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We introduce a modified SIR model with memory for the dynamics of epidemic spreading in a
constant population of individuals. Each individual is in one of the states susceptible (S), infected
(I) or recovered (R). In the state R an individual is assumed to stay immune within a finite time
interval. In the first part, we introduce a random life time or duration of immunity which is drawn
from a certain probability density function. Once the time of immunity is elapsed an individual
makes an instantaneous transition to the susceptible state. By introducing a random duration of
immunity a memory effect is introduced into the process which crucially determines the epidemic
dynamics. In the second part, we investigate the influence of the memory effect on the space-
time dynamics of the epidemic spreading by implementing this approach into computer simulations
and employ a multiple random walker’s model. If a susceptible walker meets an infectious one
on the same site, then the susceptible one gets infected with a certain probability. The computer
experiments allow us to identify relevant parameters for spread or extinction of an epidemic. In
both parts, the finite duration of immunity causes persistent oscillations in the number of infected
individuals with ongoing epidemic activity preventing the system from relaxation to a steady state
solution. Such oscillatory behavior is supported by real-life observations and cannot be captured by
standard SIR models.

Keywords: Epidemic spreading, memory effects, random immunity time, generalized SIR models,

multiple random walker’s models

I. INTRODUCTION

The history of mathematical modelling in epidemic
spread can be traced back to Daniel Bernoulli in 1760
[1]. However, it was much later by the seminal work of
Kermack and McKendrick [2] that this field became a
modern and active area of research. The basic approach
they introduced is the so called ‘SIR model’ (S = suscep-
tible, I = infected, R = recovered). It turned out that
the dynamics of some infectious diseases such as measles,
mumps, and rubella can be well captured in a nonlin-
ear dynamics framework such as SIR type models. For
the most simple case of spatially homogeneous infection
rates, several versions of SIR models have been intro-

duced [3, 4]. Among the wide range of SIR type mod-
els we mention here a recent one based on continuous-
time random walks [5] motivated from fractional dynam-
ics with anomalous transport and diffusion effects [6–10]
which may be important mechanisms in epidemic spread-
ing.

It is unsurprising that the interest in this field has liter-
ally exploded in the recent years driven by the present
pandemic Covid-19 context. Some related models can be
found in the references [11, 12]. The application of gen-
eral approaches introduced in epidemic modelling, espe-
cially those related to stochastic processes and dynam-
ics indeed have turned out to be fruitful to open a wide
new interdisciplinary area of research. These approaches
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were further enriched by the emergence of network sci-
ence with pertinent applications in transportation pro-
cesses on complex networks as models for human so-
cieties, online networks, transportation networks again
have boosted this area as a vast interdisciplinary field.
Many of these problems can be described as random walk
on complex graphs for which an elaborated framework
exists [13–22] among them various random walk models
in complex biased graphs [23–28] to name but a few.

Epidemic spreading in complex networks was studied in
several works (and many others) [29–31, 33], among them
scale-free networks [34] and activity-driven adaptive tem-
poral networks [35] including percolation effects in small-
world networks [36, 37]. A renormalization group model
of the second COVID wave in Europe has been estab-
lished [38].

Despite of the vast fund of sophisticated models, the va-
riety of newly observed phenomena makes it more than
ever desirable to develop sufficiently simple models con-
taining a minimal set of parameters to allow identifica-
tion of the relevant ones governing the epidemic dynam-
ics. This aim was the main source of motivation for the
present paper.

Our paper is organized in two principal parts. In the first
part we introduce a modified SIR model by taking into
account random duration (life times) of immunity fol-
lowing a prescribed probability density function (PDF).
We consider here especially an Erlang PDF which con-
tains two free parameters and turned out to be flexible
enough to capture real-life situations consisting by two
essential regimes: In one regime the recovered individuals
enjoy all a similar time of immunity with a narrow immu-
nity life time PDF. In the other regime the immunity life
times are broadly scattered and may differ considerably
from one to another recovered individual. For these two
regimes the memory effect is studied. Contrary to the
standard SIR model the so modified model exhibits an
infinite set of fixed points with non-vanishing numbers of
infected individuals. A local analysis shows the existence
of oscillatory instabilities for certain fixed points, a be-
havior also known from delay-differential equations like
the Hutchinson model [39, 40]. The full nonlinear solu-
tion for these cases reveals the existence of limit cycles
with persistent oscillations in the numbers of infected in-
dividuals. In these situations the epidemic activity never
ends, thus herd immunity is not any more well defined.
The epidemic dynamics then is characterized by recur-
rent diminution and outbreaks of the epidemic activity.
The resulting persistent epidemic activity is in contrast
to the standard SIR model where the disease extincts
when herd immunity is reached.

In section IV we apply a multiple random walker’s model
(see [32, 33] for details and the references therein) with
a constant population of SIR walkers (where each walker
is in one of the states S, I, R) navigating independently
on an undirected connected graph. We implement this

approach into computer simulations and consider walks
on small world 2D lattices where the following infection
rule applies. If a susceptible walker meets an infectious
one on the same node then the susceptible walker gets
infected with a certain probability. Then we employ the
same assumption on the occurrence of a random life time
of immunity as in the first part and simulate this behav-
ior by an Erlang PDF. We perform a series of computer
experiments and identify pertinent parameters respon-
sible for the spreading, oscillation, or extinction of the
epidemic activity.

II. MODIFIED SIR MODEL WITH MEMORY

A. The standard SIR model

Let us briefly recall the standard SIR model [2]. This
model considers a population of individuals where each
individual is in one of the following three compartments:
susceptible (S), infected (I), and recovered (= immune)
(R). We use the notation s(t), j(t), r(t) ∈ [0, 1] for the
fractions of susceptible, infectious and recovered individ-
uals, respectively. Recovered individuals are assumed to
be immune for a certain random time which will be spec-
ified hereafter. Neglecting all birth and death rates we
have a constant population s(t) + j(t) + r(t) = 1. The
standard SIR model reads

ds

dt
= −β j s (1a)

dj

dt
= β j s− γ j (1b)

dr

dt
= γ j , (1c)

where β denotes the infection rate and 1/γ is the average
time of being infectious or the time of healing. The basic
reproduction number is related to β and γ as follows

R0 =
β

γ

and Re = R0 s indicates the effective reproduction num-
ber where Re − 1 measures the rate of new infections at
time t generated by one case j = 1 (see Eq. (1b)).

B. The extended model

Now we introduce a generalization of standard SIR where
we maintain the assumption of a constant population
s(t) + j(t) + r(t) = 1. Contrary to the standard model,
where the epidemic dynamics is characterized by the
pathway of the transition S → I → R ending in a fixed
point j = 0, s < 1/R0, we extend the model to allow
an additional transition R → S, reflecting the often ob-
served phenomenon of a finite life time of immunity start-
ing after healing (or vaccination), see Fig. 1.
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FIG. 1. The standard SIR model is extended by the feedback loop including a time delay.

The balance of the recovered individuals can then be
written as dr/dt = birth rate minus death rate, namely

d

dt
r(t) = b(t)− d(t) , (2)

where b(t) indicates the rate of individuals which (instan-
taneously) recover at time t i.e. making the transition
I → R. The quantity d(t) stands for the rate of individ-
uals (instantaneously) loosing their immunity at time t
undertaking the transition R → S.

Now we connect this balance equation with a finite life
time (duration) of immunity (sojourn time in state R)
and introduce the causal probability density function
(PDF) K(τ) from which the finite time of immunity
is drawn: An individual that is recovered at instant 0
(‘birth of immunity’) looses its immunity at instant t′

(‘death of immunity’) with probability K(t′)dt′. Hence
the total death rate R → S at time t can be written as

d(t) =

∫ t

−∞

K(t− τ)b(τ)dτ , (3)

accounting for the complete history of births b(τ) taking
place up to time t. The life-time of immunity PDF is
normalized,

∫

∞

0

K(t)dt = 1. (4)

We will specify the PDF K(t) subsequently. To keep our
model simple, we make the assumption that the birth
rate of recovered individuals is given by b(t) = γj(t),
as in standard SIR, i.e. the transition rate I → R is
assumed to depend only on the value of j(t) at instant t,
i.e. without additional memory.

With these remarks we can now establish a modified set
of SIR equations with memory where we rescale the time
t → γt to arrive at the (dimensionless) form

d

dt
s(t) = −R0s(t)j(t) +

∫

∞

0

K(τ)j(t− τ)dτ (5a)

d

dt
j(t) = R0s(t)j(t)− j(t) (5b)

d

dt
r(t) = j(t)−

∫

∞

0

K(τ)j(t− τ)dτ . (5c)

We assume for the analysis to follow that these equations
hold for all t ∈ R for some prescribed values s, j, r at
t = −∞.

C. Stationary solutions and linear stability

The equations (5) have the following stationary solutions:

• (i) 0 ≤ s0 ≤ 1, j0 = 0,

• (ii) s0 = 1/R0, 0 ≤ j0 ≤ 1− s0.

(i) corresponds to a healthy population with s0 + r0 = 1
which becomes unstable for Re = R0s0 ≥ 1 (outbreak of
the epidemic).

Linearizing of Eqs. (5) with respect to the fixed point
(ii),

s = s0 + u eλt, j = j0 + v eλt

yields the solvability condition

λ2 + ελ+ ε
(

1− K̂(λ)
)

= 0 (6)

where we introduced the abbreviations

ε = R0j0, K̂(λ) =

∫

∞

0

e−λtK(t)dt, ℜ{λ} ≥ 0 .

Here, 0 ≤ ε ≤ R0 − 1 serves as a bifurcation parameter,
K̂(λ) denotes the Laplace transform of the immunity life
time PDF and ℜ{·} stands for the real part.

For an oscillatory (Hopf-) instability with λ = ±iω, Eq.
(6) turns into

f1 = −ω2+ε
(

1− K̂ ′(iω)
)

= 0, f2 = ω−K̂ ′′(iω) = 0 ,

(7)

where K̂ ′, K̂ ′′ denote real and imaginary parts of K̂. At
the onset of an oscillatory instability, the two conditions
(7) have to be fulfilled simultaneously.
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FIG. 2. (a) The zeros of fi intersect for ξ = 0.2, ε = 0.01 at ω ≈ 0.12, α ≈ 6.4. (b) If ε exceeds a critical value, no solution
exists, ξ = 0.2, ε = 0.03

III. IMMUNITY LIFE TIME DISTRIBUTION

In this section we specify the PDF which governs the
memory effect by the random life time of immunity of
recovered individuals.

A. Erlang distribution

An interesting candidate which is able to capture a vari-
ety of behaviors is the so called Erlang distribution (also
called gamma-distribution) which has the form [9]

Kα,ξ(t) =
ξαtα−1

Γ(α)
e−ξt, α > 0, ξ > 0, t ≥ 0 , (8)

where the index α may take any positive (including
non-integer) values and Γ(α) denotes the Euler Gamma-
function which recovers the standard factorial Γ(α+1) =
α! when α ∈ N0. For α = 1 the Erlang distribution turns
into an exponential distribution. The constant ξ−1 de-
fines a characteristic time scale and has physical dimen-
sion of time. For α → 0+ (ξ finite) we have the limit of a
Dirac-δ function K0+,ξ(t) = δ(t) which also is taken for α
finite and ξ → ∞. For 0 < α ≤ 1 the Erlang distribution
is completely monotonic (CM) with d

dt
Kα,ξ(t) < 0 and

for α < 1 weakly singular at t = 0. For α > 1 the CM
property breaks down and the Erlang PDF has a max-
imum at tα,ξ = α−1

ξ
. The Erlang PDF has the Fourier

(Laplace-) transform

K̂α,ξ(iω) =

∫

∞

−∞

e−iωtΘ(t)Kα(t)dt =
ξα

(ξ + iω)α
, (9)

where Θ(t) indicates the Heaviside unit step function
which comes into play by causality. The Erlang PDF

has a finite mean (expected life time of immunity) 〈t〉 =
∫

∞

0
tKα,ξ(t) = α

ξ
, i.e. large α and small ξ increase the

duration of immunity of recovered individuals.

We point out that the standard SIR model is contained
in our extended model as the limiting case when all re-
covered individuals have infinite life times of immunity
(limit of eternal immunity 〈t〉 → ∞).

For K(τ) = Kα,ξ(t) given by the Erlang PDF (8), the
system (7) becomes rather involved. A graphical solu-
tion is found plotting the zero lines of fi for certain fixed
values of ξ and ε in the α-ω plane and looking for their
intersections, Fig. 2. For later use we point out the fol-
lowing feature of the Erlang PDF allowing a great flexi-
bility to prescribe a globally sharp time of immunity t0 or
a broadly scattered distribution. The possibility to pre-
scribe a sharp expected immunity life time τ0 is ensured
by the limiting property (α/ξ = τ0)

lim
ξ→∞

Kξτ0,ξ(t) = δ(t− τ0) (10)

which is easily confirmed by performing this limit in its
Fourier transform K̂ξτ0,ξ(iω) = (1 + iω/ξ)−ξτ0 → e−iωτ0

yielding indeed the Fourier transform of the Dirac’s δ-
distribution (10). We consider this case more closely in
subsequent section.

B. Delta-distribution

A case that can be evaluated straightforwardly is that of
a δ-distributed kernel K(t) = δ(t− τ0) which is captured
by the above limiting case (10) of the Erlang distribution.
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FIG. 3. Frequency (a) and time delay (b) for a delta-distributed kernel.

The integrals in Eqs. (5) are then evaluated as

∫

∞

0

K(τ)j(t − τ)dτ = j(t− τ0) ,

leading to a set of coupled delay-differential equations
(see [41] for a general outline). Hence Eqs. (7) take the
simple form

−ω2+ε (1− cos(ωτ0)) = 0, ω+sin(ωτ0) = 0 . (11)

From there one determines (see Fig. 3)

ω =
√

ε(2− ε), τ0 =
π + arccos(1− ε)

ω
.

It is clear that also here an upper limit for ε exists.

C. Numerical solutions

We solved the fully nonlinear system (5) numerically ap-
plying a standard fourth order Runge-Kutta method [42].
It is sufficient to restrict on Eqs. (5a), (5b) since r decou-
ples. We used the delta-kernel of Sec. III B. To evaluate
the delay term j(t − τ0), the last n = τ0/∆t values of j
are stored, where ∆t denotes the Runge-Kutta time step.

Figure 4 shows the s-j phase plane. We fixed the basic
reproduction number with R0 = 1.5. As initial condi-
tions we use a point s(0), j(0) somewhere in the phase
plane and fix the past values of j according to

j(t) = j(0), −τ0 ≤ t ≤ 0 .

The value of ε is then computed from the initial value
j(0) and if S(0) is close to 1/R0 the frequency of the
Hopf bifurcation corresponds to that shown in Fig. 3.

We chose a time step of ∆t = 10−4, leading to more than
105 iterations per cycle. The fixed points from Sec. II C
are marked in bold (blue), solid for ‘stable’, dashed for
‘unstable’. The horizontal dashed line marks the oscilla-
tory instability computed in Sec. III B, the vertical one is
a monotonic instability. Due to the different local behav-
iors, the form of the trajectories depends strongly on the
initial condition. For certain starting points, trajectories
may end on a stable fixed point or on a limit cycle, born

4

2

3

s

j

s + j = 1

1

5

FIG. 4. Trajectories in the j-s-phase plane. For different
initial conditions, different behaviors can be seen. The bold
(blue) lines correspond to fixed points, solid: stable, dashed:
unstable. Starting close to the horizontal dashed line, a limit
cycle is approached in agreement with the linear computations
from Sec. III B. All trajectories proceed clockwise.
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at the threshold computed in Fig. 3. However, also the
size of the limit cycle depends on the initial values of j(0)
and s(0). For larger values of j(0) the size of the cycle
increases. Note that due to the restriction j + s+ r = 1,
the trajectories must not leave the plane limited by the
upper right black line.

IV. 2D MULTIPLE RANDOM WALKER’S

APPROACH

In a previous paper [33] we considered a population of Z
random walkers (particles) to derive estimates for the
basic reproduction number and to explore space-time
patterns of the epidemic activity in computer simula-
tions. Here we employ the same multiple randomwalker’s
model, however, we take into account our above intro-
duced memory effect by assuming a random finite life
time of immunity drawn from an Erlang distribution. We
also consider limiting cases of a Dirac δ-distribution when
the life time of immunity is identical for all recovered in-
dividuals.

A. The model

Recall the multiple random walker’s model where each
walker performs independent jumps at times t = 1, 2 . . .
on a two-dimensional grid of N = L2 nodes. The posi-
tions of the walkers i = 1, . . . , Z are indicated by

1 ≤ x
(n)
i ≤ L, 1 ≤ y

(n)
i ≤ L

where xi, yi, L are integer numbers. Here, n denotes the
time instants of the jumps. The walkers may jump ac-
cording to

x
(n+1)
i = x

(n)
i + η(n)x , y

(n+1)
i = y

(n)
i + η(n)y , (12)

with equally distributed random integer numbers
ηx, ηy ∈ [−h, h] where we consider h ≪ L in order to sim-
ulate a small-world network. For instance for h = 1 only

jumps up to the neighbor nodes are possible. Let s
(n)
i

be an individual state variable characterizing the ‘state
of health’ of walker i. If walker i is infected at time n,

we put s
(n)
i = 1. To describe gradual recovery effects, we

assume a linear decrease in time

s
(n+1)
i = s

(n)
i − µ (13)

with 1/µ as a global characteristic relaxation time of heal-

ing. By choosing the time step ∆t = 1, s
(n)
i is synonym

for si(n∆t) = si(n).

In the present model we assume for the sake of simplicity
that µ is a global quantity, i.e. identical for all Z walk-
ers. In other words all infected walkers need the same
characteristic time τ1 = (1 − s1)/µ from infection to full
recovery (transition I → R, see Fig. 5).

t

1
s

1

suscebtible

∆τi

immune

infectious

<∆τ>
τ

infection

s (t)
i

1

FIG. 5. Linear decrease of si(t) after infection at t = 0 with
the identical slope for all infected walkers. During immunity
(τ1 ≤ t ≤ τ1 + ∆τi), the slopes are individually distributed
among the recovered walkers, according to the occurrence of
random life time of immunity intervals in our case drawn from
an Erlang PDF. Individuals i become again susceptible for
si(t) < 0.

We define individual i as infectious I at time t = n if
1 ≥ s

(n)
i > s1, (R) recovered (immune) if s1 ≥ s

(n)
i ≥ 0,

and (S) susceptible if s
(n)
i < 0. We depict this behavior

of the individual health state variable sni in Fig. 5.

For infection, the following rule applies. If an infected
walker i and a susceptible one j meet at the same instant
n on the same node, i.e.

x
(n)
i = x

(n)
j , y

(n)
i = y

(n)
j and s

(n)
i > s1, s

(n)
j < 0 ,

then walker i infects walker j with a given probability P .

In case of infection we reset its state variable s
(n)
j = 1.

FIG. 6. Scaled Erlang distributions for immunity time ∆τ =
1800 and different values of α.
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FIG. 7. Time series for initial condition (i), black: susceptible, red: infected walkers. For details see text.

FIG. 8. Long-time distribution for both initial conditions but several P and R0.

As mentioned we allow here for individual life times of
immunity following a PDF as introduced in Eq. (3) where
we focus on Erlang PDF of Eq. (8). Then (13) takes the
more general form, see Fig. 5:

s
(n+1)
i =







s
(n)
i − µ, if s1 ≤ s

(n)
i ≤ 1

s
(n)
i − νi, if s

(n)
i < s1 .

(14)

The individual slopes are given as νi = s1/∆τi (Fig. 5),
where ∆τi denotes the life time of the immune phase.

Let us now specify ∆τi drawn from an Erlang PDF
Kα,ξ(∆τ) (see Eq. (8)) as discussed in Sec. III A, Fig. 6.
Then the values of s1 and µ can be computed from

µ =
1

τ1 + 〈∆τ〉
, s1 = 1− µτ1 (15)

where τ1 indicates the time of healing (assumed constant
for all individuals) and

〈∆τ〉 =

∫

∞

0

τKα,ξ(τ) dτ =
α

ξ
(16)

being the expected (Erlang-) life time of immunity.

B. Numerical results

Here we show results on a N = 1500 × 1500 grid with
Z = 30000 walkers and τ1 = 600, 〈∆τ〉 = 1800. The
parameters for the Erlang distribution are chosen as α =
5 and with Eq. (16) ξ = 5/1800. The basic reproduction
number can be estimated as (see [33] for details),

R0 = ρPτ1 ,

where ρ = Z/N ≈ 0.0133 is the average density (expected
number of walkers on a node). As initial condition we
assume for the first ZI walkers being infectious,

s
(0)
i = ηi, i = 1, . . . , ZI ,

where ηi are equally distributed random numbers be-
tween s1 and 1. The other walkers are assumed to be
healthy and susceptible,

s
(0)
i = 0, i = ZI + 1, . . . , Z .

For the initial positions, we assume (i) all infectious walk-
ers are in the central position of the grid, and the other
(susceptible) ones randomly distributed. (ii) all walkers
are randomly distributed on the grid. For the maximum
jump distance of the walkers we take h = 4.

Figure 7 shows a time series for (i) with ZI = 2000. A dy-
namics similar to a wood fire can be recognized at smaller
times. Then the distribution turns into a more and more
random and homogeneous one as long as R0 > 1. For
smaller R0 the disease extincts. For (ii), the same long
time behavior is observed (last frame in Fig. 7). The
mean number of infected walkers depends on the proba-
bility of infection P and therefore on R0. This behavior
is depicted in Fig. 8.

It is interesting to see that the effective basic reproduc-
tion number Re fluctuates around a value of one, quite
independently from the probability P , see Fig. 9. We
compute Re directly from the simulations by counting
the infections per particle and time step.

Another important fact is that the mean numbers
of infectious and susceptible walkers do not asymptoti-
cally reach stationary values but rather oscillate around
a mean value with a certain frequency (Fig. 10). As a
consequence the epidemic activity never exhibits extinc-
tion at least for R0 > 1. This is one of the main dif-
ferences to the standard SIR model. The standard SIR
dynamics where the epidemics always comes to an end
(even for R0 > 1) is recovered in the limit 〈∆τ〉 → ∞
corresponding to infinite life time of immunity. The os-
cillatory behavior becomes even more pronounced if the
width of the PDF becomes smaller, i.e. when many in-
dividuals have similar immunity life times. In the limit
of a delta-function (all individuals have identical immu-
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FIG. 9. Effective reproduction number over time for P = 0.4
(black), P = 0.2 (green).

FIG. 10. Mean relative number of infected walkers over time
for P = 0.4 (black), P = 0.2 (green).
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FIG. 11. The plot depicts the relative number j(t) of infected
walkers vs. t with regular oscillations for a delta-kernel (iden-
tical immunity life times). j(t) oscillates for an intermediate
regime of R0 (bold, red), where the infection dies out for large
R0 (thin) or R0 < 1 (bold blue).

nity life time), the oscillation become very regular (Fig.
11) showing synchronization of the walkers for arbitrary

FIG. 12. Time series for a completely random initial distri-
bution, black: susceptible, red: infected walkers. For larger
R0 = 6.4 the infection nearly dies out but then spreads again
from certain isolated centers. Compare also the rates in Fig.
11.

initial conditions. After a certain number of oscillations,
the decrease of the relative number of infected individu-
als reaches almost extinction but then breaks out again
in a certain location and the cycle begins anew. This
behavior can be seen in Fig. 12. These oscillations exist
only in a bounded region of R0. For R0 < 1, the disease
dies out rapidly, for R0 larger than a critical value that
depends also on 〈∆τ〉 extinction is reached after a cer-
tain number of oscillations (Fig. 11). Qualitatively this
is the same scenario found with our extended SIR model,
where limit cycles only exist for ε below an upper limit.

On the other hand oscillatory behavior is supported by
the time series of Covid-19 cases in Kenya for the year
2021, see Fig. 13 with recurrent outbreak of the epidemic
activity. Although the observed amplitudes and periods
are different to our model, at least qualitatively an oscil-
latory epidemic activity as obtained by our model seems
to be supported by these real life data. Be reminded
that such an oscillatory behavior cannot be captured by
standard SIR models.

V. CONCLUSIONS

We proposed an extension of the standard SIR model
that considers the memory effect introduced by a random
finite immunity time after recovery from infection of the
individuals. The immunity time is supposed to have a
certain variation among the individuals and is described
by a PDF, here the Erlang distribution. Contrary to the
standard SIR model, where the disease extincts after one
sweep of infection, in our case a regime of R0 > 1 may ex-
ist with persistent limit cycles leading to a time-periodic
behavior of the number of infectious and susceptible in-
dividuals. Depending on the basic reproduction number
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FIG. 13. Time series of the absolute number of cases in Kenya during the years 2021/22 [43].

R0, the oscillation amplitude of the infected particles can
be rather small. For large R0, the amplitudes may grow
in such a way that a kind of “herd immunity” is reached
at a certain time and the disease extincts.

In the second part we considered a multiple random
walker’s model. It shows qualitatively the same mem-
ory effects: oscillating solutions in an intermediate range
of R0 whose amplitudes depend on R0, but also on the
special form of the PDF ruling the individual immunity
time of the walkers. The memory effect induces oscil-
latory characteristics in the epidemic activity where the
epidemic activity never ends. This outcome seems to be
at least qualitatively supported by real-world situations
(Fig. 13). Nevertheless, further quantitative modelling
research is needed to confirm this observation.

Our model can be extended in different directions. The

process of recovery, i.e. the duration of being ill (infected)
can as well be assumed to be random and modeled by
a memory term with another given PDF. On the other
hand, spatial effects can be taken into account consid-
ering diffusion terms including space-fractional diffusion
with long-range jumps and Lévy flights [6, 21, 26]. In
this way, spatially localized structures as encountered in
the random walker simulations may occur.

Further generalizations can be introduced by assuming
variable infection probabilities when susceptible and in-
fected walkers meet. The infection probabilities may vary
among the individuals and may also depend on time. The
interest of such a model is the possibility to capture ef-
fects of individually fluctuating virulence, vaccination or
resilience to the disease.
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