This document describes how provenance information can be modeled, stored and exchanged within the astronomical community in a standardized way. We follow the definition of provenance as proposed by the W3C 1 , i.e. that "provenance is information about entities, activities, and people involved in producing a piece of data or thing, which can be used to form assessments about its quality, reliability or trustworthiness." Such provenance information in astronomy is important to enable any scientist to trace back the origin of a dataset (e.g. an image, spectrum, catalog or single points in a spectral energy distribution diagram or a light curve), a document (e.g. an article, a technical note) or a device (e.g. a camera, a telescope), learn about the people and organizations involved in a project and assess the reliability, quality as well as the usefulness of the dataset, document or device for her own scientific work.

The Provenance Working Group acknowledges support from the Astronomy ESFRI and Research Infrastructure Cluster -ASTERICS project2 , funded by the European Commission under the Horizon 2020 Programme (GA 653477). This document has been developed in part with support from the German Astrophysical Virtual Observatory, funded by BMBF Bewilligungsnummer 05A14BAD and 05A08VHA. Additional funding was provided by the INSU (Action Spécifique Observatoire Virtuel, ASOV), the Action Fédératrice CTA at the Observatoire de Paris, the Paris Astronomical Data Centre (PADC), and the E-Info-Astro project (BMBF 05AI7BA2).

We particularly thank Kristin Riebe for her role as initial editor of the document with Mathieu Servillat. We also warmly thanks the DM and TCG chairs Mark Cresitello-Dittmar, Laurent Michel and Janet Evans.

Thanks to: Karl Kosak, Johan Bregeon, Julien Lefaucheur and Jose Enrique Ruiz for the binding to the Cherenkov Telescope Array (CTA) project, Gerard Lemson, Laurent Michel for the VO-DML expression of the data model, Markus Demleitner, Harry Enke, Florian Rothmaier, Jochen Klar and Adrian Partl, for fruitful discussions, remarks and comments at different stages during the preparation of this specification.

Introduction

In this document, we present an IVOA standard data model (DM) for describing the provenance of astronomical data. How this specification of the Provenance model can be implemented is developed in a companion document to be published as an IVOA Note [START_REF] Servillat | the IVOA Data Model Working Group[END_REF].

The provenance of scientific data is cited in the FAIR principles for data sharing [START_REF] Wilkinson | The fair guiding principles for scientific data management and stewardship[END_REF]. Provenance is relevant for science data in general and specifically in an open publishing context which is a requirement for many projects and collaborations.

We follow the definition of provenance as proposed by the W3C (Belhajjame and B 'Far et al., 2013), i.e. that provenance is "information about entities, activities, and people involved in producing a piece of data or thing, which can be used to form assessments about its quality, reliability or trustworthiness".

In astronomy, such entities are generally datasets composed of VOTables, FITS files, database tables or files containing values (spectra, light curves), it could also be any value, logs, documents, as well as physical objects such as instruments, detectors or photographic plates. The activities correspond to processes like an observation, a simulation, processing steps (image stacking, object extraction, etc.), execution of data analysis code, publication, etc. The people involved can be for example individual persons (observer, publisher, etc.), groups or organisations, i.e. any agent related to an activity or an entity.

An example for activities, entities and agents as they can be discovered backwards in time is given in Figure 1. Starting with a released dataset (left), the involved activities (blue boxes), progenitor entities (yellow rounded boxes) and responsible agents (orange pentagons) are discovered.

Goal of the provenance model

The goal of this Provenance DM is to describe how provenance information arising from astronomy projects can be modelled, stored and exchanged. Its scope is mainly modelling of the flow of data, of the relations between pieces of data, and of processing steps. However, the Provenance DM is sufficiently abstract that its core pattern could be applied to any kind of process related to either observation or simulation data. Information attached to observation activities such as ambient conditions and instrument characteristics provide useful information to assess the quality and reliability of the generated entities. Contextual information during the execution of processing activities (computer structure, nodes, operating system used, etc.) can also be relevant for the description of the main entities generated. This complementary information should be included in the form of metadata or additional entities connected to an activity. However, the precise structure and modelling of this information is out of the scope of this document.

In general, the model shall capture information in a machine-readable way that would enable a scientist who has no prior knowledge about a dataset to get more background information. This will help the scientist to decide if the dataset is adequate for her research goal, assess its quality and reliability and get enough information to be able to trace back its history as far as required or possible.

Provenance information can be exposed with different granularity. A specific project has to decide this granularity. The granularity and amount of provenance information provided depends on the available information, the needs of the project and the intended usage of this information. This flexible approach has an impact on the interoperability between different services as this level of detail is not known a priori. The objective of the model is to propose a general structure for the provenance information. In addition, proposed vocabularies of reserved words help to further formalize the detailed provenance information.

The following list is a collection of use cases addressed by the Provenance DM listed by goal categories.

A: Traceability of products

Track the lineage of a product back to the raw material (backwards search), show the workflow or the data flow that led to a product. Examples:

• Having a dataset, find the main progenitors and in particular locate the raw data.

• Find out what processing steps have been already performed for a given dataset: Is an image already calibrated? What about dark field subtraction? Were foreground stars removed?

• Find out if a filter to remove atmospheric background muons has been applied.

B: Acknowledgement and contact information

Find the people involved in the production of a dataset, the people/organizations/institutes that one may want to acknowledge or can be asked for more information.

Examples:

• I want to use an image for my own work -who was involved in creating it? Who can I contact to get information?

• Who was on shift while the data was taken?

• I have a question about column xxx in a data table. Who can I ask about that?

C: Quality and Reliability assessment Assess the quality and reliability of an observation, production step or dataset, e.g., based on detailed descriptions of the processing steps and manipulated entities.

Examples:

• Get detailed information on the methods/tools/software that were involved: What algorithm was used for Cherenkov photon reconstruction? How was the stacking of images performed?

• Check if the processing steps (including data acquisition) went "well": Were there any warnings during the data processing? Any quality control parameters?

• Extract the ambient conditions during data acquisition (cloud coverage? wind? temperature?)

• Is the dataset produced or published by a person/organisation I trust? Using methods I trust?

D: Identification of error location

Find the location of possible error sources in the generation of a product. This is connected to use cases described in section C above, but implies an access to more information on the execution such as configuration or execution environment.

Examples:

• I found something strange in an image. Was there anything strange noted when the image was taken? a warning during the processing?

• Which pipeline version was used, the old one with a known bug for treating bright objects or a newer version?

• What was the execution environment of the pipeline (operating system, system dependencies, software version, etc.)?

• What was the detailed configuration of the pipeline? were the parameters correctly set for the image cleaning step?

E: Search in structured provenance metadata

Use Provenance criteria to locate datasets (forward search), e.g., finding all images produced by a certain processing step or derived from data which were taken by a given facility.

Examples:

• Find more images that were produced using the same version of the CTA pipeline.

• Get an overview of all images reduced with the same calibration dataset.

• Are there any more images attributed to this observer?

• Find all datasets generated using this given algorithm, with this given configuration, for this given step of the data processing.

• Find all generated data files that used incorrectly generated file X as an input, so that they can be marked for re-processing

• Extract all the provenance information of a SVOM light curve or spectrum to reprocess the raw data with refined parameters.

General Remarks

In addition to those use cases, if the stored information is sufficiently fine grained, it is possible to enable the reproducibility of an activity or sequence of activities, with the exact same configuration and exact same conditions.

Provenance information delivers additional information about a scientific dataset to enable the scientist to evaluate its relevance for his work.

Requirements and best practices 1.2.1 Model requirements

This document was developed with these general requirements in mind:

• Provenance information must be formalized following a standard model, with corresponding standard serialization formats.

• Provenance information must be machine readable.

• Provenance data model classes and attributes should make use of existing IVOA standards.

• Provenance information should be serializable into the W3C provenance standard formats (PROV-N, PROV-XML, PROV-JSON) with minimum information loss.

• Entities, Activities and Agents must be uniquely identifiable within a domain.

Best practices

The following requirements concern the provenance usages in the VO context:

• The reliability of provenance information should be ensured (e.g., by an authority endorsing the information, or by provenance of provenance).

• Provenance metadata for a given entity should contain information to find immediate progenitor(s).

• An entity should be linked to the activity that generated it.

• Activities should be linked to input entities.

• Activities should point to output entities.

• Provenance information should make it possible to derive the logical sequence of activities.

• All activities and entities are recommended to have contact information and contain a (short) description or link to a description.

Role within the VO architecture

The IVOA Provenance Data Model is structuring and adding metadata to trace the processes of the astronomical data production and dissemination.

Even if it borrows the main general concepts from data management science, it binds to the specific context of astronomical metadata description and reuses or interacts with existing IVOA models. It takes benefits from existing IVOA notations and standards like UCD (semantic tags), VOUnits (standard expression of units for the VO) and service design; and it is planned for a full integration into the VO landscape. Fig. 2 shows the dependencies of this document with respect to other existing standards.

Previous efforts

The provenance concept was first introduced by the IVOA within the scope of the Observation Data Model (see IVOA Note by IVOA Data Model Working Group, 2005), as a class describing where the data are coming from. A full observation data model specifically dedicated to spectral data was then designed (Spectral Data Model, McDowell and Tody et al., 2007), as well as a fully generic characterisation data model of the measurement axes of data (Characterisation Data Model, [START_REF] Louys | Data Model for Astronomical DataSet Characterisation Version 1.13[END_REF], while the progress on the provenance data model was slowing down.

To regain momentum, the IVOA Data Model Working Group gathered various use cases coming from different communities of observational astronomy (optical, radio, X-ray, interferometry). Common motivations for a provenance tracing of their history included: quality assessment, discovery of dataset progenitors, and access to metadata necessary for reprocessing. The provenance data model was then designed as the combination of Data processing, Observing configuration, and Observation ambient conditions data model classes. The Processing class was embedding a sequence of processing stages which were hooking specific ad hoc details and links to input and output datasets, as well as processing step descriptions. Despite the attempts at an UML description of the model and writing XML serialization examples, the IVOA efforts failed to provide a workable solution: the scope was probably too ambitious and the technical background too unstable. A compilation of these early developments can be found on the IVOA site (Bonnarel and the IVOA Data Model Working Group, 2016). From 2013 onwards, the IVOA concentrated on use cases related to processing description and decided to design the model by extending the basic W3C provenance structure, as described in the current specification.

Outside of the astronomical community, the Provenance Challenge series (2006 -2010), a community effort to achieve inter-operability between different representations of provenance in scientific workflows, resulted in the Open Provenance Model (OPM) [START_REF] Moreau | The open provenance model core specification (v1.1)[END_REF]. Later, the W3C Provenance Working Group was founded and released the W3C Provenance Data Model as Recommendation in 2013 [START_REF] Belhajjame | PROV-DM: The prov data model[END_REF]. OPM was designed to be applicable to anything, scientific data as well as cars or immaterial things like decisions. With the W3C model, this becomes more focused on the web. Nevertheless, the core concepts are still in principle the same in both models and are very general, so they can be applied to astronomical datasets and workflows as well. The W3C model was taken up by a larger number of applications and tools than OPM. We are therefore basing our modeling efforts on the W3C PROV Data Model, making it less abstract and more specific, or extending it where necessary.

The W3C model already specifies PROV-DM Extensibility Points (section 6 in [START_REF] Belhajjame | PROV-DM: The prov data model[END_REF] for extending the core model. This allows one to specify additional roles and types for each entity, agent or relation using the attributes prov:type and prov:role. The IVOA Provenance DM is based on the the PROV-DM recommendation [START_REF] Belhajjame | PROV-DM: The prov data model[END_REF] of the World Wide Web Consortium (W3C), that provides the core elements of the model (see Sections 2.2 to 2.4). In the VO context, the provenance of something is thus a sequence of activities using and generating entities run by agents.

The IVOA Provenance data model 2.1 Overview and class diagram

The model also includes description classes (see Section 2.5) to provide information common to several elements; Specific types of Entity classes commonly used in astronomy (see Section 2.6); and an ActivityConfiguration package (see Section 2.7).

The IVOA Provenance DM is a class data model that follows the VO-DML designing rules [START_REF] Lemson | VO-DML: a consistent modeling language for IVOA data models Version 1.0[END_REF]. It is represented as a UML class diagram: an overview diagram is shown in Figure 3, and a full diagram with attributes is shown in Appendix 3, Figure 8.

Entity and Activity classes

The core classes and relations of the IVOA Provenance DM are presented in Figure 4. Traceability (see goal A in Section 1.1) is enabled by chaining entities and activities, which are the building blocks of the history graph.

Entity and Collection classes

An entity is a physical, digital, conceptual, or other kind of thing with some fixed aspects (W3C PROV-DM §5.1.1).

The Entity class in the model has the attributes given in Table 1.

Entities in astronomy are usually astronomical or astrophysical datasets in the form of images, tables, numbers, etc. But they can also be log files, files containing system information, any input or output value, environment variables, ambient conditions, or, in a wider sense, observation proposals, scientific articles, or manuals and other documents. Though the focus is on digital entities in this document, entities can also refer to physical entities that may be linked to digital entities, such as e.g., tools, instruments, detectors, photographic plates.

A collection is an entity that provides a structure to some constituents that must themselves be entities (W3C PROV-DM §5.6.1). These constituents are said to be members of the collections. They are connected in the model with a hadMember relation.

Activity class

An activity is something that occurs over a period of time and acts upon or with entities; it may include consuming, processing, transforming, modifying, relocating, using, or generating entities (W3C PROV-DM §5.1.2).

The Activity class in the model has the attributes given in Table 2.

Activities in astronomy include all steps from obtaining data to the reduction of images and production of new datasets, such as image calibration, bias subtraction, image stacking, light curve generation from a number of observations, radial velocity determination from spectra, post-processing steps of simulations, etc.

Entity-Activity relations

Each entity is usually a result of an activity, expressed by a link from the entity to its generating activity, and can be used as input for (many) other activities. Thus the information on whether data are used as input or were produced as output of some activity is given by the relations between activities and entities. Tracking those relations answers one of the main objectives of the model (see goal A in Section 1.1).

Entity

Used class

Usage is the beginning of utilizing an entity by an activity. Before usage, the activity had not begun to utilize this entity and could not have been affected by the entity (W3C PROV-DM §5.1.4).

Usage is implemented in the model by a class Used that connects Activity to Entity and contains the attributes in Table 3.

For example, an activity "calibration" used entities with the roles "calibration data" and "raw images". Table 3: Attributes of the Used relation class.

Used

The time of the usage can be specified, and must be between the startTime and the endTime of the corresponding activity.

The Used class is closely coupled to the Activity by a composition (see B.5). Any given entity can be used by more than one activity.

WasGeneratedBy class

Generation is the completion of production of a new entity by an activity. This entity did not exist before generation and becomes available for usage after this generation (W3C PROV-DM §5.1.3).

Generation is implemented in the model by a class WasGeneratedBy that connects Entity to Activity and contains the attributes in Table 4.

For example, the entity "raw_image.fits" was generated by the activity "observation" with the role "raw image". As the Entity class has an attribute generatedAtTime, there is no additional time attribute in this relation.

WasGeneratedBy

The WasGeneratedBy relation is closely coupled with the Entity via a composition (see B.5). An entity can be generated by only one activity, so the multiplicity is 1 or 0 between Entity and WasGeneratedBy.

Roles in Entity-Activity relations

The role of an entity within an activity should be provided. Roles in Entity-Activity relations are free text attributes.

The role cannot be an attribute of the Entity class, since the same entity (e.g., a specific file containing an image) may play different roles with different activities.

In some cases the role is mandatory to distinguish two input entities. For example, an activity for dark-frame subtraction requires two input images. But it is very important to know which of the images is the raw image and which one fulfils the role of dark-frame.

Several entities may play the same role for an activity. For example, many image entities may be used as science-ready images for an image stacking process.

WasDerivedFrom relation

A derivation is a transformation of an entity into another, an update of an entity resulting in a new one, or the construction of a new entity based on a pre-existing entity (W3C PROV-DM §5.2.1).

Derivation is a relation wasDerivedFrom in the model, that connects an instance of Entity to another instance.

For example, the entity "calibrated_image.fits" was derived from the entity "raw_image.fits"

This relation makes it possible to visualize independently the flow of entities, e.g., a dataflow. It does not need a priori a specific class or table in an implementation, but it provides a way to expose partial information that follows the general chain WasGeneratedBy-Activity-Used where the activity may be an empty instance because it is unknown or irrelevant.

WasInformedBy relation

Communication is the exchange of information (some unspecified entity) by two activities, one activity using some entity generated by the other (W3C PROV-DM §5.1.5).

Communication is a relation wasInformedBy in the model, that connects an instance of Activity to another instance.

For example, the activity "calibration" was informed by the activity "pipeline".

This relation makes it possible to visualize independently the flow of activities as they occurred, which may be the result of the execution of a workflow. It does not need a priori a specific class or table in an implementation, but it provides a way to expose partial information that follows the general chain Used-Entity-WasGeneratedBy where the entity may be an empty instance because it is unknown or irrelevant.

Agent and relations to Agent

A contact information is needed in case more information about a certain activity or entity is required, but also in order to know who was involved and to fulfil the Acknowledgement objective (see goal B in Section 1.1).

Agent class

An agent is something that bears some form of responsibility for an activity taking place or for the existence of an entity (W3C PROV-DM §5.3.1).

The Agent class in the model has the attributes given in Table 5.

An Agent is generally someone who pressed a button, ran a script, performed the observation or published a dataset. The agent can be a single person, a group of persons, a project or an institute (the vocabulary for agent types is given in Table 6).

It is recommended to use organizational agents and agents with generic contacts. For each agent a name must be specified. Other attributes can help locate or contact the agent (email, affiliation, phone, address). Not every project will need them; e.g. an advanced system may use permanent identifiers (ORCIDs, identities in federations, etc) to identify agents, and retrieve their properties from an external system instead.

Agent

AgentType Type Description

Person person agents are people Organization a social or legal institution, e.g., an institute, a consortium, a project SoftwareAgent running software, e.g., a cron job or a trigger There can be more than one agent for each activity and one agent can be responsible for more than one activity or entity, using the relations defined in the following sections.

WasAssociatedWith class

An activity association is an assignment of responsibility to an agent for an activity, indicating that the agent had a role in the activity (W3C PROV-DM §5.3.3).

Association is implemented in the model by a class WasAssociatedWith that connects Activity to Agent and contains the attributes in Table 7.

For example, the agent "Max Smith" was associated with the activity "observation" with the role "Observer". Table 7: Attributes of WasAssociatedWith relation class.

WasAssociatedWith

WasAttributedTo class

Attribution is the ascribing of an entity to an agent. When an entity is attributed to an agent, this entity was generated by some unspecified activity that in turn was associated to the agent. Thus, this relation is generally useful when the activity is not known, or irrelevant (W3C PROV-DM §5.3.2). Attribution is implemented in the model by a class WasAttributedTo that connects Entity to Agent and contains the attributes in Table 8.

For example, the entity "science_image.fits" was attributed to the agent "observatory". Table 8: Attributes of WasAttributedTo relation class.

WasAttributedTo

Agent roles

Agents may play a specific role with respect to an activity or an entity. The role attribute should be specified whenever it is known. Roles in relations to Agent are free text attributes, but if one of the terms in Table 9 applies, it should be used.

Agent roles

Role Description

Author agent at the origin of a written entity (e.g., article, document, proposal)

Contributor* agent responsible for making contributions to an entity or an activity

Description classes

In the domain of astronomy, certain processes and steps are repeated over and over again, maybe using a different configuration and within a different context. We therefore separate the descriptions of activities from the actual processes and introduce an ActivityDescription class (Section 2.5.1). Likewise, we also apply the same pattern for Entity and add an EntityDescription class (Section 2.5.2).

Defining such descriptions allows them to be predefined and reused, which is less redundant when exposing the provenance of a series of tasks of the same type. Providing detailed descriptions to activities and entities help assess the quality and reliability of the processes executed (see goal C in Section 1.1).

Figure 5 shows the class diagram part focused on the description classes.

ActivityDescription class

The information necessary to describe how an activity works internally are stored in ActivityDescription objects.

ActivityDescription is directly attached to Activity and can thus be seen as a list of attributes that can be known before an Activity instance is created.

There must be exactly zero or one ActivityDescription instance per activity. If an activity is linked to an ActivityDescription instance, 11 applies, it should be used. The activity subtype is a free text attribute to be used internally by the project that defined ActivityDescription instances (e.g., mosaicing, denoising, photometric calibration, cross correlation).

EntityDescription class

The EntityDescription class is meant to store descriptive information for different categories of entities. It contains information that is known before an Entity instance is created. The EntityDescription general attributes are summarized in Table 12.

For example, a specific category of entities in a project may be defined in details in a document or on a webpage (e.g., a CTA DL3 file, a CCD device, a photographic plate).

The entity type is a free text attribute, that contains the general category of the entity, e.g., if it is data, a document, a vizualization, a device.

The EntityDescription class should not contain information about the usage of the data, in particular, it generally tells nothing about them being used as input or generated as output. This kind of information should be provided by the relations (and their descriptions) between activities and entities (see Sections 2.3 and 2.5.3).

ActivityDescription types

UsageDescription and GenerationDescription classes

In order to describe more precisely an activity, the expected inputs and outputs of this activity should be specified. We introduce the UsageDescription and the GenerationDescription classes, that are meant to store the information about the usage or generation of entities that is known before an activity instance is executed, i.e. what we expect to store in the Used and WasGeneratedBy relations (see 2.3). Instances of Used (respectively WasGeneratedBy) may thus point to an instance of UsageDescription (respectively GenerationDescription). If a UsageDescription (respectively GenerationDescription) instance is defined, the role attribute of the related Used (respectively WasGenerat-edBy) instances must match the role attribute of this UsageDescription (respectively GenerationDescription) instance.

A multiplicity attribute should be specified to indicate the number of entities expected to share the same role for a given ActivityDescription instance, e.g., in the case of the stacking of images, several images are expected with the same input role (multiplicity=*).

When related to the UsageDescription or GenerationDescription, the attributes of EntityDescription (see Section 2.5.2) help to describe the category of entities expected as an input or an output in an activity. For example: if the input bias files are expected to be in FITS format, the Us-ageDescription object would have a relation to a DatasetDescription object with contentType='application/fits" (see Section 2.6.1 for this specific type of entity).

Types of Usage and Generation

The typing of those relations is particularly needed to enable quality assessment and identification of error sources in the process (see goals C and D in Section 1.1), so as to facilitate the exploration of provenance information.

The type of usage or generation is a free text attribute, but if one of the terms in Table 15 applies, it should be used. The type "Main" indicates the main input and output entities of an activity. It should help to provide the minimum relevant data flow to the initial entity or activity, i.e. to find the most relevant progenitors.

Specific types of Entity classes

Entity and EntityDescription classes carry the minimum metadata that can apply to any kind of entity without specifying the nature or the structure of the content of the entity. In some cases, the structure of the content is relevant information to assess the usefulness of the entity, in particular for datasets. In some other cases, the content itself of an entity is relevant information to assess the usefulness of the related entities or activities. Such content must then be exposed as properly described values.

In astronomy and the VO, we thus define two main types of entity classes:

• Dataset: a dataset is a resource which encodes data in a defined structure. It is generally a file or a set of files which are considered to be a single deliverable. The content may be e.g., a cube, an image, a table, a list.

• Value: a value is an atomic piece of data with a given value type (e.g., a data type such as boolean, integer, real, string). We anticipate that more specific categories of entities can be defined by the projects (for example, a device, a document, a vizualization). The type attribute of the EntityDescription class should be used to differentiate the different categories of entities.

DatasetEntity and DatasetDescription classes

The handling of datasets is implemented in the model by a DatasetEntity class. A corresponding DatasetDescription class contains a contentType attribute that must not be null (see Table 16).

The contentType indicates the MIME-type or format of a dataset, or a more precise structure, following the definition of the attribute access_format defined in ObsCoreDM [START_REF] Louys | Observation Data Model Core Components, its Implementation in the Table Access Protocol Version 1.1[END_REF], Section 4.7).

DatasetDescription

Attribute

Data type Description contentType string format of the dataset, MIME type when applicable

Table 16: Attributes of the DatasetDescription class. The class also inherits the attributes of EntityDescription listed in Table 12. Attributes in bold are mandatory and must not be null.

ValueEntity and ValueDescription classes

The handling of values is implemented in the model by a ValueEntity class that contains a value attribute. A corresponding ValueDescription class contains attributes commonly used in the VO to qualify values. Those attributes are listed in Table 18.

ValueEntity

Overview of the ActivityConfiguration package

As shown in Figure 7 the ActivityConfiguration package contains two classes for the execution side: Parameter and ConfigFile which are connected to an Activity instance via the WasConfiguredBy association class. An Activity may thus be configured by a set of Parameter instances, by ConfigFile instances, or by a combination of both. The corresponding description classes, ParameterDescription and Con-figFileDescription, are both defined in the context of the description of an activity. There can be several instances of a Parameter (respectively Con-figFile) that are described by the same instance of ParameterDescription (respectively ConfigFileDescription).

Parameter and ParameterDescription classes

The Parameter class contains a value and a name attribute that must be set (Table 19).

The The Parameter instance may refer to a ValueEntity instance using a hadReference relation which gives the origin of the parameter value.

ConfigFile and ConfigFileDescription classes

The ConfigFile points to a structured, machine readable file, where parameters for running an activity are stored. It contains a location and a name that must be set, and a comment attribute (Table 21).

The ConfigFileDescription class indicates the format in which the content of the file is provided using a contentType attribute (see Table 22).

If a ConfigFileDescription instance is defined, the name attribute of the related ConfigFile instances must match the name attribute of this Config-FileDescription instance.

Relations with Activity class

The relation of Parameter and ConfigFile to Activity is formalized by a WasConfiguredBy class. There must be exactly one instance connected to a WasConfiguredBy instance, either a Parameter instance or a ConfigFile instance. The WasConfiguredBy class contains the attribute artefactType to indicate the type of class pointed by the WasConfiguredBy instance (see Table 23).

The life cycle of a Parameter instance (or ConfigFile instance) is the one of the corresponding Activity instance. The life cycle of a Parameter-Description instance (or ConfigFileDescription instance) is the one of the corresponding ActivityDescription instance. This means that when an activity is deleted from the provenance repository, its parameters and config files also disappear. Several activities launched with various possible values for a parameter share the same ParameterDescription instance. For instance, a cube analysis activity with a parameter "nbofChannels" will point to the corresponding instance of ParameterDescription (name = "nbofChannels", ucd = "meta.number", unit = Null, description = "Nb of channel used for segmentation"). ' Similarly, we can foresee a number of different ConfigFile instances used for various instances of an Activity, which rely on the same ConfigFileDescription instance bound to the corresponding ActivityDescription instance. • Datatype of a value is replaced by a valueType (see VO-DML document).

ParameterDescription

Full class diagram

• Only attributes are shown in tables, relations between classes are shown in diagrams.

• Lists of terms are explicitely given for Agent roles, ActivityDescription types, UsageDescription/GenerationDescription types.

• The section on serializations was removed (a dedicated document will be proposed). References to serialization in the text were removed, as well as related sentences, and Appendix A.

• The section on accessing provenance information was removed (it was already reduced to a paragraph referencing external documents in preparation).

• Appendix B on Links to other data models was removed.

• Modeling Conventions and Data Types were added as appendices (taken from STC/Meas document).

A.3 Changes from WD-ProvenanceDM-1.0-20180530

• Separate core model (W3C only) and extended model (IVOA Provenance DM).

• Add definitions for specialised entities, including all the description classes and parameters.

• Add definitions for specialised relations.

• Updated serialization of the description classes for web services.

A.4 Changes from WD-ProvenanceDM-1.0-20170921

• Moved ProvDAL (now ProvSAP) to separate document.

• Moved ProvTAP section and full definition of VOTable serialisation to separate ProvTAP document.

• Moved chapter 6 with use cases and "How to use the data model" to separate Implementation Note [START_REF] Servillat | the IVOA Data Model Working Group[END_REF].

• Moved section on links to other data model into appendix.

• ParameterDescription: Added attributes xtype and arraysize.

• Agent.roles: Removed "PI" alternative to "coordinator".

• Use values of RightsType of DatasetDM, public, secure, proprietary, for Entity.rights.

• Minor corrections in HiPS use case, and tables in TAP schema.

• Minor correction in role names for hadStep/hadMember relationship.

• Modified text on Parameters

• Rename 3.4 section to Serialization of description classes for web services

• Modified text on W3C serialization

• add location and value attributes to Entity A.5 Changes from WD-ProvenanceDM-1.0-20161121

• New appendix for PROV-VOTable/TAP SCHEMA tables added

• Corrected and extended attribute tables and mapping tables for links with DatasetDM and SimDM.

• Restructured Accessing provenance section by splitting it in two: Section for explaining the different serialization formats and differences to W3C serializations, Section "Accessing provenance information"for describing the access protocols ProvDAL and ProvTAP.

• Removed discussion section, since now all the topics are addressed in the main text.

• Added paragraph on how to use the model in Section 6.

• Shortened serialization examples, partially moved them to appendix.

• Added paragraph on VOSI interface.

• Added a proposed serialization of description classes.

• Modified text on the content of EntityDescription, now seen as Entity attributes known before the Entity instance exists.

• Renamed Section 6 to stress that it explains applications of the model (use cases); implementation details and code examples can be found in Implementation Note [START_REF] Servillat | the IVOA Data Model Working Group[END_REF].

• Complete rewrite of the ProvDAL section in Section "Accessing provenance information";new parameters, new figure and examples added.

• Added additional figure for entity-activity relations.

• Moved the figure showing relations between Provenance.Agent and Dataset.Party into the Section on data model links.

• Extended the entity role examples in table tab:entity-roles.

• Added links to provn and votable-serialization for HiPS-use case, added first part of provn as example in the HiPS-use case section.

• More explanations on links to data models in a dedicated section, introduced subsections, added table with SimDM-mapping.

• Moved detailed implementation section from appendix to a separate document (implementation note), shortened the use cases & implementation section.

• Attribute/class updates:

-Added attribute votype to Activity, can be used for ActivityFlows -Renamed label attribute to name everywhere, for more consistency with SimDM naming scheme (label is reserved there for SKOS labels).

-Renamed attribute Entity.access to Entity.rights for more consistency with DatasetDM etc.

-Avoid double-meaning of description (as reference and free-text description) by renaming the free-text description to annotation. Mark description-references with arrows in attribute tables.

-Applied similar naming scheme to Parameter and ParameterDescription-classes

B.4 Generalization

Generalizations are represented by a line (shown in red in Figure 9), with open triangle at the end of the source, or more general, object.

B.5 Composition

The composition relation is indicated by a line with a solid diamond attached to the containing object, and an arrow pointing to the object being contained. The composition relation is very tight, where the container is responsible for the creation and existence of the target. Any object may be in no more than one composition relation with any container. The attribute name for the composition relation is annotated at the destination of the relation (e.g., "+ dataID"). This is typically a lower-cased version of the destination class name, but this is not required.

B.6 Reference

The reference relation is indicated by a line (shown in green in Figure 9), with an arrow pointing to the object being referenced. The reference relation is much looser than composition, the container has no ownership of the target, but merely holds a pointer, or other indirect connection to it. The attribute name is annotated at the destination of the relation (e.g., "+ proposal"). This is typically a lower-cased version of the destination class name, but may be another name indicating the role that the class is playing in this context.

B.7 Multiplicity

All attributes and relations have a multiplicity associated with them. For attributes, the multiplicity is contained within brackets just after the attribute name. If no bracket is displayed, this is equivalent to '[1]'.

• 1 = one and only one value must be provided.

• 0..1 = zero or one value may be provided.

• * = zero or more values may be provided (open ended).

B.8 Subsetted role

Subsetted role constraints are shown in diagrams as a UML constraint of type << Subset >>. The value of a subsetted property is restricted to the specified sub-type of that given in the parent class (see also Section 2.41 in [START_REF] Lemson | VO-DML: a consistent modeling language for IVOA data models Version 1.0[END_REF]).

List of Figures

Figure 1 :

 1 Figure 1: An example graph of provenance discovery. Starting with a released dataset (left), the involved activities (blue boxes), progenitor entities (yellow rounded boxes) and responsible agents (orange pentagons) are discovered.

Figure 2 :

 2 Figure 2: Architecture diagram for the Provenance Data Model. It is based on existing concepts defined in existing IVOA data models, and existing formats and semantics and fully integrated in the IVOA framework

Figure 3 :

 3 Figure 3: Overview class diagram of the IVOA Provenance Data Model. The core part in yellow is based on W3C PROV definitions where relations are shown in grey. It is extended by a description part (orange), specific types of entities (red) and an ActivityConfiguration package (green). A full diagram with attributes is shown in Section 3, Figure 8

Figure 4 :

 4 Figure 4: Core classes and relations. Attributes for these classes are detailed in tables found in Sections 2.2 to 2.4.

 the usage of an entity started

Attribute

 Data type Description role string function of the entity with respect to the activity

 agent with respect to the activity, see Section 2.4.4

 the legacy aspects of an entity Editor agent that edited and validated the content of an entity Funder agent that provided financial support for an activity or an entity Investigator agent responsible for the scientific goals of an activity Observer agent responsible for an observation activity or the result of an observation Operator agent in charge of performing an activity or using an entity Provider* agent that effectively delivered an entity or a servicePublisher* agent that certified and was responsible for making an entity available to the public

Figure 5 :

 5 Figure 5: Partial class diagram focused on description classes.

Figure 6 :

 6 Figure 6: Partial class diagram focused on Specific types of Entity classes.

Figure 7 :

 7 Figure 7: Partial class diagram focused on the ActivityConfiguration package. The Parameter and ConfigFile classes provide configuration information for an Activity instance. The right side of the diagram shows the descriptions, where an ActivityDescription class is bound with the Parameter-Description and ConfigFileDescription classes.

Figure 8 :

 8 Figure 8: Full class diagram of the IVOA Provenance Data Model.

1

 Example graph of provenance discovery 2 Architecture diagram for the Provenance Data Model 3 Overview class diagram of the IVOA Provenance Data Model 4 Core classes and relations . 5 Partial class diagram focused on description classes. 6 Partial class diagram focused on specific types of Entity classes. 7 Partial class diagram focused on the ActivityConfiguration package. 8 Full class diagram of the IVOA Provenance Data Model . . . 9 Notation example diagram . 10 Base Data Types . List of Tables 1 Attributes of the Entity class 2 Attributes of the Activity class. 3 Attributes of the Used relation class 4 Attributes of the WasGeneratedBy relation class 5 Attributes of the Agent class 6 Enumeration of Agent types. 7 Attributes of WasAssociatedWith relation class 8 Attributes of WasAttributedTo relation class 9 Terms applicable as agent roles. 10 Attributes of the ActivityDescription class 11 Terms applicable as activity types. 12 Attributes of the EntityDescription class 13 Attributes of the UsageDescription class 14 Attributes of the GenerationDescription class 15 Terms applicable as usage or generation type. 16 Attributes of the DatasetDescription class 17 Attributes of the ValueEntity class 18 Attributes of the ValueDescription class 19 Attributes of the Parameter class 20 Attributes of the ParameterDescription class 21 Attributes of the ConfigFile class 22 Attributes of the ConfigFileDescription class 23 Attributes of the WasConfiguredBy class

Table 1 :

 1 Attributes of the Entity class. Attributes in bold are mandatory and must not be null.

	Attribute		Data type Description
	id		string	a unique identifier for this entity
	name		string	a human-readable name for the entity
	location		string	a path or spatial coordinates, e.g., a
				URL/URI, latitude-longitude
				coordinates on Earth, the name of a
				place.
	generatedAtTime	datetime	date and time at which the entity was
				created (e.g., timestamp of a file)
	invalidatedAtTime datetime	date and time of invalidation of the
				entity. After that date, the entity is
				no longer available for any use.
	comment		string	text containing specific comments on
				the entity
	Activity		
	Attribute Data type Description
	id	string		a unique id for this activity
	name	string		a human-readable name (to be
				displayed by clients)
	startTime	datetime	start of an activity
	endTime	datetime	end of an activity
	comment	string		text containing specific comments on
				the activity

Table 2 :

 2 Attributes of the Activity class. Attributes in bold are mandatory and must not be null.

Table 4 :

 4 Attributes of the WasGeneratedBy relation class.

Table 5 :

 5 Attributes of the Agent class. Attributes in bold are mandatory and must not be null.

Table 6 :

 6 Enumeration of Agent types.

Table 9 :

 9 Terms applicable as agent roles. Terms marked with an * are also found in other IVOA documents (e.g.,Hanisch and IVOA Resource Registry Working Group et al., 2007;[START_REF] Graham | Grid and Web Services Working Group[END_REF]

Table 10 :

 10 Attributes of the ActivityDescription class. Attributes in bold are mandatory and must not be null.

Used/WasGeneratedBy/Entity objects bound to this activity must refer to the description elements composing the ActivityDescription.

The activity type is a free text attribute, but if one of the terms in Table

Table 11 :

 11 Terms applicable as activity types.

	EntityDescription	
	Attribute Data type Description
	name	string	a human-readable name for the entity
			description
	description string	a descriptive text for this kind of
			entity
	docurl	anyURI	link to more documentation
	type	string	type of the entity

Table 12 :

 12 Attributes of the EntityDescription class. Attributes in bold are mandatory and must not be null.

Table 13 :

 13 Attributes of the UsageDescription class. Attributes in bold are mandatory and must not be null.

	GenerationDescription	
	Attribute Data type Description
	role	string	function of the entity with respect to
			the activity
	description string	a descriptive text for this kind of
			generation
	type	string	type of relation, see section 2.5.4
	multiplicity string	Number of expected output entities
			that will be generated with the given
			role. The multiplicity syntax is
			similar to that of VO-DML (Lemson
			and Laurino et al. 2018, §4.19) in the
			form 'minOccurs..maxOccurs" or a
			single value if minOccurs and
			maxOccurs are identical, e.g., "1" for
			one item, "*" for unbounded or "3..*"
			for unbounded with at least 3 items.

Table 14 :

 14 Attributes of the GenerationDescription class. Attributes in bold are mandatory and must not be null.

Table 15 :

 15 Terms applicable as usage or generation type.

Attribute Data type Description

	value	string	the value of the entity. If a
			corresponding
			ValueDescription.valueType attribute
			is set, the value string can be
			interpreted by this valueType.

Table 17 :

 17 Attributes of the ValueEntity class. The class also inherits the attributes of EntityDescription listed in Table12. Attributes in bold are mandatory and must not be null.

 ParameterDescription class describes the parameter value attribute similarly to the ValueEntity and ValueDescription classes. Those attributes are listed in Table20.If a ParameterDescription instance is defined, the name attribute of the

	Parameter		
	Attribute Data type Description
	name	string	name of the parameter
	value	string	the value of the parameter. If a
			corresponding
			ParameterDescription.valueType
			attribute is set, the value string can
			be interpreted by this valueType.

Table 19 :

 19 Attributes of the Parameter class. Attributes in bold are mandatory and must not be null. related Parameter instances must match the name attribute of this Param-eterDescription instance.

Table 20 :

 20 Attributes of the ParameterDescription class. Attributes in bold are mandatory and must not be null.

	Attribute	Data type	Description
	name	string	name of the parameter
	valueType VotableFieldFormat description of a value from a
			combination of datatype, arraysize
			and xtype following VOTable 1.3
			(Ochsenbein and Taylor et al., 2013, ,
			§4.1)
	description	string	a descriptive text for the parameter
	unit	Unit	VO unit, see C.1.1 and Derriere and
			Gray et al. (2014) for recommended
			unit representation
	ucd	string	Unified Content Descriptor, supplying
			a standardized classification of the
			physical quantity, see Martinez and
			Louys et al. (2018)
	utype	string	Utype, meant to express the role of
			the parameter in the context of an
			external data model, see Graham and
			Demleitner et al. (2013)
	min	string	minimum value as a string whose
			value can be interpreted by the
			valueType attribute
	max	string	maximum value as a string whose
			value can be interpreted by the
			valueType attribute
	options	array of strings	array of possible values
	default	string	the default value of the parameter as a
			string whose value can be interpreted
			by the valueType attribute

http://www.asterics2020.eu/

Acknowledgments

We thank the participants of the Provenance Week 2018 in London, in particular Michael Johnson for joining one of our meetings.

We thank the participants of the ASTERICS european project meetings (2015-2019), among which publishers and astronomy facility teams, that provided useful inputs during ASTERICS events.

current IVOA Recommendations and other technical documents can be found at http://www.ivoa.net/documents/.

ValueDescription

Attribute

Data type Description valueType

VotableFieldFormat description of a value from a combination of datatype, arraysize and xtype following VOTable 1.3 [START_REF] Ochsenbein | VOTable Format Definition Version 1.3[END_REF]

Activity configuration

Configuring an activity is the way to set parameters so that the activity occurs in the desired conditions.

In some cases developed in Section 1.1 (goals C and D in particular), configuration information is relevant to assess the quality and reliability of an activity or an entity, and to identify the location of configuration errors in a processing. It also facilitates the re-execution of an activity (reproducibility).

Configuration information may be carried by entities using the core features, where an entity (e.g., ValueEntity and DatasetEntity instances) is referenced in Used relations with a given role and type="Setup". With this solution, the configuration information is independent from the activity and can be generated and used as any entity.

The data model also provides a specialized ActivityConfiguration package to directly attach configuration information to an activity. This package is composed of a WasConfiguredBy relation connecting Parameter and ConfigFile classes with the Activity class (see 2.7.1). With this solution the configuration information is independent from the entities, and seen as part of the activity.

ConfigFile

Appendix A Changes from Previous Versions

A.1 Changes from WD-ProvenanceDM-1.0-20190719

• Minor rephrasing and rewording (see RFC pages).

• Update figures (vodml compatibility checked).

• Update term definitions in Table 9 (Agent roles).

• Change doculink attribute name to docurl.

• Modify definition of valueType (VOTable-like attributes datatype, arraysize, xtype).

• Remove min, max, options, default from ValueDescription.

• options is an array of strings.

A.2 Changes from PR-ProvenanceDM-1.0-20181015

• Rewording of the use cases in the Goal section.

• Requirements divided into Model Requirements and Best Practices.

• Restruturation of Section 2, removing the separation of the Core Model and the Extended Model. An overview is now given in 2.1, and each following subsection corresponds to a feature of the model, in relation with the goals. Each subsubsection is an element of the model presented in Figure 3.

• WasInformedBy and WasDerivedFrom are included in section 2.3 on Entity-Activity relations. They are simple relations.

• Addition of ValueEntity and DatasetEntity (with their description classes) as specific types of Entity classes (section 2.6).

• Grouping of the Parameter-ParameterDescription classes as a Activi-tyConfiguration package that also includes config files.

• Modification of class attributes:

B.2 DataType

DataTypes are represented by a box shape similar to Class, but annotated with a "T" symbol in the top left corner.

B.3 Enumerations

Enumerations are represented by a box shape similar to Class, but annotated with a "1,2..." symbol in the top left corner. Enumeration Literals (possible values) are listed below the enumeration class name.

Appendix C Data Types C.1 Base Data Types

Provides a set of standardized primitive data types as well as types for representing quantities (values with associated units). We provide a diagram of the model here, and refer the reader to Section 5 of the VO-DML modeling specification document [START_REF] Lemson | VO-DML: a consistent modeling language for IVOA data models Version 1.0[END_REF] for more information. This model requires the use of the IVOA VOUnits Standard [START_REF] Derriere | Units in the VO Version 1.0[END_REF] for representing units of physical quantities. This standard reconciles common practices and current standards for use within the IVOA community.

C.1.2 Dates

The 'datetime' datatype is for expressing date-time values. The string representation of a datetime value should follow the FITS convention for representing dates. The FITS standard is effectively ISO8601 format without the "Z" tag to indicate UTC (YYYY-MM-DDThh:mm:ss). Values are nominally expressed in UTC.