle in using
this method but can be seen as an advantage here.

Yet several privacy issues still remain unsolved. These are studied in the field of differen-
tial privacy and our aim is to follow their guidelines. We should remember that the original
data-set contains user navigation logs so these are clearly concerned by these questions.
Considering the users are themselves learners, this is of course a serious issue.

Before giving relevant mathematical definitions, let us try to present the issues in a more
informal way. The question raised is the following: “Can some information in the learned
model depend too heavily on a unique user/log?”. A positive answer to this question
is problematic for two reasons: (1) it shows a low robustness of the model, and (2) too
much information about this single user can be seen. We therefore want to detect this
situation and clean the data-set accordingly. In the context of Probabilistic Timed k-
Testable Automata, this means scrutinizing the different transitions of the corresponding
Fdfa and checking if the counts for one single string don’t exceed a given threshold.

Some notions from differential privacy Differential privacy (DP) is a mathematical
setup introduced by Dwork et al. (2006) to ensure provable privacy guarantee. It was
originally developed to deal with linkage attacks and background knowledge based attacks.
These attacker models try to re-identify individuals in an anonymized data-set by combining
that data with background information; typically in our case this could be a specific url
accessed. These attacks are often fruitful even on sequential data has demonstrated in Mayer
et al. (2016); Riederer et al. (2016); Cecaj et al. (2016). Fortunately, DP is completely
independent of the adversary’s background or prior knowledge.

The main technique used in DP consists in adding noise to a data-set so that an adversary
cannot decide whether a particular record (e.g., a sequence in our case) is included in
the data-set or not. It is currently the most widely accepted formal mathematical model
that ensures privacy protection (Yang et al., 2017). The main advantages of DP over
others frameworks are: 1) The robustness against post-processing: any post-processing
computation will also be differentially private. 2) The composition-property: composability
of differentially private computations with a controlled degradation of the privacy loss. More
precisely, the sequential execution of k algorithm f1, . . . , fk each satisfying εi-differentially
private results in an algorithm that is ε-differentially private for ε =

∑
i εi (McSherry and

180

Using Grammatical Inference to Build Privacy Preserving Data-sets of User Logs

Talwar, 2007). 3) The group privacy: possibility to ensure the privacy of a group rather
than of single individuals.

Definition 3 (Differential Privacy) Dwork et al. (2006). A randomized function f is (ε, γ)-
differentially private if for any two data-sets D and D′ such that D differ of D′ on only one
record and for any possible output Y ⊆ Imgf it holds that:

P [f(D) ∈ Y] ≤ exp(ε)P [f(D′) ∈ Y] + γ

As a particular case, if f is (ε, 0)-differentially private (i.e γ = 0), then we say it is ε-
differentially private. In this definition, γ controls the probability of uncontrolled breach
due to the possible stochastic nature of the algorithm and ε controls the multiplicative worst-
case privacy loss if no breach. Obviously, the mechanism does not only need to be private.
It should also keep as well as possible under private constraint the original distribution of
the data-set. Broadly speaking, the utility of a mechanism is its capability to minimize the
error expressed as the distance between the original db/statistics and the generated output
db/statistics. Unfortunately, DP often lead to very poor utility of the data-set released in
case a sequential data, final data-set distribution far from original one (Yang et al., 2017;
Shaked and Rokach, 2020).

Pruning the automaton and the data-set The ε-sensitivity we define here is a re-
laxation of differential privacy. We assume that any removed input string does not impact
more than by a multiplicative factor ε, the probability PQ(q, a) of any transition.

Let us note that ifD ⊆ D′ andAD is the Fdfa obtained through the k-testable algorithm
from D (AD′ for D′), it follows that AD is a sub-automaton of AD′ , and all its states and
transitions appear also in AD′ . This is a consequence of the k-testable construction method.
We will use this result in the sequel.

Definition 4 (ε-sensitivity) Let D be a data-set. Let A be a k-testable Fdfa and w be a
string from the building corpus. We say that w is ε-sensitive for the transition (q, a) in A
(here a can be instanced by λ) iff:

P
Q
B (q, a) < εPQA(q, a)

where B is the k- testable Fdfa built from the same corpus of A but without the string w.
This may be rewritten using frequencies as:

CA(q, a)− C(w, q, a)

C(q) +
∑

c∈ΣC(q, c)− C(w, q, a)
< ε

C(q, a)

C(q) +
∑

c∈ΣC(q, c)

An Fdfa A without any ε-sensitive transitions for any string in D is said to be ε-private
on D.

Algorithm 2 prunes the input Fdfa in order to guarantee that no remaining transitions
in the output Fdfa are ε-sensitive for any string. The algorithm iterates over D and parses
each string in D while increasing C(w, q, a) each time the transition (q, a) is reached by the
string w. We assume that since D is a multi-set, it is computed independently for each w

181

Using Grammatical Inference to Build Privacy Preserving Data-sets of User Logs

Algorithm 2: Pruning algorithm

Input: 〈Q, q0,Σ, δ, C, I〉: Fdfa, D: Sequential database, ε: [0, 1]
Result: ε-private pruned Fdfa 〈Q, q0,Σ, δ, C, I〉
∀w ∈ D ∀(q, a), C(w, q, a)← 0
foreach w ∈ D do // Iterate over all strings

q ← q0

foreach a ∈ w do // Iterate over symbols in w
C(w, q, a) + +
q ← δ(q, a)

end
C(w, q, λ) + +

end
convergence← False
∀q ∈ Q,C(q, ∗)←

∑
a∈Σ C(q, a)

D′ ← D
while not convergence do

convergence← True
foreach ∀w ∈ D′,∀(q, a) ∈ (Q× Σ) ∪Q,C(w, q, a) 6= 0 do

if C(q,a)−C(w,q,a)
C(q,∗)−C(w,q,a) < εC(q,a)

C(q,∗) then // Check if w has an ε-sensitive transition

convergence← False
D′ ← D′ \ {w}
∀(q, b) ∈ (Q× Σ) ∪Q,C(w, q, a) 6= 0, C(q, b)← C(q, b)− C(w, q, a)
∀q ∈ Q,C(w, q, a) 6= 0, C(q, ∗)← C(q, ∗)− C(w, q, a)

end

end

end
return counting(D′, k), D′

in D. Additionally, for each state reached, we compute the total number of times C(q, ∗)
it is reached by any string. Finally we duplicate the input data-set D into D′. The second
step makes the pruning job, until convergence we iterate over each triplet (w, q, a) with non
zero values of count, rephrasing all transitions q, a reached by each string w. Whenever the
given string is ε-sensitive on this given transition, we delete it from the data-set and update
all the global counts for each transition reached by the strings as well as for each state.
Convergence is reached when no ε-sensitive string remains for any transition. Once done,
we return the obtaining Fdfa with the new pruned data-set.

Convergence Consider a Fdfa, and two strings w1, w2 from the corpus used to construct
the Pdfa. We assume w1 and w2 are ε-sensitive for the transition (q, a). Such that after
the pruning of w1, w2 they remain ε-sensitive for the transition (q, a) because:

C(q, a)− C(w2, q, a)

C(q) +
∑

b∈ΣC(q, b)− C(w2, q, a)
< ε

C(q, a)

C(q) +
∑

b∈ΣC(q, b)

=⇒ C(q, a)− C(w2, q, a)− C(w1, q, a)

C(q) +
∑

b∈ΣC(q, b)− C(w2, q, a)− C(w1, q, a)
< ε

C(q, a)− C(w1, q, a)

C(q) +
∑

b∈ΣC(q, b)− C(w1, q, a)

We can easily deduce of that a proof of convergence for our pruning algorithm.

182

Using Grammatical Inference to Build Privacy Preserving Data-sets of User Logs

Some properties The above algorithm does two things: on one hand, it ensures ε-privacy
by removing logs from the data which would be ε-sensitive. In doing so the resulting new
data-set and its corresponding Probabilistic Timed k-Testable Automata have the property
which is of help to ensure or weak form of ε-differentially privacy: the impact of each
individual sequence is locally small.

The following definition is relevant:

Definition 5 Let A and B be 2 Fdfa sharing the same structure. A and B have ε-close
counts if for every state q and every symbol a, we have, using the definitions of probabilities
from Equation (1),

if PA(q, aΣ∗) ≤ PB(q, aΣ∗), PA(q, aΣ∗) < (1− ε)PB(q, aΣ∗)

if PB(q, aΣ∗) ≤ PA(q, aΣ∗), PB(q, aΣ∗) < (1− ε)PA(q, aΣ∗)
(2)

We now have as an immediate corollary:

Proposition 6 If A is ε-private for data-set D, then it is ε-differentially private.

There are other issues here: one important question is to understand in what way Algo-
rithm 2 is going to modify the initial distribution. This poses interesting (and unanswered)
questions: given two Pdfa sharing a same structure, do small local changes to the proba-
bilities have only a bounded influence on the difference between the two distributions?

4. Case study: X5gon user data

We evaluate our method on a data-set of users from project X5gon. For our experiments
we try different values of k (from k = 1 to k = 5 but for the sake of staying concise and
without loss of generalisation we choose to present result only for k = 2 and k = 4). And
for each k, different values of ε (ε = 0, ε = 0.25, ε = 0.5, ε = 0.75). For each couple
of values a Probabilistic Timed k-Testable Automata is inferred and we generate a new
artificial data-set of 10000 sequences.

Statistics and specifics of the data-set The X5gon data-set is composed of 100217
sessions totaling more than 2 million log-items over 13787 resources. Resources are accessed
154 times in average in our data-set, nevertheless the distribution follows a power-law so
25% of the resources have less than 2 accesses and 50% less than 71 accesses. Table 1 details
the statistics in terms of log-items by sessions in its first row, with a session length varying
between 4 and 2605, but more than 90% of the sessions contain less than 50 log-items.
Similarly, Table 2 details statistics in terms of the duration of timed sequences. In the
first row, the average timed sequence duration is about ≈ 1h20min, but we observe a large
variance such that 50% of timed sequences last less than 31m and around 90% more than
4 hours.

These statistics show that it is going to be hard to anonymize the data-set while con-
serving a good utility. Firstly, the large universe size (number of resources) is infrequent on
data-sets in the literature. As an example MSNBC and STM which are classical benchmarks
have respectively a universe size of 17 and 342. Their universe size is very low compared
to the size of our data-set (13787) while the number of sequences is roughly the same (≈

183

Using Grammatical Inference to Build Privacy Preserving Data-sets of User Logs

1 million) in the three data-sets (MSNBC, STM, and X5gon). In terms of automata this
means a huge alphabet size, resulting in a very large number of states, as seen in Table 3

The same applies for the string length which is significantly larger on average in our
data-set ≈ 21 against ≈ 5 or 6 in the other data sets. Secondly, many resources have a
very small number of accesses which makes them sensitive in terms of privacy. Indeed, it
is the very purpose of linkage attacks to find events that are rare enough to be used as
quasi-identifiers for users. For this reason following the Definition 4, the strings containing
these resources are so-called ε-sensitive and are removed of the data-set during the pruning
algorithm.

count min max mean std 25% 50% 75% 90%

raw data 100253 4 2605 21.31 31.80 6 12 23 46

(R
D

) k=2 ε= 0.25 12241 4 148 9.23 9.21 5 6 10 17
k=4 ε= 0.25 5489 4 125 6.91 6.36 4 5 7 11

(G
D

) k=2
ε= 0 10000 2 191 21.1 20.04 7 15 28 46
ε= 0.25 10000 2 110 9.2 7.68 4 7 12 19

k=4
ε= 0 10000 4 315 21.21 19.68 7 15 28 46
ε= 0.25 10000 4 76 6.96 4.77 4 5 8 12

Table 1: Distribution of session lengths for raw, remaining and generated data. (RD) stands
for remaining data and (GD) for generated data

count min max mean std 25% 50% 75% 90%

raw data 100253 0 18h57m 1h21m 1h57m 6m 30m 1h43m 4h03m

(R
D

) k=2 ε=0.25 12241 0 13h53m 32m 1h7m 1m 8m 30m 1h25m
k=4 ε= 0.25 5489 0 14h27m 23m 59m 0 4m 18m 54m

(G
D

) k=2
ε= 0 10000 0 1d3h30m 2h18m 2h40 28m 1h24m 3h11m 5h45m
ε= 0.25 10000 0 1d19h46m 1h5m 1h25m 15m 39m 1h25m 2h33m

k=4
ε= 0 10000 0 18h57m 1h46 2h05m 21m 1h 2h25m 4h31m
ε= 0.25 10000 0 22h27m 39m 58m 10m 23m 48m 1h26m

Table 2: Distribution of session durations for raw, remaining and generated data. (RD)
stands for remaining data and (GD) for generated data

Length and duration statistics The tables Table 1 and Table 2 report distributions
of respectively length and duration of timed sequences for real data, data remaining after
the pruning step and final generated data. By comparing remaining data and their corre-
sponding generated data, we observe that the distributions in terms of length and in terms
of duration are well conserved by the generation algorithm.

As explained before, obtaining privacy guaranteed on this data-set implies the removing
of many infrequent strings. Therefore, we observe a gap in terms of distributions between
real data and remaining ones which is propagated on generated data. We observe that the

184

Using Grammatical Inference to Build Privacy Preserving Data-sets of User Logs

longest strings are more likely removed than the short one, this is a logical consequence of
our pruning algorithm. Since the longer is a string, the more likely it is to use a transition
where it is ε−sensitive. Even if the tables present the result only for ε=0.25, we observe a
similar behaviour for other value of ε (0.5, 0.75).

Model parameters Table 3 reports the number of deleted strings, symbols as well as
the number of states and transitions for different values of k and ε. We observe the effect of
pruning: even for the smaller values of ε, only 29%(4068/13787) of the resources are kept.
This is explained by the ratio of accesses over resources. Since many resources have few
accesses, strings containing these will be deleted by Algorithm Pruning in order to preserve
privacy. Additional results not reported here show that for ε lower than 0.5, the observed
parameters (|D|, ||D||, |Q|, ntrans) are still close to those observed for ε ∈ {0.25, 0.5}.
At the opposite, for ε higher than 0.5, these parameters become significantly lower. This
suggests that some strings are observed so infrequently that they are a privacy hazard and
are therefore removed even for very low ε values. The reason why these strings are hazards
for privacy is that they are ideal targets for linkage attacks so they are ε-sensible according
to the definition Definition 4 and removed. From ε = 0.5 on-wards other strings with more
moderate privacy hazards are gradually removed.

|D| ||D|| |Q| n trans

m
o
d

el
p

ar
am

et
er

s

k=2

ε=0 100257 13787 184600 471356
ε=0.25 12241 4068 8033 15573
ε=0.5 11506 3946 7577 14428
ε=0.75 1619 814 992 1452

k=4

ε=0 100257 13787 697057 1002063
ε=0.25 5489 3633 7670 10354
ε=0.5 5437 3633 7616 10256
ε=0.75 1156 802 992 1259

Table 3: Model parameters with |D| the number of strings, ||D|| the number of symbols
(resources), |Q| the number of states, and n trans the number of transitions

Count queries Count query consist in counting the number of times a given sub-string
(the query) appears in a data-set. Count queries are used as an evaluation method in
literature (Chen et al., 2012b) for that the relative error the relative error between the
number of occurrences in the real data-set D and the number of occurrences in the generated
one D̃ is measured and use as utility metric. The error is computed as:

error(Q(D̃)) =
|Q(D̃)−Q(D)|
max(Q(D), s)

where s is sanity bound, allowing to mitigate the effect of queries with small selectivity.
In practice, we set s to the standard value of 0.1% of |D|. Usual evaluations generate
random queries with a variable maximum length of the sub-string. Each event in a query is
uniformly selected at random from the event universe, finally the average error is reported.

185

Using Grammatical Inference to Build Privacy Preserving Data-sets of User Logs

We follow this method and generate 100000 random queries from various maximum
length (maxlength ∈ {2, 4, 8, 12, 16, 20}). In our case, due to the large number of events
in our real data-set, the queries generated have usually no occurrence in the real data-set
(Q(D) = 0). That ∀Q,Q(D) = Q(D̃) = 0 is therefore an average error of 0, for any value of
k, ε and maxlength. This demonstrates that in average a sub-string (i.e. query) not observed
in D is also not observed in the generated data-set D̃. This is a positive result which shows
that the model only generates sequences containing sub-strings present in the starting data.
This is expected for sub-string with length lower than k by construction of k-testables but
remains true experimentally for longer sub-strings.

Nevertheless, since queries are not observed in D, we cannot evaluate the ability of
our method to generate sub-strings observed in D. We propose a different evaluation
where queries are randomly drawn from existing sub-strings in D. The results are reported
in Table 4. We observe that the value of ε does not negatively affect the ability of the
model to handle query count. Furthermore, we obtain very good results for long sub-strings,
arguing for the ability of the model to preserve their counts.

maxlength: 4 8 12 20

ge
n

er
at

ed
d

a
ta k=2

ε=0 0.38 0.23 0.16 0.11
ε=0.25 0.39 0.23 0.17 0.11
ε=0.5 0.39 0.23 0.17 0.11
ε=0.75 0.40 0.24 0.17 0.11

k=4

ε=0 0.37 0.22 0.16 0.11
ε=0.25 0.39 0.23 0.17 0.11
ε=0.5 0.39 0.23 0.17 0.11
ε=0.75 0.40 0.24 0.17 0.11

Table 4: Average absolute error for sub-string observed in real data of length lower than
maxlength

Frequent Sequential Pattern Mining We also consider frequent sequential pattern
mining for evaluation. We are interested in the top N = N most frequent sub-strings from
D where N is an integer. These patterns are computed using the PrefixSpan algorithm (Pei
et al., 2001). We report the true positive rate: the percentage of frequent patterns correctly
identified. by denoting FN (D)(respectively FN (D̃)) the top N most frequent pattern in D
(respectively D̃), we compute the true positive rate as:

TPR =
|FN (D)−FN (D̃)|

N
Results for different value of N are reported. We observe in Table 5 that, even with-

out pruning, between 40% and 60% of the most frequent patterns appear in the data-set
generated by the Probabilistic Timed k-Testable Automata. These values can be used as
baseline to evaluate the effect of the pruning. As expected when ε increases the number
of patterns found decreases, it is the trade-off between utility and privacy. We denote an
exception to this rule for ε = 0.25 and ε = 0.5, this main be explain by the fact that the
two PTA are close since there are very few samples removed between ε = 0.25 and ε = 0.5.

186

Using Grammatical Inference to Build Privacy Preserving Data-sets of User Logs

N=20 N=40 N=60 N=80 N=100

ge
n

er
at

ed
d

a
ta k=2

ε=0 0.4 0.37 0.48 0.43 0.49
ε=0.25 0.15 0.22 0.23 0.26 0.26
ε=0.5 0.35 0.27 0.31 0.27 0.28
ε=0.75 0.2 0.2 0.25 0.25 0.25

k=4

ε=0 0.45 0.45 0.48 0.52 0.58
ε=0.25 0.25 0.35 0.41 0.45 0.46
ε=0.5 0.35 0.27 0.30 0.26 0.27
ε=0.75 0.1 0.15 0.23 0.2 0.19

Table 5: True positive rate on topN most frequent patterns

Discussion As we have seen, the small number of accesses for a large number of resources
as well as the overall size of the universe make the data set difficult to make private. For
this reason, we observe that the pruning method we propose modifies the initial distribution
in favour of the shortest sequences. Nevertheless, the results on the two evaluation tasks
show that essential features of the initial distribution such as the most frequent patterns
are preserved in the generated version.

In the PTk-TA, the duration are encoded with normal distributions. One may ask
the question, is this encoding justified in practice? Intuitively, the duration could be very
different from a user to another for a given page, so does this variable follow a normal
distribution? Practically, in X5gon little additional information are collected outside of
the pages viewed, in particular the only demographic data collected is the country of origin
of the user as reported in the web browser. For this reason, the most important factors
found to determine the time spent on a resource are not demographic factors. Instead,
other factors such as the date of the learning session (day of the week, time of day...), or
indirect information about the user such as the average duration of these learning sessions,
or the time of consultation of the resource in a session (beginning or end of session) are
typically factors that can influence these duration. The argument that pushes us to use
a normal distribution is the presence of numerous mechanisms in the literature allowing
to make the mean and the variance differentially private. Of course the use of a finer
method of modelling duration taking these different factors into account may better model
the duration distribution but it is also much more dangerous in terms of privacy. A such
modelling of duration, with privacy guarantee and better utility remains an open question
in the literature.

5. Related works

Several authors also develop algorithms to make public sanitized sequential data under dif-
ferential privacy. Chen et al. (2012b,a) propose two algorithms: the first is based on a noisy
prefix tree that combines sequences with identical prefixes for the same branch (Chen et al.,
2012b), the second uses a variable n-gram model (Chen et al., 2012a), which can extract
the essential information of the data-sets to adjust the scales of injected noise. We can also
mention the PrivTree technique (Zhang et al., 2016) which implements a representation of a

187

Using Grammatical Inference to Build Privacy Preserving Data-sets of User Logs

variable length Markov chain model to overcome the need to set some predefined threshold
for the recursion depth, as required by the previously mentioned techniques.

More recently, deep learning based approach has been developed, Abay et al. (2019)
use an Auto-encoder neural architecture for learning latent structure of subgroups of data
and uses expectation maximization algorithm to simulate the groups. Two other methods
focus on Generative Adversarial Network architecture, the former SeqGAN Yu et al. (2017)
is based on a reinforcement learning training where the reward signal is produced by the
discriminator. The second Frigerio et al. (2019) uses dp-GAN model with Long Short Term
Memories (LSTM) unit inside the generator to model sequential data.

The above-mentioned approaches are often only interested in sequential data without
taking into account the duration of the events. Moreover, approaches respecting differential
privacy often entail a low utility in the generated data for this reason: Shaked and Rokach
(2020) presents differential privacy as a constraint that is too restrictive. And they propose
in their paper a new framework of privacy for sequential data. Finally, the approaches
proposed above do not formalize the problem in the field of grammatical inference. One
other approach, Jacquemont et al. (2009) use a grammatical inference based approach to
study the flow of cars, nevertheless this paper focuses more on a case study than on a generic
method and does not use modern privacy guarantee.

6. Conclusion

In this paper, we introduce a new type of finite state machines, both timed and probabilis-
tic. Learning these machines from set of user navigation logs is possible through k-testable
automata learning techniques, adapted to take into account durations and probabilities. We
show how this automaton is able to efficiently generate an arbitrarily large data-set with
statistical characteristics close to the initial data-set. We use ideas from the differential pri-
vacy research area to analyze the obtained automaton and remove data-points which would
typically have a too big importance and could therefore be identified from the automaton
or the newly generated data. We also prove some properties of this algorithm. Finally, we
conduct a case study on a large data-set of log interactions. The results show that even
in the context of a very large universe of items, the aforementioned method is still able to
identify the most frequent patterns in the data-set.

In perspective we are interested in applying our method to classical benchmarks from
the literature, but also in applying classical methods from the literature to the X5gon
data-set.

188

Using Grammatical Inference to Build Privacy Preserving Data-sets of User Logs

References

Nazmiye Ceren Abay, Yan Zhou, Murat Kantarcioglu, Bhavani Thuraisingham, and La-
tanya Sweeney. Privacy preserving synthetic data release using deep learning. In Michele
Berlingerio, Francesco Bonchi, Thomas Gärtner, Neil Hurley, and Georgiana Ifrim, edi-
tors, Machine Learning and Knowledge Discovery in Databases, pages 510–526. Springer
International Publishing, 2019.

Alket Cecaj, Marco Mamei, and Franco Zambonelli. Re-identification and information
fusion between anonymized CDR and social network data. J. Ambient Intell. Humaniz.
Comput., 7(1):83–96, 2016.

Rui Chen, Gergely Acs, and Claude Castelluccia. Differentially private sequential data
publication via variable-length n-grams. In Proceedings of the 2012 ACM conference on
Computer and communications security, pages 638–649, 2012a.

Rui Chen, Benjamin CM Fung, Bipin C Desai, and Nériah M Sossou. Differentially pri-
vate transit data publication: a case study on the montreal transportation system. In
Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 213–221, 2012b.

Colin de la Higuera. Grammatical inference: learning automata and grammars. Cambridge
University Press, 2010.

Hendrik Drachsler, Katrien Verbert, Olga C Santos, and Nikos Manouselis. Panorama of
recommender systems to support learning. In Recommender systems handbook, pages
421–451. Springer, 2015.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors, Theory of
Cryptography, pages 265–284. Springer Berlin Heidelberg, 2006.

Lorenzo Frigerio, Anderson Santana de Oliveira, Laurent Gomez, and Patrick Duverger.
Differentially private generative adversarial networks for time series, continuous, and
discrete open data. In ICT Systems Security and Privacy Protection, pages 151–164.
Springer International Publishing, 2019.

Pedro Garcia, Enrique Vidal, and José Oncina. Learning locally testable languages in the
strict sense. In ALT, pages 325–338, 1990.

Stéphanie Jacquemont, François Jacquenet, and Marc Sebban. Discovering Patterns in
Flows: a Privacy Preserving Approach with the ACSM Prototype. In ECML PKDD,
volume 5782 of Lecture Notes in Computer Science, pages 734–737. Springer, 2009.

Slawomir Lasota and Igor Walukiewicz. Alternating timed automata. ACM Transactions
on Computational Logic (TOCL), 9(2):1–27, 2008.

Jonathan Mayer, Patrick Mutchler, and John C. Mitchell. Evaluating the privacy properties
of telephone metadata. Proceedings of the National Academy of Sciences, 113(20):5536–
5541, 2016.

189

Using Grammatical Inference to Build Privacy Preserving Data-sets of User Logs

Robert McNaughton and Seymour A. Papert. Counter-Free Automata (M.I.T. Research
Monograph No. 65). The MIT Press, 1971.

Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In Proceed-
ings of the 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS
’07, page 94–103. IEEE Computer Society, 2007.

J. Pei, Jiawei Han, B. Mortazavi-Asl, Helen Pinto, Q. Chen, U. Dayal, and M. Hsu. Pre-
fixspan,: mining sequential patterns efficiently by prefix-projected pattern growth. Pro-
ceedings 17th International Conference on Data Engineering, pages 215–224, 2001.

Christopher Riederer, Yunsung Kim, Augustin Chaintreau, Nitish Korula, and Silvio Lat-
tanzi. Linking users across domains with location data: Theory and validation. WWW
’16. International World Wide Web Conferences Steering Committee, 2016.

Sigal Shaked and Lior Rokach. Privgen: Preserving privacy of sequences through data
generation. arXiv preprint arXiv:2002.09834, 2020.

Xinyu Yang, Teng Wang, Xuebin Ren, and Wei Yu. Survey on improving data utility in
differentially private sequential data publishing. IEEE Transactions on Big Data, PP:
1–1, 06 2017.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adver-
sarial nets with policy gradient. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, AAAI’17, page 2852–2858. AAAI Press, 2017.

Jun Zhang, Xiaokui Xiao, and Xing Xie. Privtree: A differentially private algorithm for
hierarchical decompositions. In Proceedings of the 2016 International Conference on Man-
agement of Data, SIGMOD ’16, page 155–170, New York, NY, USA, 2016. Association
for Computing Machinery.

190

	Introduction
	From sequential data-sets to Probabilistic Timed k-Testable Automata
	Dealing with privacy issues
	Case study: X5gon user data
	Related works
	Conclusion

