

Numerical simulation of cathode directed streamer discharges in Air and CO₂.

Electrostatic and Dielectric Materials team –
Grenoble Electrical Engineering Lab (G2Elab)
8TH October, 2021

By: Francis BOAKYE-MENSAH

Collaborators: Hani FRANCISCO, Ute EBERT, Nelly BONIFACI, Rachelle HANNA, Innocent NIYONZIMA

francis. boakye-mensah@g2elab.grenoble-inp.fr

Introduction

Motivation

- Replacement of SF_6 in medium voltage GIS.
- 80% of SF_6 gas used in electrical manufacturing.
- Industrial interest in Air and CO_2 or a mix of the two gases as possible alternatives.

Outline

Part 1: Background

• Streamer Modelling

Part 2: Model Implementation

- COMSOL
- AFIVOStreamer

Part 3: Results and Analysis

- Comparion between COMSOL and AFIVO for streamers in Air in short gaps
- Streamers in Air and CO₂ in COMSOL
- Comparison between simulation results and experiments in AFIVO

Part 4: Conclusion

• Mass conservation equations for electrons and ions: $\frac{\partial n_{xl}}{\partial t} + \nabla \cdot (-D_x \nabla n_{xl} - \mu_x n_{xl} E) = R_{xl}$ $n_{xl} = \ln(n_{e,p,n})$

• Poissons equation for electric potential ϕ :

$$\nabla (\varepsilon_0 \varepsilon_r \, \nabla \phi) = -\frac{e(n_p - n_e - n_n)}{\vec{E}}, \vec{E} = -\nabla \phi$$

• Photoionization model / Background ionization term.

Background	Implementation	Results	Conclusion
	Comsol Afivo	Comparison Comsol Afivo	Conclusion

COMSOL[®] (FEM) \rightarrow Plasma Module

- Single Discharge using axial symmetry
- Log Formulation
- Point to Plane Geometry
- Appropriate Boundary Conditions
- No photoionization

J. Teunissen and U Ebert, Simulating streamer discharges in 3D with the parallel adaptive Afivo framework (2017).

Mesh Refinement

Reaction Rate + Domain Partitioning

AFIVOSTREAMER : Adaptive Quadtree/Octree

Mesh derefined in regions of non-interest

Part 3a: COMSOL vs AFIVO

Comparison of Streamer Model in AFIVO and COMSOL

Gap Distance: 2 mm

Radius of Curvature: 0.1 mm Electrode Shape: Fileted

 $Emax = 1.6^{e}7 \text{ V/m}$

Pooleground	Implementation	Results	Conclusion
Dackground	Comsol Afivo	Comparison Comsol Afivo	Conclusion

Comparison of Streamer Model in COMSOL and AFIVO d = 2 mm, rc = 0.1 mm, Sb = 1e23 (1/m³.s) / Photoionization

• For same electrode configuration and maximum electric field, Afivo is charaterized by high fields in the streamer head and thus higher velocities

Rookground	Implementation	Results	Conclusion
Dackground	Comsol Afivo	Comparison Comsol Afivo	Conclusion

Comparison: COMSOL vs AFIVO

COMSOL	AFIVO
GUI	Code Based Implementation
Electrode Flexibility	Rigid electrode types
Shorter Gaps, Limited by Computational Power	Longer Gaps Possible
Long Simulation Times	Relatively Shorter Simulation Times

Rockground	Implementation	Results	Conclusion
Dackground	Comsol Afivo	Comparison Comsol Afivo	Conclusion

Part 3b: COMSOL Results

Streamers in Air and CO₂

Radius of curvature: 0.1 mm **Gap Distance: 5 mm** Background Ionization: Sb = 1e23 (1/m³.s)

Electron Density Profiles in different gases at Atmospheric Pressure $V_0 = +15$ kV, d = 5 mm, rc = 0.1 mm, Sb = 1e23 (1/m³.s)

4

5

2

z-coordinate (mm)

1

3

 CO_2 at 2.5 ns

ω

4

4.5

- 2.5

ω.5

Loss processes determine the magnitude of electrons in the streamer channel. 10/16 ullet

0

1

2

3

Arc length (mm)

Electric Field Distribution for Streamers in Air and CO₂ at Atmospheric Pressure

 $V_0 = +15$ kV, d = 5 mm, rc = 0.1 mm, Sb = 1e23 (1/m³.s)

- Lower electric field in the streamer in CO_2 signifying the ease of propagation in the gas.
 - The computed velocity in CO_2 is 1.6 mm/ns and 1.2 mm/ns in Air

Diameter (mm)

1.0

1.5

0.5

• Correlation between simulation results and experimental results from Briels.

2.0

• The deviation between the results of Soulié and the simulation results ???

Part 3c: AFIVO Results

Experimental Comparison of Streamers in Air and CO₂

Gap Distance: 50 mm

Radius of Curvature: 0.2 mm, 0.5 mm

Background	Implementation	Results	Conclusion
	Comsol Afivo	Comparison Comsol Afivo	Conclusion

Influence of Pressure on Streamer in Air for longer gaps (AFIVO)

d = 50 mm, rc = 0.2 mm, Photoionization model present

	AFIVO	SOULIE
Needle Radius (µm)	200	200
Gap Distance (mm)	50	50
Voltage Range (kV)	40 - 87	37 – 87
Voltage Type	Instantaneous	Lightning Pulse
Rise Time (ns)	—	800

- Simulation and experimental comparison of velocity with increasing pressure.
 - At atmospheric pressure, streamer velocity is ~1 mm/ns.

Background	Implementation	Results	Conclusion
	Comsol Afivo	Comparison Comsol Afivo	Conclusion

Influence of Pressure on Streamer in Air in longer gaps (AFIVO)

d = 50 mm, rc = 0.2 mm, Photoionization model present

	AFIVO	SOULIE
Needle Radius (µm)	200	200
Gap Distance (mm)	50	50
Voltage Range (kV)	40 - 87	37 – 87
Voltage Type	Instantaneous	Lightning Pulse
Rise Time (ns)	-	800

- Simulation and experimental comparison of reduced diameter with pressure.
 - Higher diameters realised in simulations.

• Diameter highly dependent on rise time of voltage, where and how it is measured.

Rookground	Implementation	Results	Conclusion
Dackground	Comsol Afivo	Comparison Comsol Afivo	Conclusion

- On summarising:
 - ✓ Plasma fluid model for streamer discharges in air for short gaps in COMSOL.
 - ✓ Applied voltage has a direct proportionality on streamer diameter and propagation velocity.
 - ✓ Consistency between simulation results and empirical computations for diameter and velocity.
 - ✓ Model validation, COMSOL: https://hal.archives-ouvertes.fr/hal-02966589/document
 - ✓ AfivoStreamer used for long gap simulations.
 - ✓ Density has inverse proportionality effect on velocity and diameter as the electric field in the head required to sustain the propagation increases.
 - ✓ Repository for AfivoStreamer: https://gitlab.com/MD-CWI-NL/afivo-streamer
- Perspectives
 - \Box Streamers in Air/CO₂ mixtures

financé par IDEX Université Grenoble Alpes

