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Abstract: We proposed a simple algorithm to retrieve the total ozone column and snow properties
(spectral albedo and effective light absorption path) using the high spatial resolution single–view
MSI/S-2 measurements over Antarctica. In addition, the algorithm allows the retrieval of the snow
grain size on a scale of 10–20 m. This algorithm should be useful for the understanding of intra-pixel
total ozone and snow albedo variability in complement to satellite observations performed on a
much coarser spatial resolution scale (0.3–1 km and even larger spatial scales).

Keywords: snow; albedo; snow grain size; light scattering; radiative transfer; inverse problems

1. Introduction

Sentinel-2 (S-2) is an Earth observation mission from the Copernicus Programme
that systematically acquires optical imagery at high spatial resolution (10 m to 60 m) over
land and coastal waters. The mission is a constellation with two twin satellites, S-2A and
S-2B. The satellites were launched on 23 June 2015 and 7 March 2017, respectively. It is
planned that S-2C and S-2D will be launched during the next 10 years. The S-2 mission
is equipped with the Multi-Spectral Instrument (MSI), which uses a push-broom concept
and its design has been driven by the large (290 km) swath and high (10–60 m) spatial
resolution requirements. Revisiting is 5 days per month on average under the same viewing
angles close to the nadir direction. MSI operates in the spectral range 0.44–2.2 µm. The
instrument has already been used for numerous applications including studies of lake
ecological quality [1], winter wheat [2] and seasonal agriculture land use [3] mapping, etc.
(see, e.g., https://www.mdpi.com/journal/remotesensing/special_issues/sentinel2_sa,
last time accessed: 1 November 2021).

The climatic effects of snow cover depend not only on its extent [4] but also on its
spectral albedo, which plays an important role in the modification of the backscattered
solar energy on local and global scales [5,6]. Snow albedo products are currently available
at moderate resolution (i.e., 300 m from Ocean and Land Colour Imager (OLCI) [7,8],
500 m from MODerate Imaging Spectrometer (MODIS) [9,10] and Sea and Land Surface
Temperature Radiometer (SLSTR) [11,12], and 1 km from Second Generation Global Imager
(SGLI) [13]. However, they do not allow capturing the fine details of spatial variability
of the snow surface properties [14]. The technique presented here provides snow albedo
products on the scale of 10–20 m and makes it possible to derive and validate subpixel
snow cover products as obtained, e.g., from MODIS measurements [15,16].

The task of this paper is to derive the spectral snow albedo using MSI/S-2A (B)
10–60 m spatial resolution reflectance data. The spatial resolution of the product depends
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on the spectral channels used. In addition, the algorithm to determine the total ozone
column (TOC) over snow fields using MSI/S-2 is proposed. The retrieval algorithm is
described in the next section. We also present the validation of the algorithm using ground-
based snow spectral albedo and TOC measurements performed at Dome C (75◦05′59′′S,
123◦19′56′′E, 3233 m above sea level) in Antarctica.

2. The Determination of the Total Ozone and Spectral Snow Albedo Using
MSI Measurements

This work is aimed at the retrievals of total ozone column and snow properties
from MSI measurements over Antarctica. The atmospheric light scattering effects are
rather weak [17,18] in Antarctica for the MSI channels (see Table 1). Additionally, the
concentration of light-absorbing impurities in most Antarctic snow is very low [19,20] and
can be neglected in the first iteration. We shall use the following approximation for the
spectral top-of-atmosphere reflectance:

< = TgR (1)

where Tg is the atmospheric gaseous transmittance, R is the underlying surface-atmosphere
reflectance under the assumption that there are no absorbing gases in the atmosphere.
Ignoring weak atmospheric light scattering effects at the MSI channels, we can write for
highly reflective clean Antarctic surfaces [7,8,21]:

R = R0 exp
{
−
√

αL
}

(2)

where α = 4πχ
λ is the bulk absorption coefficient of ice, χ is the imaginary part of ice

refractive index and λ is the wavelength. Here, R0 is the snow reflectance in the absence of
absorption and L is the effective light absorption path (ELAP). In the case of dirty snow,
Equation (2) must be modified to account for the snow pollutants as discussed in [7].

Table 1. The specification of the MSI spectral channels. Band 9 is useful for the total water vapor
column estimation and band 10 is used for the detection of Cirrus clouds. Bands 1–8 are used in
atmospheric correction procedures. Bands 11 and 12 can be used to distinguish cloud and clear sky
snow fields.

Sentinel-2
Bands

Sentinel-2A Sentinel-2B

Central
Wavelength

(nm)

Bandwidth
(nm)

Central
Wavelength

(nm)

Bandwidth
(nm)

Spatial
Resolution

(m)

Band 1 442.7 21 442.2 21 60
Band 2 492.4 66 492.1 66 10
Band 3 559.8 36 559 36 10
Band 4 664.6 31 664.9 31 10
Band 5 704.1 15 703.8 16 20
Band 6 740.5 15 739.1 15 20
Band 7 782.8 20 779.7 20 20
Band 8 832.8 106 832.9 106 10

Band 8A 864.7 21 864 22 20
Band 9 945.1 20 943.2 21 60

Band 10 1373.5 31 1376.9 30 60
Band 11 1613.7 91 1610.4 94 20
Band 12 2202.4 175 2185.7 185 20

The task of this work is to retrieve the spectral snow albedo and total ozone concen-
tration using MSI measurements in the spectral range 443–865 nm, where the accuracy
of Equation (2) is higher as compared to the case of short-wave infrared wavelengths [7].
Additionally, the influence of all atmospheric gases on the value of transmittance Tg (except
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ozone) can be neglected in this spectral interval [8,21]. This is especially valid in central
Antarctica, where the atmosphere is thin and the air is dry.

We shall use the following approximation for the atmospheric ozone transmittance [8]:

Tg(λ) = exp{−KCabs(λ)} (3)

where K = mN, m is the air mass factor (AMF) depending on several parameters including
the cosine of the solar zenith angle (SZA) ξ and the cosine of the viewing zenith angle
η, N is the total ozone column and Cabs(λ) is the ozone absorption cross-section. The
dependence of Cabs(λ) on temperature and pressure is weak in the spectral range under
study [22]. Therefore, it is not accounted for.

Summing up, the spectral MSI reflectance over pure snow fields under a clear sky is
modelled as

<(λ) = Ra exp
{
−KCabs(λ)−

√
Lα(λ)

}
(4)

where we assumed that light reflectance by snow in the absence of absorbers R0 can be
substituted by the MSI measurements at band 1 (Ra ). The weak influences of atmospheric
scattering effects on the value of MSI spectral reflectance at 442.7 nm can be accounted for,
if needed, using either exact radiative transfer calculations for a given atmospheric model
or various approximations [21]. These effects are ignored in this work.

Our simplified model of the MSI spectral reflectance in the visible and near-infrared
given by Equation (4) makes it possible to determine two unknown constants (K, L) from
Equation (4) analytically. Namely, it follows under the assumption that ozone absorption
can be neglected at the wavelength λc :

K =
ln(Ra/Rb)−

√
αbL

Cabs,b
, L =

ln2(Rc/Ra)

αc
(5)

where indices signify the spectral channels (λa, λb, λc ). The wavelength λb corresponds to
the maximal ozone absorption in the MSI spectra (559.8 nm). It has a spatial resolution of
10 m. The channels (λa, λc) are used for the determination of the effective light absorption
path in the snowpack. We shall use the following wavelengths for MSI/S-2A (and similar
channels for S-2B) in this work: λa = 442.7 nm and λc = 864.7 nm. They have the same
bandwidths (21 nm) but different spatial resolutions (60 m for the channel located at λa
and 20 m for the channel located at λc ). The channel located at λc = 864.7 nm corresponds
to the maximal ice absorption in the MSI spectra in the range 443–865 nm (with negligible
ozone absorption effects). The channel located at λa = 442.7 nm corresponds to the minimal
effects of the ice and ozone absorption in the MSI visible range. The use of channels with
different spatial resolutions is justified if snow reflectance in channel 1 (8A) weakly change
on the scale of 10–60(20) m, which is true for Antarctic surfaces on average.

The fit of the MSI spectral reflectance measured in the vicinity of the Dome C in
Antarctica using Equations (4) and (5) is given in Figure 1. We extracted reflectance from
MSI/Sentinel-2 level 1C products at the nearest pixel of the measurement site using Google
Earth Engine [23]. The solar and sensor geometry parameters for each spectral band were
obtained from the product metadata. The spectral range 400–1050 nm is shown in Figure 1.
The calculations using Equation (4) were performed with the spectral resolution of 1 nm.
The spectral imaginary part of the ice refractive index as suggested in [24] was used at
wavelengths below 600 nm. For the larger wavelengths, data presented in [25] were used.
The spectral absorption cross-section of ozone Cabs(λ) measured in [22] at 203K was used.
The corresponding parameters appearing in Equation (5) are given in Table 2. The linear
interpolation of tabular spectra Cabs(λ) and χ(λ) on the 1 nm grid in the spectral interval
400–1050 nm was applied.
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Figure 1. The fit of MSI spectral reflectance over Dome C (Antarctica) (see Equation (4)). The
MSI/ S-2 TOA reflectance observations were performed on 3 November 2020 during the ozone hole
occurrence [26].

Table 2. The parameters used in Equation (5).

αb, cm−1 αc, cm−1 Cabs,b, cm2/molecule

7.48× 10−4 3.49×10−2 3.87× 10−21

The retrieved values of the parameters given in Equation (4) for the case shown in
Figure 1 are: K = 1.66 ×1019 cm2/molecule and L = 2.13 mm. They were derived using
Equation (5) and data are given in Table 2.

The total ozone column can be derived from the value of K as follows: N = K/m.
Assuming that m is given by the geometrical approximation (m = 1

ξ + 1
η ), one derives

for the value of TOC for the case shown in Figure 1: N = 4.8458 ×1018 molecule/cm2 or
N = 180.4 DU, where we used the conversion factor κ = 3.722 ×10−17 DU × cm2/molecule
to derive the value of N in Dobson Units (DU). The ground SAOZ (Système d’Analyse par
Observations Zénithales) TOC measurements [27,28] at the Dome C site give the value of
TOC equal to 158 and 180 DU in morning and evening, respectively, which is close to the
TOC derived using MSI/S-2 measurements.

The value of L can be used to derive the effective absorption length ` , which deter-
mines the snow spherical albedo [7]:

r = exp
{
−
√

α`
}

(6)

Namely, it follows [7]:

` =
R2

a
u2(ξ)u2(η)

L, (7)



Remote Sens. 2021, 13, 4404 5 of 10

where [29]:

u(µ) =
3
5

ξ +
1 +
√

ξ

3
(8)

The function u(ξ) describes the angular distribution of light escaping from semi-
infinite nonabsorbing turbid media with light sources placed at infinity. Taking into
account that Ra = 0.92, ξ = 0.41, η = 1, and L = 2.13 mm for the case shown in Figure 1, it
follows that ` = 1.79mm . This makes it possible to derive both spectral spherical r (see
Equation (6)) and plane (rp = ru(µ) ) albedo [7]. Moreover, the ice grain effective diameter
can be derived using the relationship proposed in [7]: de f = `/σ, where σ is the shape
factor, which depends on the assumed shape of snow grains. We shall use the value of
σ = 16 close to that suggested in [7]. Therefore, it follows for the case shown in Figure 1:
de f = 0.11 mm, which is a reasonable estimation for the snow surface at Dome C [6,19].
In particular, it has been found the values of de f = 0.1 mm in the first 5 mm of snow at
the South Pole (23 January 1986) [19]. The value of de f was two times smaller at the same
location immediately after the snowfall [19].

The total ozone column over Dome C retrieved using the technique described above
for November–December 2020 is shown in Figure 2 (MSI). The cloudy scenes were removed
using MSI measurements at 2.2 µm with the assumption that clouds have higher reflectance
as compared to snow at this channel due to the smaller size of crystals in clouds as compared
to snow on the surface. The threshold value of R(2.2 µm) = 0.2 was used. The air mass
factor was calculated as [30,31].

m =
1 + s√
2s + ξ2

+
1 + s√
2s + η2

(9)

where s = h
R , h = 0.26− 0.1L, L is the latitude in degrees (the negative number in the

southern hemisphere), R is the radius of the Earth, h is the height of the ozone layer in km.
Equation (9) coincides with the geometrical AMF at s = 0. We also show the TOC derived
from other satellite/ground observations (see Table 3 and [26] for details on various satellite
measurements) and European Centre for Medium-Range Weather Forecasts (ECMWF)
re-analysis in Figure 2. The temporal (daily product) and spatial 1deg averaging around
the site was performed (except for MSI, where data for a given pixel or the average of two
pixels (S-2A, S-2B), if available, is given). It follows that all instruments show the existence
of the ozone hole in early November and its disappearance in the last week of December
2020. Data from all instruments closely follow all temporal oscillations of the TOC (see, e.g.,
the TOC wave centered at day 45 (15 December) in Figure 2). There is a temporal/spatial
mismatch between MSI/S-2 and other satellite measurements. In particular, the MSI/S-2
measurements provide the total ozone column on the spatial scale of 10 m, which is not
possible for other instruments (see Table 1). This could explain some differences seen in
TOC derived from MSI as compared to other instruments.

The intercomparison of ground-based and satellite—retrieved albedo is given in
Figures 3 and 4 for 9 December 2016 and 4–6 February 2018. The ground measurements of
the plane albedo were performed in the spectral range 400–1050 nm. Further details on the
ground measurements using the Autosolexs instrument are given in [7,32,33], where the
same spectral albedo measurements were used to validate the OLCI/S-3 snow albedo re-
trievals. The time of ground (satellite) measurements on 9 December was 22:00(23:57)UTC
at SZA = 65 degrees. Therefore, there was a 2 h temporal mismatch. The times of mea-
surements for 4–6 February 2018 are specified in Table 4. The effective ice grain diameter
retrieved from satellite measurements as specified above is shown in Table 4 as well. One
can see that the temporal mismatch between ground (5 February, 22:50) and satellite (6
February, 00:07UTC) measurement is just 1 h 17 min. It is assumed that the temporal
change of albedo can be neglected at DOME C at the time interval 1–2 h.
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Figure 2. The total ozone column retrieved using MSI/S-2 observations and also other ground and satellite observations
(see Table 3) at DOME C (Antarctica) on November–December 2020. The data derived from the ECMWF re-analysis is given
as well.

Table 3. The instrumentation used in the determination of the total ozone column temporal changes over Dome C
(Antarctica) shown in Figure 2. Further details on the satellite instrumentation used are given in [26] .

Instrument Abbreviation Spatial Resolution

Global Ozone Monitoring Experiment GOME-2 80× 40 km

Ozone Mapping and Profiling Suite OMPS 50× 50 km

Ozone Monitoring Instrument OMI 13× 24 km

TROPOsphere Monitoring Instrument TROPOMI 7× 3.5 km

Ocean and Land Colour Instrument OLCI 0.3× 0.3 km

Multi Spectral Imager MSI
from 0.01× 0.01 km

till 0.06 × 0.06 km (dependent on the
channel, see Table 1)

Système d’Analyse par Observations
Zénithales (morning ground observations) SAOZ-1 ground zenith sky transmittance

measurements (morning)

Système d’Analyse par Observations
Zénithales (evening ground observations) SAOZ-2 ground zenith sky transmittance

measurements (evening)
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Figure 3. (a,b) The snow spectral plane albedo derived from dual—channel (443 and 865 nm) satellite (blue line) and ground
(red) measurements. The measurements were performed on 9 December 2016 at Dome C in Antarctica. The satellite-derived
snow albedo is provided on the spectral grid 10 nm. The right panel gives the plane albedo in a broader spectral range not
covered by ground measurements.
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Figure 4. The intercomparison of plane albedo derived from ground measurements on 5 February
2018 and satellite measurements on 4 and 6 February 2018.

It follows that ground and satellite measurements of spectral albedo give very similar
results, which indirectly confirm the validity of our assumptions used in the retrieval pro-
cedure. We also note that although we used the spectral MSI/S-2 reflectance measurements
at just two wavelengths (443 and 865 nm), the spectral albedo is estimated in a much larger
spectral range useful also for the shortwave broadband albedo determination. This is due to
the fact that the spectral pure plane snow albedo depends largely on two parameters—the
effective absorption length and solar zenith angle. The difference between satellite and
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ground measurements depends on the wavelength being smaller than 2% in the spectral
range 400–1100 nm. This difference is below the error of respective optical measurements.
The largest differences (2%) occur around 1050 nm, where MSI/S-2 does not perform any
measurements. The ELAP estimated from the 864.7 nm MSI-S2 channel may differ from
that derived from 1020 nm due to vertical snow inhomogeneity effects and spectrally
variable light penetration in snow layers. The difference observed in Figures 3 and 4 may
be reduced if a new channel (say, 1020 nm) is added to the MSI in the future.

Table 4. The time of satellite/ground albedo retrievals/measurements over Dome C (Antarc-
tica) shown in Figures 3 and 4. Further details on the ground measurements are given in [7].
The satellite SZA was in the range 65–67 degrees and ground measurements were performed at
SZA = 71.6 degrees. The vale of de f for the case of ground Autosolex measurements have been
retrieved using the same approach as dicussed above for spacebrone observations.

Date Time (UTC) def(mm) Instrument

4 February 2018 00:17 0.21 MSI

4 February 2018 23:38 0.32 MSI

5 February 2018 22:50 0.21 Autosolexs

6 February 2018 00:07 0.21 MSI

6 February 2018 23:47 0.36 MSI

One can conclude from Figure 4 that spectral albedo does not change considerably dur-
ing 2 days, if measurements are performed at almost the same time of day (say, 4 February
(00:17UTC) and 6 February (00:07UTC)). They are close to the ground measurements per-
formed on 5 February (22:50UTC), 1 h 17 min ahead of satellite measurements performed
on 6 February (00:07UTC).

3. Conclusions

The climatic effects of snow surfaces depend both on snow fraction and snow albedo.
The retrieval of snow fraction using MSI/S-2 measurements are performed in [34,35] at
20 m resolution in open terrain. In this paper a simple algorithm to retrieve the snow
albedo and total ozone column using the high spatial resolution single–view MSI/S-2
measurements over Antarctica is proposed. Therefore, multiple observations of the same
ground pixel from different directions as used, e.g., in the MODIS snow albedo retrieval
algorithm [9] were not needed.

In addition, the algorithm allows the retrieval of the snow grain size on the scale of
10–20 m although this was not explicitly evaluated here. This algorithm should be useful
for the understanding of intra-pixel total ozone and snow albedo variability in complement
to satellite observations performed on a much coarser spatial resolution scale (0.3–1 km
and even larger spatial scales). The algorithm can be extended for the case of polluted
snow as discussed in [36].

It was shown that the MSI reflectance in the spectral range 443–865 nm over snow
in Antarctica can be modelled using just two parameters (K and L). These parameters are
proportional to the total ozone column and the effective diameter of ice grains, respectively.
Therefore, we conclude that the main parameters influencing the MSI spectra in the range
443–865 nm are TOC and the effective diameter of snow grains with other effects of
secondary importance for a clean Antarctic atmosphere. In particular, the influence of the
molecular and aerosol light scattering on the MSI/S-2 reflectance spectra in Antarctica can
be neglected in the first approximation. This is especially true for the channel located at
865 nm used for the effective grain diameter (see Equations (5)–(7)) and spectral albedo
determination. We also assumed that the MSI reflectance at channel 1 (8A) is the same on
the scale of 10 and 60 (20) m, which is true for most of the Antarctic surfaces. Otherwise, the
channels (2, 3, 8, see Table 1) with the same spatial resolution (10 m) must be used to derive
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the pair (K, L) from Equation (4). It follows from Figure 1 that the reflectances at channels
1 and 2 and also 8 and 8A have close values. Therefore, two different sets of channels
used in the retrieval process produce almost the same retrieval results. Alternatively, the
parameters (K, L) can be retrieved using all MSI channels in the framework of the optimal
estimation approach.

The determination of the effective light absorption path makes it possible to estimate
also snow broadband albedo [29,37] both from ground and satellite measurements. An
important point is that the information on the effective absorption length makes it possible
to retrieve both spectral and broadband snow albedo under the assumption of vertically
and horizontally homogeneous snow surfaces.

The technique is applicable for pure snow cases common in Antarctica, where the
atmospheric aerosol load is low [17,38]. The retrieval is performed outside absorption
bands of water vapor, oxygen and carbon dioxide. The Rayleigh optical thickness is smaller
than 0.15 at the MSI channels at Arctic and Antarctic sites [18] and, therefore, the molecular
scattering over the highly reflective surface can be neglected as well. The accuracy of the
retrievals is expected to decrease for the cases of polluted snow and atmosphere.
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