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In this work, we revisit the problem of interference fringe patterns in CCD chips occurring in near-infrared bands due to multiple light reflections within the chip. We briefly discuss the traditional approaches that were developed to remove these patterns from science images, and mention their limitations. We then introduce a new method to globally estimate the fringe patterns in a collection of science images without additional external data, allowing for some variation of the patterns between images. We demonstrate this new method on near-infrared images taken by the CFHT wide-field imager Megacam.

1.

CCD images in the red (e.g i' and z') bands are subject to a specific systematic effect called "fringing". Emission lines from molecules or free radicals in the upper atmosphere create interference patterns within the chips. Indeed, due to their reduced quantum efficiency in these bands, old CCD chips models act like Fabry-Pérot interferometers for these quasi-monochromatic atmospheric emissions. This results in sinusoidal patterns superimposed on the science images. The details of the patterns are however complicated by the surface irregularities of each chip, which depend on their manufacturing process. This systematic effect is additive, and its amplitude is proportional to the brightness of the sky lines emission.

One way to estimate fringe patterns is to produce uniform calibration exposures, with line emissions lamps that reproduce the sky emission with sufficient accuracy: this was for instance implemented at the Mayall Telescope with a neon calibration light (Howell 2012). The quality of the fringe pattern obtained in that way is however limited by the spectral energy distribution difference between the calibration light and the sky emission. Another way to produce a fringe template is to take a median of (adequately rescaled) science images, taken at different positions on the sky (thus mitigating the impact of astrophysical objects in the images), and do some kind of robust regression of this pattern on individual science images (see e.g. [START_REF] Valdes | Astronomical Data Analysis Software and Systems VII[END_REF]Snodgrass & Carry 2013), based on suitably located control pairs of pixels. This is the spirit of the method that is currently implemented in the Megacam elixir pipeline at CFHT (Magnier & Cuillandre 2004).

Both methods assume that the fringe pattern is perfectly stable, and thus do not take into account the time evolution of the pattern, probably sourced by small variations of the atmospheric line emission ratios. One approach to address this problem (Elixir-LSB, e.g. Ferrarese et al. 2012) is to observe sequences of images with sufficient dithering scales, during a short period of time (typically one hour) over which the atmospheric variability (and thus the changes in fringe pattern morphology) is expected to be small. This approach has been used with success to remove fringe patterns, as well as the large scale scattered light pattern on Megacam images due to internal reflections in the optical system.

In this work, we present a new method to remove fringe patterns together with camera-related, large-scale diffuse light patterns from a set of Megacam images, not necessarily taken in a sequence. This method allows for intrinsic variations of the fringe patterns, and relies on the assumption that only a few, properly weighted templates suffice to explain the fringe pattern variations. It is very similar in spirit to the well known Principal Components Analysis (PCA) method. The software developed in this context is publicly available here. We note that a very similar approach to defringing has been independently developed by (Bernstein et al. 2017, Appendix A); their clever use of image decimation allows their method to be used on full DECam focal plane images.

Link to the PCA method

Let us first slightly simplify the problem, and assume that the science images taken at night contain no astrophysical P sources (unreasonable!) but only the (possibly varying) fringe patterns, plus Gaussian i.i.d noise (a reasonable assumption for background-dominated images once properly re-scaled by their mean value). Let us in addition assume that we know in advance the maximum number k of templates we need to explain the variations of the fringe pattern. Organizing the data into a large (n pix , n obs ) matrix D where each chip image is flattened into a long column vector, the problem of fringe pattern estimation can be written in the following way:

F = arg min F ||D -F || F such that rank(F) k
The solution to this problem is well known, it is the projection of D onto its first k leading left singular vectors (Eckart-Young theorem Eckart & Young 1936):

F = UH k (Σ)V T
where D = UΣV T is the singular value decomposition of D, and H k is the hard-thresholding operator which keeps only the first k singular values of Σ. The k first principal components correspond to the first k columns of the matrix of left-singular vectors U. This is the essence of the principal component analysis.

Formulation of the problem

In reality, there are several differences between the fringe pattern estimation and the ideal problem mentioned above, where a straight PCA analysis would give the answer. First of all, the effective number of modes needed to explain the fringe pattern variations is not known in advance, and secondly the presence of astrophysical sources in the images makes the assumption of simple i.i.d Gaussian noise inappropriate at the location of the sources. Is the last problem serious? Meaning, are the principal components robust to the presence of outliers in the images? Unfortunately they are not. PCA suffers from the same lack of robustness as classical linear regression, and one strong outlier is enough to corrupt the PCA results.

To address the problem of the presence of astrophysical sources in the images, we will use a masking strategy, where pixels contaminated by astrophysical sources will be removed from the cost function. The problem of estimating the masks will be addressed later in this document. We will also replace the constraint on the rank of the solution by a proxy which happens to have nice mathematical properties (tightest convex relaxation of the rank functional Fazel 2002;Candès & Recht 2009;Recht et al. 2010) with a penalization term proportional to the nuclear norm of F, since we don't know in advance the exact number of modes will be needed. The convexity of the cost function implies the existence of a global minimum, as well as efficient minimization algorithms even if the penalization is not differentiable everywhere. The problem we propose to solve thus reads:

F = arg min F µ||F || * + 1 2 ||P Ω (D -F)|| 2 F ( 1 
)
where P Ω is a projection operator that only keeps nonmasked pixels, and ||F || * is the nuclear norm of the matrix F, i.e. the sum of its singular values. The parameter µ, which controls the relative weight of the χ 2 term and the regularization term, must be chosen in such a way that singular values dominated by noise are strongly suppressed, while those dominated by signal (fringe patterns) are preserved (usual biasvariance compromise). It can be shown (Candès & Recht 2009) that a good choice is µ = ( √ n pix + √ n obs ) √ pσ, where p is the fraction of observed pixels, and σ is the noise standard deviation. Equation 1, without the projection operator, has a known solution in terms of the SVD decomposition of D = UΣV T : arg min

F µ||F || * + 1 2 ||D -F || 2 F = US µ (Σ)V T (2)
where S µ (Σ) = diag(max(σ 1 -µ, 0), ..., max(σ n obs -µ, 0)) is the so-called soft-thresholding operator with parameter µ1.

The difficulty thus comes from the presence of source pixel masks, and solving Eq. 1 is a low-rank matrix completion problem. This type of problems has been recently heavily studied due to its numerous applications, and several algorithms to solve the problem have been proposed.

We have retained two different algorithms, one for its simple formulation and the second one for its ability to handle possible variations of the problem formulation. They both show similar performance when applied to the defringing problem. The corresponding algorithms are described in Appendix A. The first class of algorithms is based on iterative resolutions of the soft thresholding problem of Eq. 2 with the missing entries of the data matrix filled with the solution obtained at the precedent iteration. This method is dubbed SOFT INPUTE by their authors [START_REF] Mazumder | [END_REF], due to its relation to the soft thresholding step. The second algorithm by Shen et al. (2010) is an accelerated proximal gradient (APG) method, which also relies on soft thresholding iterations.

Nuclear norm regularization, and the associated soft thresholding of singular values, leads to well-behaved algorithms due to its convex nature, but also induces a bias in the recovered singular values of the fringes modes. To alleviate this, several possible methods could be used. [START_REF] Mazumder | [END_REF] mention this problem, and propose to use their HARD INPUTE alternative algorithm after first approaching the desired solution with SOFT INPUTE. This is a viable approach, with the caveat that the alternative algorithm, based on hard thresholding (which applies to rank functional minimization) is not convex. Another alternative is to use a "truncated" nuclear norm, with soft-thresholding limited to the n obsk last singular values. This approach, advocated by Hu et al. (2013), also leads to a non convex optimization problem (al-beit better behaved). To avoid these problems altogether, we decided to proceed in two steps:

• First, use a convex optimization algorithm (either SOFT INPUTE or APG, see appendix A),

• In a second time, select the relevant k first left singular vectors, and compute their respective coefficients in the different images using a regular linear regression on the valid pixels

In this approach, the fringe modes are not co-optimized together with their coefficients in each image till the end, but conversely we only deal with convex optimization subproblems. In practice it gives excellent results, as we will show in the next section.

APPLICATION TO MEGACAM Z-BAND IMAGES

In this section, we will describe the application of the proposed low-rank method to images taken by the Canada-France-Hawaii Telescope (CFHT) Megacam imager. This instrument2 is a wide field imager with 40 e2V CCD42-90 chips, with electromagnetic wide-band filters similar to those of the Sloan Digital Sky Survey (Gunn et al. 1998).

Astrophysical source masks

The first problem that needs to be addressed to apply the former method to astrophysical images is the design of the pixel masks for all images. To this end, we adopted the following scheme: first we compute a median fringe pattern (in a very similar way to the CFHT elixir pipeline), by first removing from each image its median value (assumed to be dominated by the sky background emission), and re-scale them by their exposure time. We thus compute, for each pixel, the median of the n obs re-scaled images to create a median fringe pattern.

We then do some kind of robust regression of this median fringe pattern in each image to get a first, approximate set of defringed images. Finally, a simple κ.σ clipping is applied to the images to create the source masks, where σ is obtained with a robust Median Absolute Deviation estimator. After some experimentation, a value of κ = 2 was adopted, as a compromise between masking bright sources and creating too many holes in the images. We then optionally enlarge the masks around each source, to remove the signal in the tails of the detected sources.

This simple κ.σ clipping procedure could of course be replaced by a more sophisticated source extraction software such as SExtractor (Bertin & Arnouts 1996). The impact of the details of the source extraction method on the defringing process remains to be investigated in details.

2 https://www.cfht.hawaii.edu/Instruments/Imaging/Megacam/

Defringing results

As a proof of concept, we applied the method to a (500 × 500) pixels subset of a given CCD chip, for n obs = 37, z-band images taken from a single MegaCam observing run. At the blue edge of this filter (around 830 nm), the quantum efficiency of the e2V chips is at most of 40% and rapidly decreasing, leading to strong fringing effects. The images come in several consecutive sequences separated by typically a few nights. Figure 1 shows a typical bias subtracted, flat-fielded sub-image of a given CCD chip, with the corresponding mask where bright astrophysical sources, as well as cosmic ray hits have been flagged.

Figure 2 shows the result of removing the estimated fringe pattern from the same image, using either our new method or the CFHT elixir pipeline recipe, based on a single median fringe template.

Finally, Figure 4 shows the first three left-singular vectors of the low-rank fit (solution of Eq. 1). Here, only two modes have a reasonable SNR, and indeed the SOFT INPUTE algorithm only assigns significant singular values to the first two modes. For the latter, singular values of 5184 and 168 ADUs respectively, are produced by SOFT INPUTE, increasing to 5689 and 695 ADUs after linear regression on the modes.

Peak-to-peak estimates in the first and second images of Figure 2are the order of 150 and 20 ADUs respectively. Keeping only the first mode would thus result in fringe residual contamination at the level of 20 ADUs peak-to-peak in this particular image.

To quantify the contamination levels in the different images of Figure 2, we have computed the spatial power spectra of the images, masking out the astrophysical objects that would otherwise dominate the statistics. Decoupling of the power spectra was obtained with the Namaster software (Alonso et al. 2019), using its flat sky version of the Master algorithm (Hivon et al. 2002). These power spectra are shown in Figure 3, where it appears that the residual contamination in the images processed with the current approach is reduced by a factor of at least ten on the largest scales, compared to the median template regression of the CFHT elixir pipeline.

The right-singular modes (corresponding to the three largest singular values), multiplied by the corresponding singular values, are shown in Fig. 5, in blue, red and green symbols respectively, for the 37 images considered here. These are the relative weights of the (left-singular) modes in the low-rank fit to each observed image. The observing time distributions appear clearly in this figure: three distinct groups of images, corresponding to three different nights, can be seen. Finally, the coefficients of the third left-singular mode appear to have low amplitude and vary substantially between images: they are dominated by noise, and reflect again the fact that the effective number of fringe modes in this data set is equal to 2. 

DISCUSSION AND CONCLUSION

The method presented in this work, based on the assumption that the individual fringe patterns in different images of an observing run can be decomposed into a linear combination of a small number of modes, has been shown to be very successful at estimating (and thus removing) the fringe patterns from real images of the CFHT instrument Megacam. In particular, this method learns the modes from the data itself, without needing any external calibration data, in a way very similar to Principal Component Analysis. In order to make the analysis robust to the presence of bright sources and cosmic ray hits, a masking procedure has been used, and only data outside those bright regions are used. Finally, the method relies on two convex optimization steps, which ensures the existence and unicity of a global minimum, and allows the use of iterative methods of known convergence properties.

In practice, the SOFT-INPUTE method, with the regularization coefficient µ chosen as prescribed by Candès & Recht (2009), converges to machine precision with about ten iterations (for a total of twenty including the warm start phase). However, each iteration is potentially quite costly, since it consists in a Singular Value Decomposition of a very tall matrix of size n pix , n obs . For the sub-images considered here, n pix = 250000, and n obs = 37 images, a multi-threaded, CPUbased SVD takes around 2 seconds on a Xeon 2.10 GHz server with 40 cores. For a full e2V CCD with n pix = 9445376, the wall time goes up to 40 seconds per SVD. However, GPU acceleration can be very useful here: using a Tesla V100 GPU card and the CUBLAS library, these wall times are respectively brought down to 90 ms and 2 s for the sub-image and the entire CCD image. This makes it a viable method, even Figure 3. Spatial power spectra of resp. the original image (blue line), the median-subtracted image produced by the elixir pipeline (orange line) and the image produced by the current method (green line). Astronomical objects were masked out in the analysis, and edge correction was performed to decouple the different spectral modes. One can see at least a ten-fold improvement in the residual contamination on the largest scales with the current method, with a power level compatible with photon noise up to scales of 50 pixels or larger.

for the very large Megacam focal plane, as long as CCD chips are processed independently.

Also, the number of modes needed to adjust the fringe patterns is typically very small (in our data set, only two modes were necessary to adjust the fringe patterns), therefore only partial SVDs are needed, opening the possibility to use iterative Lanczos like methods [START_REF] Masana | Proceedings of International Conference on Parallel and Distributed Processing Techniques and Applications[END_REF], polar decompositions and projections on the 2-norm ball (Cai & Osher 2013), or randomized SVD methods (Halko et al. 2011).

Finally, this method is readily applicable to other CCD imagers suffering from similar fringe contamination patterns, as well as large scale, slowly changing scattered light patterns. We note however that this method is based on a linear, additive model of the contamination, which in principle makes it illsuited for the fringe patterns caused by similar interference effects in the flat field modes of spectrographs, as in the latter case the fringe patterns are of a multiplicative nature (the interference is sourced by the light of the astrophysical object and not primarily by the emission from the sky).

However, it is possible that after a first multiplicative correction by an average flat field, residual corrections could be further modelled by an additive, linear model, in which case the present method could be generalized to spectral data. Such fringing also happens in the case of infrared detectors, and Argyriou et al. (2020) noticed that the fringing patterns, in the context of the JWST MRS spectrograph, are modulated by the spatial extension of the source being observed, which further complicates the problem. Such a generalization will be investigated in a future work. I would like to warmly thank An-Yi Bu for her help during her internship at CFHT, Pascal Fouqué, Claire Moutou, Kanoa Withington, Jean-Charles Cuillandre and Gary Bernstein for enlightening discussions, Colin Snodgrass for the link to the ESO Faint Object Camera archive images on which preliminary versions of the code were tested, and André Ferrari for the suggestion to replace the singular value thresholding step with a neural network based denoising step. This will be investigated in a future work. I would like to thank the Canada-France-Hawaii Telescope (CFHT) which is operated by the Na-tional Research Council (NRC) of Canada, the Institut National des Sciences de l'ĂŹUnivers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. The observations at the CFHT were performed with care and respect from the summit of Maunakea which is a significant cultural and historic site. I was supported during this work by a BQR grant from Laboratoire Lagrange (UCA,OCA,CNRS). Here we will give some details on the two algorithms that we tried to solve the minimization problem of Eq. 1. The first one, dubbed SOFT-INPUTE, is taken from [START_REF] Mazumder | [END_REF]. Its formulation is very simple, and its nice convergence properties come from using as "warm start" the solution of the minimization problem with a larger value of the penalization weight µ. The algorithm thus uses a decreasing sequence of penalization weights

µ 1 > • • • > µ K = µ(σ) = ( √ n pix + √ n obs ) √ pσ:
1. Initialize F old = 0 2. Do for k = 1, . . . , K:

(a) Repeat: i. Compute the (partial) SVD of the current completion: USV T = P Ω (D) 

+ P Ω ⊥ (F old ) ii. Compute F new = US µ k (Σ)V T , soft-thresholding of the current completion iii. If ||F new -F old || 2 F /||F old || 2 F < exit iv. F old = F new (b) Fµ k = F new
= arg min F 1 2 ||P Ω (D -F)|| 2 F + µ × rank(F),
where the algorithm is similar to that of SOFT-INPUTE, but replacing the soft-thresholding in (ii) above with the hard thresholding operation, keeping unchanged all singular values larger than µ k , and putting the others to zero. Instead of initializing F old = 0, there is a large gain in using the output of SOFT-INPUTE, i.e. to start with F old = Fµ k . Note that for HARD-INPUTE, if the A -CCD 7

target penalization weight µ is known (e.g. given by some heuristic relationship with the noise level as in µ(σ)), then one can directly start at k = K and skip the iterations with larger values of µ, using Fµ(σ) as the initial value. An alternative to using HARD-INPUTE is to select the few left singular modes, computed by SOFT-INPUTE, that correspond to non-zero singular values, and regress their respective coefficients in the different images. This last sub-problem is convex and therefore the existence of a unique, global minimum is guaranteed: we followed this approach in practice to bypass possible convergence issues linked to the non-convexity of HARD-INPUTE.

The second algorithm to minimize the cost function of Eq. 1 that we tested is called the Accelerated Proximal Gradient method (Shen et al. 2010). This algorithm is more general than SOFT-INPUTE, in the sense that it can be applied to the more general convex minimization problem: min

F L(F) = µg(F) + f (F) (A1)
where f is differentiable everywhere and has a Lipschitz continuous gradient, whereas g is convex but not necessarily differentiable. This method is interesting if a fast solution for the following minimization sub-problem is available:

min F µg(F) + C||F -G|| 2 F (A2)
where C is a constant. Let us consider the Taylor expansion of the function f at second order around point Y , because of its Lipschitz continuous gradient it will be bounded by:

Q(F, Y ) ≡ f (Y ) + ∇ f (Y ), F -Y + τ 2 ||F -Y || 2 F = τ 2 ||F -G|| 2 F + cste
where the constant term is only a function of Y , and G = Y -τ -1 ∇ f (Y ). So for a given Y , we replace the minimization problem of Eq. 1 by min

F µg(F) + τ 2 ||F -G|| 2 F
which is precisely the sub-problem of Eq. A2. We see that by appropriately choosing the update scheme of Y and F we can iterate on the sub-problem minimizations to get a descent algorithm for the original problem of Eq. A1. It was shown (e.g. Bertsekas 1999) that the following algorithm has an O(1/k 2 ) convergence rate:

1. Choose F 0 = F -1 in the definition domain of g, t 0 = t -1 ∈ [1, ∞).

2. For k = 0, 1, . . . do:

(a)

Y k = F k + (t k-1 -1)/t k (F k -F k-1 ) (b) G k = Y k -τ -1 ∇ f (Y k ); and compute F k+1 = arg min F µg(F) + τ 2 ||F -G k || 2 F (c) t k+1 = 1+ √ 1+4(t k ) 2 2
with τ the Lipschitz constant of ∇ f . In the case of the matrix completion problem with nuclear norm regularization of Eq. 1, we can identify g(F) ≡ ||F || * and f (F) = 1 2 ||P Ω (F -D)|| 2 F , so that G k = Y kτ -1 P Ω (F -D) because P Ω is a projection operator. For the same reason, we get τ = 1 here. The sub-problem of Eq. A2 is solved by the soft-thresholding solution F k+1 = US µ k /τ (Σ)V T where G k = UΣV T . This algorithm can be accelerated by dynamically changing the parameter µ, by choosing a decreasing sequence that eventually reaches the target regularization µ(σ): µ k = max(κ.µ k-1 , µ(σ)), where the update can be made every n cycles, or whenever the rate of change of F k becomes slow. This sequence of decreasing µ k is very similar to the "warm start" sequence of SOFT-INPUTE.

Figure 1 .

 1 Figure 1. Left panel shows a 500 × 500 pixels sub-image of CCD chip #13 of a typical z-band MegaCam image. Fringes are clearly visible on this image. Right panel: corresponding source mask obtained following the procedure described in Section 2.1.

Figure 2 .

 2 Figure 2. Left panel shows the same, original 500 × 500 pixels image, where the fringe pattern is clearly visible. Middle panel shows the median-subtracted fringe-removed image produced by the elixir package in production at CFHT. Right panel shows the result of the method described in this note. The residual contamination is clearly much smaller than in the middle panel, this underlines the importance of taking into account the time evolution of the fringe pattern over several nights.
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Figure 4 .

 4 Figure 4.From left to right: projection of the low-rank fit to the image (Eq. 1), onto its first three singular vectors. The first two images look similar (ignoring their amplitude and relative noise contamination differences), except for tiny translations/deformations, which is expected from small variations of the OH emission line ratios (see Howell 2012). The third singular vector is already heavily noise dominated, which shows that the effective rank of the fringe pattern matrix for this sequence of images is equal to 2.

Figure 5 .

 5 Figure 5. Decomposition coefficients of the low-rank fits onto the three principal (left-singular) modes. Blue, red and green symbols correspond respectively to the first, second and third modes. The observations can be grouped into three main groups in this plot, that correspond to three different nights of observation. The evolution of the fringe patterns is evident in this plot.

  3. Keep Fµ(σ) as the solution, or keep the entire sequence as warm starts for the HARD-INPUTE algorithm. The HARD-INPUTE algorithm minimizes the following non-convex cost function: FH