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Abstract

This paper describes a novel equilibrium-based geometrically-exact beam finite ele-
ment formulation. First, the spatial position and rotation fields are interpolated by
non-linear configuration-dependent functions that enforce constant strains along the
element axis, completely eliminating locking phenomena. Then, the resulting kine-
matic fields are used to interpolate the spatial sections force and moment fields in
order to fulfill equilibrium exactly in the deformed configuration. The internal vari-
ables are explicitly solved at the element level and closed-form expressions for the
internal force vector and tangent stiffness matrix are obtained, allowing for explicit
computation, without numerical integration. The objectivity and absence of lock-
ing are verified and some important numerical and theoretical aspects leading to
a computationally efficient strategy are highlighted and discussed. The proposed
formulation is successfully tested in several numerical application examples.
KEYWORDS:
Geometrically-exact beam, Equilibrium-based formulation, Locking-free beam element, Finite element
formulation

1 INTRODUCTION

A large variety of engineering systems can bemodeled accurately as an assembly of beam elements. Currently, spatial beam finite
element formulations can be divided in three categories: Co-rotational (CR), Total Lagrangian (TL) and Updated Lagrangian
(UL), the former two being most active topics of research in the last decades. Co-rotational formulations focus on filtering the
rigid-body motion from the element total displacements and rotations, computing the internal forces and tangent stiffness from
the remaining deformation part of the motion and applying a transformation that bring back this quantities to the global system
[12]. On the other hand, Total Lagrangian formulations focus on describing the exact kinematics of the element, along with the
relevant strain measures and then directly computing the global internal forces and tangent stiffness [38].
The geometrically-exact beam theory, introduced by Simo [38], considers that the beam sections move as a rigid-body and can

then be described by position and rotation fields. This theory has been studied by many researchers, e.g. [2, 7, 11, 47], forming
a base for TL spatial beam finite element formulations. In TL formulations, the exact kinematics of the element is described and
so, all the non-linear coupling effects are directly captured by the element [46]. However, traditional interpolation schemes for
the position and rotation fields used in linear analysis leads to shear, bending and membrane locking phenomena [39]. Moreover,
as shown by Jelenić and Crisfield [15], although the strain measures derived in the geometrically-exact beam theory are invariant
under rigid-body motion, the same quantities in a finite element with traditional interpolation are not, causing the formulation
to lose objectivity.

A
cc

ep
te

d 
A

rti
cl

e

This article has been accepted for publication and undergone full peer review but has 
not been through the copyediting, typesetting, pagination and proofreading process 
which may lead to differences between this version and the Version of Record. Please 
cite this article as doi: 10.1002/nme.6862

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnme.6862&domain=pdf&date_stamp=2021-10-29


2 M. V. B. Santana ET AL

Methodologies for reducing or eliminating locking phenomena in beams TL formulations have been investigated by many
researchers in the recent years. In the original contribution, Simo and Vu-Quoc [39] used reduced integration as an alternative to
mitigate locking. Weeger et al. [44, 45] and Magisano et al. [18] adopted isogeometric analysis for the higher-order interpolation
of the position and rotation fields. In this methodology it’s possible to elevate the order of the shape functions, reducing the lock-
ing effects but not completely removing it. Romero [28] investigated the influence of the rotation interpolation on the response
of geometrically-exact beam elements. Cardona and Geradin [6] defined an interpolation method based on the increments of the
rotations.
Meier et al. [20, 21, 22] adopted a curved Kirchhoff rod model to develop a shear free beam formulation. Ghosh and Roy [13]

studied a consistent quaternion interpolation for objective finite element approximation. Sansour and Wagner [30] proposed a
multiplicative updating of the rotation tensor in the finite element analysis of rods and shells. Zupan and Saje [48] investigated the
integration of rotation from angular velocity, while Treven and Saje [43] studied the integration of rotation and angular velocity
from curvature. Park and Ravani [24] derived a smooth invariant interpolation for rotation tensors. Crisfield and Jelenić [10] and
Jelenić and Crisfield [15] proposed an interpolation of the rotation field constructed on the SO(3) space and based on the relative
rotation of the beam nodes, yielding a constant curvature strain. Sonneville et al. [40, 41] proposed an interpolation of the position
and rotation fields constructed in the SE(3) space via the exponential map of the related Lie algebra, yielding constant shear and
constant curvature strains. Rong et al. [29] used a SE(3) formulation for thin-walled beams considering warping. Mäkinen [19]
developed a Reissner’s geometrically exact beam element without singularities. Sansour et al. [31] studied an energy-moment
method for Euler-Bernoulli beam dynamics. Boyer and Primault [5] investigated slender beams via finite transformations.
In terms of hybrid-mixed finite element formulations, the non-linear coupling between the sections kinematic and stress-

resultant fields, associated with the geometrically-exact beam theory, creates a difficulty in obtaining equilibrium-based
interpolations. In the literature, most attention have been dedicated to geometrically linear formulations immersed in CR frame-
works. Ayoub and Filippou [3] developed a non-linear mixed formulation for the analysis of steel-concrete composite beams.
Saritas and Filippou [36] studied inelastic axial-bending–shear coupling with mixed formulations. Alsafadie et al. [1] improved
existing an CR formulation to take into account shear and warping deformations in thin-walled beams. Santos and de Almeida
[34] developed a equilibrium-based TL finite element formulation for geometrically-exact planar beams. Santos et al. [33] stud-
ied hybrid and multi-field variational principles for geometrically exact three-dimensional beams. Santos et al. [35] developed
a TL geometrically-exact beam formulation with low order interpolation of the kinematic fields and equilibrium-based inter-
polation of the resultant fields. Ritto-Corrêa and Camotim [27] determined the work-conjugacy between rotation-dependent
moments and finite rotations.
A novel approach is presented in this work, where an equilibrium-based geometrically-exact TL beam formulation is

developed. Locking phenomena in a finite element formulation is directly related to the inability to independently represent
low-order deformation modes. In the present formulation, locking phenomena is completely eliminated by adopting non-linear
configuration-dependent interpolation functions that enforce constant shear and curvature strains along the element axis. The
obtained interpolated strain measures are also shown to be invariant under rigid-body motion. Moreover, in order to further
increase the accuracy of the formulation, an equilibrium-based method is adopted, enriching the spatial force and moment fields.
Closed-form expressions for the internal force vector and tangent stiffness matrix are obtained, without requiring numerical
integration and so yielding a computationally efficient finite element formulation. The development of such a beam formulation
is unprecedented and original to the authors best knowledge.
The main objective of the present contribution is to combine the best features of the CR and TL approaches by devel-

oping a locking-free equilibrium-based geometrically-exact beam element with configuration-dependent interpolation func-
tions, therefore preserving the high-performance properties of standard linear analysis formulations while considering the
geometrically-exact kinematics of the motion. For this, the non-linear configuration-dependent interpolation functions are
obtained by enforcing constant strains along the element axis. The spatial force and moment fields are interpolated exactly ful-
filling the equilibrium equations at each section in the deformed configuration. Finally, closed-form expressions for the internal
force vector and tangent stiffness matrix are derived.
The main originalities of the present contribution are:
• Non-linear configuration-dependent interpolation of the spatial forces and moments, exactly fulfilling the equilibrium

equations at the current (deformed) configuration;

• Explicit elimination of the internal variables (stress-resultants) at the element level, avoiding singularity issues usually
associated with mixed-hybrid methods;
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FIGURE 1 Beam element in the reference and current configurations.

• Efficient closed-form expressions for the internal force vector and tangent stiffness matrix, avoiding the use o numerical
integration and so considerably reducing the computational time.

The paper is structured as follows. In Section 2 the fundamentals aspects of the geometrically-exact beam theory are reviewed.
In Section 3, the interpolation functions for the position and rotation fields are derived by enforcing constant strains in the
element in order to avoid locking phenomena. In Section 4, the spatial force and moment fields are interpolated by enforcing
strong equilibrium. The internal variables are explicitly determined at the element level and expressions for the internal force
vector and tangent stiffness matrix are derived. Section 5 presents a number of numerical applications, highlighting the accuracy
and efficacy of the proposed formulation. Finally, in Section 6, some conclusions and suggestions for future works are given.
For completeness, some basic relations of spatial rotations are included in A.

2 GEOMETRICALLY-EXACT BEAM THEORY

The geometrically-exact beam theory introduced by Simo [38] is considered in the present work. The beam is treated as a
prismatic body, described with arc-length parameter �1 ∈ [0, L] and section mapping (�2, �3) ∈ A (Fig. 1). For the sake of
simplicity, it’s assumed that the beam is straight in the reference configuration, with axial direction s1 and section principal
axes s2 and s3. The beam’s sections move as a rigid body, with the position of the center of gravity G specified by the curve
x(�1) ∈ ℝ3 and orientation described by the rotation tensorR(�1) ∈ SO(3). The position xp(�1, �2, �3) of a general material point
P can then be written as:

xp(�1, �2, �3) = x(�1) + R(�1)
(

�2s2 + �3s3
) (1)

Taking the derivative of the current configuration with respect to the initial one, the deformation gradient F can be obtained as:
F = R

(

I + �⊗ s1
) (2)
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4 M. V. B. Santana ET AL

where:

̂ = RTR′ (3)
� = RT x′ − s1 (4)
� = � + �2
 × s2 + �3
 × s3 (5)

Throughout the paper, (∙)′ denotes the derivative with respect to the arc-length parameter �1 and
(

∙̂
) represents the skew-

matrix obtained from ℝ3 vectors. The sections translational deformation � (Eq. 3) is composed by stretch (Γ1 = � ⋅ s1) and
shear (Γ2 = � ⋅ s2, Γ3 = � ⋅ s3) deformations. The sections rotational deformation (curvature) 
 (Eq. 4) comprises torsion
(Ω1 = 
 ⋅ s1) and bending (Ω2 = 
 ⋅ s2, Ω3 = 
 ⋅ s3) deformations [38]. The sections deformations � and 
 (and consequently
the deformation vector �) are invariant under superimposed rigid body motion. In fact, if a constant rotation Q and constant
displacement c are imposed over the current configuration, the new configuration (x∗, R∗) can be expressed as:

R∗ = QR (6)
x∗ = Qx + c (7)

and the corresponding section’s deformations are:

̂
∗
= RTQTQR′ = RTR′ = 
̂ (8)

�∗ = RTQTQx′ − s1 = RT x′ − s1 = � (9)
The Green-Lagrange strain tensor can then be obtained as:
E =1

2
(

FTF − I
) (10)

E =
(

� ⋅ s1 +
� ⋅ �
2

)

s1 ⊗ s1 +
3
∑

k=2

� ⋅ sk
2

(

s1 ⊗ sk + sk ⊗ s1
) (11)

From the kinematic assumption of section’s rigid-body motion, the following out-of-plane components of deformation are
identically null:

E22 = s2 ⋅ Es2 = 0 (12)
E33 = s3 ⋅ Es3 = 0 (13)
E23 = s2 ⋅ Es3 = 0 (14)

The section’s shear deformations, E12 and E13, can be obtained as:
E12 = s1 ⋅ Es2 =

� ⋅ s2
2

= 1
2
(

Γ2 − �3Ω1
) (15)

E13 = s1 ⋅ Es3 =
� ⋅ s3
2

= 1
2
(

Γ3 + �2Ω1
) (16)

The axial strain E11 can be written as:
E11 = s1 ⋅ Es1 = � ⋅ s1 +

� ⋅ �
2

(17)
As the section’s deformations � and 
 (and consequently the deformation vector �) represents true deformation measures,

the higher-order term � ⋅ �∕2 can be neglected by assuming small strains while preserving the notion of large displacements
and rotations in the beam element. The axial strain E11 is then given by:

E11 = Γ1 − �2Ω3 + �3Ω2 (18)
The equilibrium of the element can be stated via the virtual work relation �U = �V [38], where �U and �V represent the

internal and external virtual work, respectively. Considering distributed forces n(�1) and momentsm(�1) acting along the beam
span, as well as concentrated forces (n1 and n2) and concentrated moments (m1 and m2) acting on the end nodes, the external
virtual work can be written as:

�V =

L

∫
0

(

n ⋅ �x +m ⋅ ��
)

d�1 + n1 ⋅ �x1 +m1 ⋅ ��1 + n2 ⋅ �x2 +m2 ⋅ ��2 (19)

A
cc

ep
te

d 
A

rti
cl

e



M. V. B. Santana ET AL 5

The internal virtual work �U can be obtained by taking the inner product of the second Piola–Kirchhoff stress tensor S with
the variation of the Green-Lagrange strain tensor �E as:

�U =

L

∫
0

∫
A

(

S11�E11 + 2S12�E12 + 2S13�E13
)

dAd�1 (20)

Integrating over the section domain, we obtain:

�U =

L

∫
0

(N ⋅ �� +M ⋅ �
) d�1 (21)

where the section resultants are defined as:
N1 = N ⋅ s1 = ∫

A

S11dA (22)

N2 = N ⋅ s2 = ∫
A

S12dA (23)

N3 = N ⋅ s3 = ∫
A

S13dA (24)

M2 =M ⋅ s2 = ∫
A

+�3S11dA (25)

M3 =M ⋅ s3 = ∫
A

−�2S11dA (26)

M1 =M ⋅ s1 = ∫
A

(

�2S13 − �3S12
)

dA (27)

If an elastic response (with Young E and shear G modulus) is considered, under the hyper-elastic Saint Venant–Kirchhoff
material model, we have:

S11 = EE11 (28)
S12 = GE12 (29)
S13 = GE13 (30)

Combining Eqs. (22) - (27) with Eqs. (28) - (30) and integrating over the section domain A, the resultants N andM can be
directly obtained from the deformations � and 
 as:

N = C� (31)
M = D
 (32)

where the elastic tensors C and D are related to the section area A (and shear areas A2 and A3 [8]), as well as to the torsion (J )
and bending (I22, I33) inertias, via:

C = EAs1 ⊗ s1 + GA2s2 ⊗ s2 + GA3s3 ⊗ s3 (33)
D = GJ s1 ⊗ s1 + EI33s2 ⊗ s2 + EI22s3 ⊗ s3 (34)

The variation of the sections deformations can be obtained from Eqs. (3) and (4), with help of Eqs. (A4) and (A27), as:
�
 = RT ��′ (35)
�� = RT

(

�x′ + x′ × ��
) (36)

Making use of Eqs. (35) and (36) and integrating by parts, the internal virtual work �U in Eq. (21) can be rewritten as:

�U = n ⋅ �x||
|

L

0
+m ⋅ ��||

|

L

0
−

L

∫
0

[

n′ ⋅ �x +
(

m′ + x′ × n
)

⋅ ��
]

d�1 (37)
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6 M. V. B. Santana ET AL

where the following spatial form of the section resultants is introduced:
n = RN (38)
m = RM (39)

Combining Eqs. (19) and (37) and making use of the fundamental lemma of calculus of variations, the following differential
equilibrium equations are derived:

n′ + n = 0 (40)
m′ + x′ × n +m = 0 (41)

along with the boundary conditions relating the nodal forces and moments to the beam stress-resultants:
n1 = −n(0) (42)
n2 = +n(L) (43)
m1 = −m(0) (44)
m2 = +m(L) (45)

The kinematic (Eqs. 3 and 4), constitutive (Eqs. 22 - 27) and equilibrium (Eqs. 40 and 41) relations define the beam model. In
an usual displacement-based formulation [39, 10, 41] the kinematic fields (x and R) are interpolated and the section strains (�
and 
) and resultants (n and m) are computed as to satisfy the kinematic and constitutive relations exactly but the equilibrium
one only in a weak sense. In the present work, an equilibrium-based formulation is proposed. The position x and rotationR fields
are first interpolated, yielding constant curvature
0 and shear�0 strains along the beam axis and exactly satisfying the kinematic
relation. The stress-resultants n and m are then interpolated using the obtained kinematics to exactly satisfy the equilibrium
equations. The constitutive relations are solved in a weak sense, determining the equilibrium-based internal variables.

3 KINEMATICS INTERPOLATION

The interpolation of the position x(�1) and rotation R(�1) fields is a key aspect in the development of a TL beam formulation.
As mentioned before, Crisfield and Jelenić [10] showed that the interpolation schemes adopted may cause the formulation
to lose objectivity and become path-dependent, even when an elastic material response is considered. In this section, non-
linear configuration-dependent interpolation functions are adopted for the position and rotation fields. The objectivity and path-
independence of the interpolated quantities is verified and the required increments for the tangent stiffness matrix are computed.
Aiming to avoid bending locking, the curvature is set to be constant along the element axis, i.e. 
(�1) = 
0. Integrating Eq.

(3) and applying the boundary condition R(0) = R1 at node 1, the rotation field can be expressed as:
R(�1) = R1 exp(�1
̂0) (46)

Applying the boundary condition R(L) = R2 at node 2, the constant curvature 
0 can be determined as a function of the
nodal rotations:


̂0 =
1
L
log

(

RT1R2
) (47)

This interpolation of the rotation field is completely equivalent to the one obtained by Crisfield and Jelenić [10] considering
the pseudo-vector of the nodes relative rotation. It’s interesting to notice the non-linear dependency of the interpolated fieldR(�1)
on the element current configuration, via the nodal rotation tensors R1 and R2. In terms of implementation, to ensure numerical
stability and improve performance, the matrix product RT1R2 in Eq. (47) can be replaced by the unit quaternion product q∗1◦q2(where q∗ represents the conjugate quaternion of q), fromwhich the log can be computed by extracting the rotation pseudo-vector
[13]. Alternatively, the Spurrier algorithm [30, 37] can be used for the relative rotation tensor.
When a rigid-body motion, with constant rotation Q, is superimposed to the element’s current configuration, the curvature

becomes:

̂
∗
0 =

1
L
log

(

RT1Q
TQR2

)

= 1
L
log

(

RT1R2
)

= 
̂0 (48)
Therefore, the interpolation preserves the objectivity of the rotation induced strain measure. Also, the interpolated curvature

(Eq. 47) makes reference only to the current values of the nodal rotation tensors, prooving its path-independence. Analogously,
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M. V. B. Santana ET AL 7

aiming to avoid shear and membrane locking, the translation induced strain is set to be constant along the element axis, i.e.
�(�1) = �0. With help from Eqs. (A5) and (A14), the following relation can be established:

�1

∫
0

R(s)ds = �1R1T(�1
̂0) (49)

Integrating Eq. (4) and applying the boundary condition x(0) = x1 at node 1, the position field can be written as:
x(�1) = x1 + �1R1T(�1
̂0)

(

s1 + �0
) (50)

Applying the boundary condition x(L) = x2 at node 2, the constant translation induced strain �0 can be written as a function
of the nodal configuration:

�0 =
1
L
T−1(L
̂0)RT1

(

x2 − x1
) (51)

The interpolations of the rotation (Eq. 46) and position (Eq. 50) fields are completely equivalent to the ones obtained by
Sonneville et al. [40] in the SE(3) space by using the exponential map on the se(3) Lie Algebra. In the present beam formulation,
they are simply expressed (and implemented) in the SO(3) and ℝ3 spaces, respectively, since this spaces are more broadly used
in the context of finite elements software and more known to structural engineers then the SE(3) space. It can be seen that
both the rotation R(�1) and position x(�1) fields depend nonlinearly on the nodal rotations, representing the coupling between
the adopted interpolations. When a rigid-body motion, with constant rotation Q and displacement c, is superimposed to the
element’s current configuration, the translation induced strain becomes:

�∗0 =
1
L
T−1(L
̂0)RT1Q

T (Qx2 + c −Qx1 − c
)

= 1
L
T−1(L
̂0)RT1

(

x2 − x1
)

= �0 (52)
Again, the interpolation preserves the objectivity of the translation induced strain measure. Also, the interpolated strain (Eq.

51) makes reference only to the current values of the nodal configuration, prooving its path-independence.
The increments of the section strains (Δ�0 and Δ
0) are necessary to compute the element’s tangent stiffness matrix. From

Eqs. (47) and (51), we have:
Δ
0 =

1
L
T−10 R

T
1
(

Δ�2 − Δ�1
) (53)

Δ�0 =
1
L
T−10 R

T
1
[

Δx2 − Δx1 + (x2 − x1) × Δ�1
]

+H0T−10 R
T
1
(

Δ�2 − Δ�1
) (54)

where the following notation has been introduced:
T0 = T(L
̂0) (55)
H0 = H[L
̂0,RT1

(

x2 − x1
)

∕L] (56)
Recalling the relation between the rotation spin vector and the rotation pseudo-vector (Eq. A13), as well as the incremental

rotation vector definition at step n + 1 (Eq. A28), we have:
Δ�k = T('̂k,n+1)Δ'k,n+1 k = 1, 2 (57)

It’s noteworthy that, the extension of the formulation to high-order interpolations of the strain measures in closed-form
can be obtained with special interpolations of the position x(�1) and rotation R(�1) fields using a motion approach, as in the
displacement-based TL beam formulation developed by Sonneville et al. [42].

4 EQUILIBRIUM-BASED APPROACH

The Hellinger-Reissner principle, commonly used in mixed beam formulations, makes use of the complementary potential and
results, under the action of conservative loads, to strictly symmetric tangent operators. In the developed formulation, there is no
underlying mixed principle. Instead, the approach is based on the weak form of the constitutive relations and hence, results is
non-symmetric tangent operators (which does not spoil the efficiency of the method). In addition, the section stress-resultants
are the outcome of exact integration of the equilibrium equations and not from stress interpolations.
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8 M. V. B. Santana ET AL

The interpolation of the position x and rotation R fields presented in Sec. 3 is now used to obtain the section’s resultant forces
n and moments m in such a way that the equilibrium Eqs. (40) and (41) are satisfied exactly. Integrating along the beam axis,
over the interval [0, �1], we obtain:

n(�1) = n0 −
�1

∫
0

nd�1 (58)

m(�1) = m0 + n ×
(

x − x1
)

−

�1

∫
0

[

m +
(

x − x1
)

× n
]

d�1 (59)

where n0 and m0 are internal parameters to be later determined with the weak form of constitutive relations.
For the sake of simplicity, the distributed forces n and moments m are not considered in the interpolation of the section’s

resultants. Instead, equivalent nodal quantities are included in the system’s external load vector as usual in displacement-based
formulations. The resulting interpolated fields are then:

n(�1) = n0 (60)
m(�1) = m0 + n0 ×

(

x − x1
) (61)

The interpolated forces n are then constant over the beam axis. Moreover, considering small curvatures 
0, the variation of
the interpolated moments m over the beam axis (given by the term x − x1) is approximately linear. This result is also found in
CR beam formulations and is a key feature that provides increased accuracy to the present equilibrium-based formulation when
compared to traditional displacement-based ones.
Combining Eqs. (31), (32), (38) and (39), the spatial stress-resultants (n and m) can be related to the section’s deformations

(� and 
). In the exact solution of the beam model, the equilibrium-based form (Eqs. 60 and 61) of the spatial stress-resultants
match the one obtained via the constitutive relations. In a equilibrium-based finite element formulation, this condition is satisfied
only in a weak sense:

L

∫
0

(n − RC�) d�1 = 0 (62)

L

∫
0

(m − RD
) d�1 = 0 (63)

Making use of the rotation field interpolation in Eq. (46) and the equilibrium-based interpolation in Eqs. (60) and (61), the
internal parameters n0 and m0 can be determined from the weak form of the constitutive relations (Eqs. 62 and 63) as:

n0 = R1T0C�0 (64)
m0 = R1T0D
0 − n0 × x0 (65)

where:
P0 = P(L
̂0) (66)
x0 = LR1P0

(

s1 + �0
) (67)

In Eqs. (64) and (65), the following identities have been used:

T0 =
1
L

L

∫
0

exp(�1
̂0)d�1 (68)

P0 =
1
L2

L

∫
0

�1T(�1
̂0)d�1 (69)
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4.1 Internal force
From the boundary conditions in Eqs. (42 - 45), the nodal forces (n1 and n2) and the nodal moments (m1 andm2), representing
the element internal force vector f , can be simply obtained as:

f =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

n1
m1
n2
m2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−n0
−m0
+n0

m0 + n0 ×
(

x2 − x1
)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(70)

It’s noteworthy that, due to the construction of kinematic configuration-dependent interpolations with constant deformations
�0 and 
0, the integral over the beam axis can be computed explicitly, and so no numerical integration scheme needs to be
employed. This has a significant impact on the efficiency of the numerical formulation, considerably reducing the computational
cost.
It’s also easy to show that the obtained internal force vector f exactly satisfies the equilibrium of an isolated element:
n1 + n2 = 0 (71)
m1 +m2 + (x2 − x1) × n2 = 0 (72)

Therefore, even in the non-converged iterations of the incremental-iterative solution procedure the element is self-equilibrated.
This is an important property of a finite element formulation, increasing its accuracy and convergence rate, as demonstrated by
[23, 25].

4.2 Tangent Stiffness
The element’s tangent stiffness matrix K is now computed by taking the increment of the internal force vector Δf with respect
to the nodal degrees of freedom Δd, that is:

Δf = KΔd =

⎡

⎢

⎢

⎢

⎢

⎣

K11 K12 K13 K14
K21 K22 K23 K24
K31 K32 K33 K34
K41 K42 K43 K44

⎤

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Δx1
Δ�1
Δx2
Δ�2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(73)

From equilibrium considerations (Eqs. 71 and 72), the following relations can be obtained:
K31 = −K11 (74)
K32 = −K12 (75)
K33 = −K13 (76)
K34 = −K14 (77)
K42 = −K22 +

(

x̂2 − x̂1
)

K12 (78)
K44 = −K24 +

(

x̂2 − x̂1
)

K14 (79)
K41 = −K21 +

(

x̂2 − x̂1
)

K11 + n̂1 (80)
K43 = −K23 +

(

x̂2 − x̂1
)

K13 − n̂1 (81)
The remaining terms of the tangent stiffness matrix K are obtained by taking the increment of the internal parameters n0 and

m0 in Eqs. (64) and (65). With help of Eqs. (53), (54) and (A24), after some lengthy but otherwise straight-forward calculations,
we obtain:

K11 = +
1
L
R1T0CT−10 R

T
1 (82)

K13 = −
1
L
R1T0CT−10 R

T
1 (83)

K14 = − R1(Gc + T0CH0)T−10 R
T
1 (84)

K21 = + Lx̂0K11 − n̂0R1P0T−10 R
T
1 (85)
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K23 = + Lx̂0K13 + n̂0R1P0T−10 R
T
1 (86)

K12 = + R1(Gc + T0CH0)T−10 R
T
1 −

1
L
R1T0CT−10 R

T
1 (x̂2 − x̂1) + n̂0 (87)

K24 = −
[

R1
(

Gd +
1
L
T0D

)

+ Ln̂0R1
(

Q0 + P0H0
)

]

T−10 R
T
1 + x̂0K14 (88)

K22 = +
[

R1
(

Gd +
1
L
T0D

)

+ Ln̂0R1
(

Q0 + P0H0
)

]

T−10 R
T
1 + x̂0K12+

skew(R1T0D
0) − n̂0x̂0 + n̂0R1P0T−10 RT1 (x̂2 − x̂1) (89)
where:

Gd = G(L
̂0,D
0) (90)
Gc = G(L
̂0,C�0) (91)
Q0 = Q(L
̂0, s1 + �0) (92)

It’s noteworthy that, since the present formulation is not based in an energy principal, the tangent stiffness matrix is not
symmetric. However, as closed-form expressions are obtained for the internal force vector and the tangent stiffness matrix, they
can be computed explicitly (without numerical integration), considerably reducing the computational cost and so yielding a
highly efficient finite element formulation.

5 NUMERICAL APPLICATIONS

The developed formulation has been implemented in the non-linear finite element software GALILEO [32]. In this section, a
number of structural systems are modeled with the proposed beam element in order to assess its accuracy, performance and
convergence properties. First, the absence of locking is verified. Then, the formulation accuracy and performance is tested
analyzing systems with strong non-linear response.

5.1 Clamped beam
The first example consists of a fully clamped beammade of steel with Poisson’s ratio � = 0.3 and elastic modulusE = 200GPa.
The beam has a span of L = 4 m and is subjected to a mid-span transverse force P = 42.9 MN (Fig. 2), designed to cause a
mid-span vertical displacement equal to 10% of the beam’s span, introducing large displacements and rotations. The beam has a
hollow rectangular cross-section 20 cm wide by 40 cm deep and 6 mm thickness. The displacements and rotations at both ends
are fixed in order to maximize the shear deformations and so demonstrate the formulation’s absence of shear-locking.

P

L/2 L/2

FIGURE 2 Clamped beam subjected to a mid-span transverse force.

The convergence analysis with the present formulation is shown in Fig. 3. With only five elements, the relative error is of
2.00%, highlighting the fast convergence and absence of the shear locking in the formulation. This property is directly related
to the adopted configuration-dependent interpolation functions, as shown in [40]. In fact, the convergence analysis with the
displacement-based version of the present formulation, developed by Sonneville et al. [41], yields very close results. The main
advantage of the present formulation is the gain in accuracy of the computed section stress-resultants for coarse meshes, as can
be seen in Fig. 4, where the shear force and bending moment diagrams of the displacement-based [41] and equilibrium-based
formulations with 5 elements are compared to the converged solution (100 elements).
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FIGURE 3 Convergence analysis of the clamped beam subjected to mid-span transverse force.

5.2 Cantilever beam bending
The next example consists of a cantilever beam subjected to an tip bending momentM = 2��EI∕L (Fig. 2). At full loading
(� = 1), the beam folds into a circle ( = 2�). The exact solution to this problem [26] provides null shear deformations.
However, as discussed in [41], the finite element formulation of shear deformable beams with linear interpolation and exact
spatial integration exhibits a shear-locking phenomenon [39]. With the developed formulation, the shear strains of the beam
finite element are identically zero. Moreover, since in this problem the bending deformation is constant along the element, the
exact solution can be obtained with a single element.
For the numerical analysis, the beam has a hollow rectangular cross-section 20 cm wide by 40 cm deep and 6 mm thickness.

The beam has a span of L = 4 m and is made of steel with Poisson’s ratio � = 0.3 and elastic modulus E = 200 GPa. The
obtained results are shown in Fig. 6, where the loaded end horizontal u and vertical v displacements with a single element of
the developed formulation exactly matches the closed-form solution [26].

5.3 L frame
The next example consists of a cantilever L-shaped frame subjected to a end force P (Fig. 7). The beam has a rectangular section
with 0.6 cm wide by 30 cm deep. The beam has a span of L = 240 cm and is made of a material with Poisson’s ratio � = 0.31
and elastic modulus E = 71.24 GPa. This classical benchmark has been studied by a number of authors, including [4, 9, 39].
Although the geometry and boundary conditions of the problem are planar, due to the small torsional stiffness associated with
the thin section, the frame buckles out of plane.
The variation of the out-of-plane displacement w of the tip node with the applied load P are shown in Fig. 8. Battini and

Pacoste [4] discretized each beam in ten finite elements. In the present work, only four finite elements are used per member and
a good agreement between the results can be observed.

5.4 Deployable ring
The next example consists of the deployable ring shown in Fig. 9. The ring has a rectangular section 0.6 mm wide and 6 cm
deep, with radius R = 120 mm. The ring is made of a material with Poisson’s ratio � = 0.3 and elastic modulus E = 200 GPa.
The system is subjected to a torsion momentM at point A, where it’s also constrained to move and rotate in the x direction. At
point B the displacements and rotations are fixed.
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(a) Shear force diagram
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(b) Bending moment diagram
FIGURE 4 Section stress-resultants of the clamped beam with displacement-based (DB) and equilibrium-based (EB) formula-
tions.

L

M

FIGURE 5 Cantilever beam subjected to a tip bending moment.

This benchmark was introduced by [14] and also studied by [4]. After a complete rotation about point A ( A = 2�), the ring
folds around itself, transforming in a smaller ring with a third of the original radius. After another complete rotation ( A = 4�),
the ring returns to the original configuration.
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FIGURE 6 Equilibrium path of the cantilever beam subjected to tip bending moment.

P

L

L

FIGURE 7 L-shaped frame subjected to a tip force.

In order to accurately represent the geometry of the reference configuration, a mesh with 128 finite elements are used. The
obtained results are shown in Fig. 10 and presents a successful match when compared with [4].
For the numerical analysis, 650 load steps were used with a load increment ΔM = 1 N m. The total CPU time with the

formulation proposed by [41] and the developed formulation were 18.40 s and 14.03 s, respectively, representing a gain of
23.75% in performance.
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FIGURE 8 Equilibrium path of the L-shaped frame subjected to a tip force.

FIGURE 9 Deployable ring subjected to a torsion moment.

5.5 Framed dome
The last example consists of the framed dome shown in Fig. 11. This model was first introduced by [16] and also studied by [4].
The dome’s beams have a rectangular cross-section with 0.76 wide by 1.22 deep and are made of a material with Poisson’s ratio
� = 0.17 and elastic modulus E = 20690. The dome’s geometry is determined with the parameters r1 = 12.57, r2 = 24.38,
ℎ1 = 4.55 and ℎ2 = 1.55.
In the numerical analysis, each beam is discretized in nb = 5 finite elements and so the mesh contained a total of ne = 90

finite elements. Initially, the primary path (PP) is computed with the load P applied perfectly centered at the apex node. Then,
in a second simulation, a small geometric imperfection is added to the apex node coordinates, in order to induce the secondary
path (SP) with a rotational buckling mode (Fig. 12). The obtained results are shown in Fig. 13 and presents a successful match
when compared with [4].
For the numerical analysis, 800 load steps were used with a load incrementΔP = 2. The total CPU time with the formulation

proposed by [4] and the developed formulation were 10.10 s and 7.86 s, respectively, representing a gain of 22.16% in perfor-
mance. Also, in avarage, 2.72 iterations were required per load step to achive equilibrium with the formulation proposed in [4],
while only 1.10 iterations were necessary with the developed formulation.
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FIGURE 10 Equilibrium path of the deployable ring subjected to a torsion moment.
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(a) Top view
P
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(b) Side view
FIGURE 11 Framed dome subjected to a force.
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FIGURE 12 Buckling mode of the framed dome subjected to a force.
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FIGURE 13 Equilibrium path of the framed dome subjected to a force.

6 CONCLUSIONS

The present work addresses the formulation of a novel equilibrium-based geometrically-exact TL beam finite element. The
first step is to obtain non-linear configuration-dependent interpolation of the position and rotation fields by enforcing constant
translation and rotation induced section strains. Next, the resulting kinematic fields are used to construct equilibrium-based inter-
polation for the stress-resultant fields, that exactly satisfies the equilibrium equations. The obtained internal force vector and
tangent stiffness matrix are self-equilibrated and computed via closed-form expressions. As a result, no numerical integration is
required, yielding a computationally efficient numerical method. The formulation is successfully tested with respect to classical
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strongly non-linear structural systems. The developed formulation shows improved accuracy and convergence rate when com-
pared to existing formulations in the literature. It’s also shown that the closed-form expressions obtained for the internal force
vector and tangent stiffness considerably reduce the required computational time.
Non-uniform torsion deformations are important when studying beams with thin-walled profiles and can be included in the

finite element formulation by adopting the Vlasov’s beam theory. With this modification, the assumption of rigid section motion
is relaxed and warping deformationmodes appear, together with additional stress-resultants, namely the bi-shear and bi-moment.
Also, the formulation can be adapted to take into account curved initial configurations, as in the displacement-based TL beam
formulation developed by Sonneville et al. [42]. The main change is that the initial cross-section triads varies along the beam
axis and so, the simple stress constitutive relations in Eqs. (28) - (30) are no longer valid. Instead, more elaborate relations
are need, which take into account the initial curvatures and extensions. For this, the curvilinear co-variant and contra-variant
directions are used, influencing the weak form of the section stress-resultants constitutive relations (Eqs. 62 and 63).
The elasto-plastic material behavior could be considered while computing the section stress-resultants in Eqs. (22) - (27). In

this case, integration over the section domain must be performed taking into account the history of deformation. However, due
to the adopted configuration-dependent interpolation of the kinematic fields, explicit integration over the beam axis can still
be achieved, maintaining the formulation performance. Finally, the proposed interpolation of the position and rotation fields
introduces a new kinematics from which the mass matrix and inertia forces can be obtained for a complete dynamic non-linear
analysis [40].
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APPENDIX

A SPATIAL ROTATIONS

In this appendix, the standard relations for spatial rotations are presented for completeness. The rotation tensor R is an element
of the special orthogonal group SO(3), that is:

det(R) = 1 (A1)
RTR = RRT = I (A2)

where I represents the 3 × 3 identity matrix. Taking the variation of Eq. (A2) we obtain:
�RRT = −

(

�RRT
)T (A3)

The product �RRT is then skew-symmetric and for some vector ��, we have:
�R = ��̂R (A4)

where ��̂ represents the skew-symmetric matrix obtained from the rotation spin vector ��. This shows that the set of 3×3 skew-
symmetric matrices so(3) forms the Lie Algebra of to the Lie Group SO(3). The rotation tensor can then be parameterized by a
rotation pseudo-vector ' via the exponential map:

R('̂) = exp('̂) =
∞
∑

k=0

'̂k

k!
(A5)

The square of a skew-matrix '̂2 can be related to the outer product '⊗ ' and the identity matrix I as:
'̂2 = '⊗ ' − '2I (A6)
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18 M. V. B. Santana ET AL

where ' =√

' ⋅ '.
The following identities then hold for any k ∈ ℤ:

'̂2k+1 = (−1)k'2k'̂ (A7)
'̂2k+2 = (−1)k'2k'̂2 (A8)

Here, the class of functions fn ∶ ℝ → ℝ is introduced as:

fn(') =
∞
∑

k=0

(−1)k'2k

(2k + n)!
(A9)

Combining Eqs. (A5), (A7), (A8) and (A9), the rotation tensor can be written in the form:
R('̂) = I + f1(')'̂ + f2(')'̂

2 (A10)
Recalling the series expansion of the cos and sin functions, the infinite series in Eq. (A9) can be replaced with:

fn(') =

⎧

⎪

⎨

⎪

⎩

(−1)p

'n

[

cos(') −
∑p−1
k=0

(−1)k'2k

(2k)!

]

if n = 2p
(−1)p

'n

[

sin(') −
∑p−1
k=0

(−1)k'2k+1

(2k+1)!

]

if n = 2p + 1
(A11)

In practice, the form in Eq. (A9) is more numerically stable for small angles (say |'| < 2�) and only a few terms need to be
considered, whereas the form in Eq. (A11) is more numerically stable for larger angles. By mathematical induction, it can be
shown that the derivatives of the rotation class function are computed as:

f ′n(') = '
[

nfn+2(') − fn+1(')
] (A12)

Combining Eq. (A4) with the variation of Eq. (A10), the rotation spin vector �� can be related to the variation of the rotation
pseudo-vector �' as:

�� = T('̂)�' (A13)
where the rotation gradient T('̂) is given by:

T('̂) =
∞
∑

k=0

'̂k

(k + 1)!
= I + f2(')'̂ + f3(')'̂

2 (A14)

The variation of the rotation gradient T('̂) with respect to the pseudo-vector ' can be written as:
�T('̂)v = G('̂, v)�' ∀v ∈ ℝ3 (A15)

with the rotation hessian G('̂, v) being defined as:
G('̂, v) = 1

'
[

f ′2(')' × v + f
′
3(')' × (' × v)

]

⊗ '−

f2(')v̂ − f3(')
(

2'̂v̂ − v̂'̂
) (A16)

The rotation gradient inverse can also be obtained as [17]:
T−1('̂) = I − 1

2
'̂ +

f3(') − 2f4(')
2f2(')

'̂2 (A17)
The variation of the rotation gradient inverse T−1('̂) with respect to the pseudo-vector ' can be written as:

�T−1('̂)v = H('̂, v)�' ∀v ∈ ℝ3 (A18)
with the rotation hessian inverse H('̂, v) being defined as:

H('̂, v) = 1
2
v̂ + a(v̂'̂ − 2'̂v̂) + b [' × (' × v)]⊗ ' (A19)

where:
a =

f3(') − 2f4(')
2f2(')

(A20)

b =
f5(') − 4f6(')

2f2(')
(A21)
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The second order gradient P('̂) is introduced here as:

P('̂) =
∞
∑

k=0

'̂k

(k + 2)!
= f2(0)I + f3(')'̂ + f4(')'̂

2 (A22)

The variation of the tensor P(') with respect to the pseudo-vector ' can be written as:
�P('̂)v = Q(', v)�' ∀v ∈ ℝ3 (A23)

where:
Q('̂, v) = 1

'

[

f ′3(')'̂v + f
′
4(')'̂

2v
]

⊗ ' − f3(')v̂ − f4(')
(

2'̂v̂ − v̂'̂
) (A24)

If the rotation tensor R is a function of some spatial coordinate �1, the derivative of Eq. (A2) provides:
RTR′ = −

(

RTR′
) (A25)

The product RTR′ is then skew-symmetric and for some curvature vector 
, we have:
R′ = R
̂ (A26)

Combining the derivative of Eq. (A4) and the increment of Eq. (A26), the following relation between the curvature increment
Δ
 and rotation spin derivative Δ�′ can be obtained:

Δ
 = RTΔ�′ (A27)
As det(T) = 2f2('), the relation in Eq. (A14) becomes singular when ' = 2�k, with k ∈ ℕ. In a finite element analysis this

makes the stiffness matrix ill-conditioned, causing the iterative procedure to fail. The total rotation pseudo-vector is then limited
to the interval ' ∈ [0, 2�). To circumvent this issue, the incremental rotation pseudo-vector is used to parameterize the rotation
tensor. In a incremental solution procedure, the rotation tensor Rn at step n is stored and at step n + 1, we have:

Rn+1 = exp('̂n+1)Rn (A28)
The update procedure can become more robust and memory efficient by working with the quaternion version of Eq. (A28):
qn+1 = quat('n+1)◦qn (A29)

where quat represents the function that computes the quaternion from a given rotation pseudo-vector and ◦ is the quaternion
product [37].
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