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Abstract We study real fifth-order superfield constraint for
N = 2 vector (and tensor) multiplet and derive most general
solution describing complete supersymmetry breaking, and
preserving a real scalar, two goldstini, and an abelian gauge
field as low-energy degrees of freedom on which both super-
symmetries are realized non-linearly. The surviving scalar
is identified as an axion of a broken global abelian symme-
try, while its scalar partner (saxion) is eliminated in terms
of the goldstini. We provide an example of a UV model giv-
ing rise to the quintic constraint, and discuss the connection
of this constraint and its solution to other known superfield
constraints in N = 2 and N = 1 cases.
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1 Introduction

Introduced by Volkov and Akulov [1], non-linear realization
of global supersymmetry (SUSY) is a useful tool for cap-
turing low-energy behaviour of theories with spontaneously
broken supersymmetry. Theories with non-linear N = 1
SUSY can be constructed off-shell by using constrained
(nilpotent) chiral superfields [2–7] (see also [8] for further
discussion of nilpotent and orthogonal nilpotent superfields),
�2 = 0, and the resulting action can be related to the Volkov–
Akulov theory by field redefinitions [2,4,9].

Similar methods of constrained superfields can also be
applied in N = 2 where there are two off-shell multiplets
available: vector and tensor. In this case SUSY can be bro-
ken partially [10–17] or completely. Bagger and Galperin
[15] showed that non-linear realization of partially broken
N = 2 SUSY with abelian vector multiplet gives rise to
supersymmetric Born–Infeld theory [18–20] with one linear
and one non-linear and spontaneously broken SUSY. This
construction has a counterpart in the N = 2 tensor multiplet
case [21–23].

N = 2 SUSY breaking in the non-linear limit can be con-
veniently described with the help of N = 2 supefields. Let
us focus on N = 2 vector multiplet which can be embed-
ded in an N = 2 superfield X which is chiral w.r.t. both
supersymmetries,

Dα̇X = Dα̇X = 0, (1)

where we call the two fermionic coordinates θ and ϑ , and
Dα and Dα are the respective supercovariant derivatives (we
use two-component spinor notation of [24]). The solution to
(1) that describes N = 2 vector multiplet reads

X = � + √
2iϑW + ϑ2

(
m − 1

4 D
2�

)
, (2)
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where theN = 1 superfields � and Wα are chiral superfields
in θ -coordinate, and Wα is the field strength of a real N =
1 superfield V , defined as Wα ≡ − 1

4 D
2DαV . Under the

second SUSY these components transform as

δε2� = √
2iεα

2 Wα , δε2Wα = −√
2iεα

2

(
m − 1

4 D
2�

)

+ √
2σm

αα̇ε̄α̇
2 ∂m� , (3)

where ε2 is a constant transformation parameter. The real
parameter m is a magnetic FI term [13] which can be used
to partially break N = 2 supersymmetry. In the non-linear
limit, this partial breaking can be described by applying
quadratic nilpotency condition on X ,

X2 = 0 . (4)

The ϑ2-component of (4) yields the N = 1 superfield form
of the constraint,

�
(
m − 1

4 D
2�

)
= − 1

2W
2 , (5)

where W 2 ≡ WαWα . This leads to SUSY Born–Infeld the-
ory once � is eliminated in the Lagrangian in terms of W 2.
This can be done recursively thanks to the anticommuting
nature of the fermionic superfield Wα , which means W 3 = 0
(suppressing the indices). The first two ϑ-components of (4)
also show that �2 = �Wα = 0 which automatically holds
if � is bilinear ∝ W 2.

When both supersymmetries are non-linearly realized, this
can be described by a cubic N = 2 superfield constraint
introduced by Dudas, Ferrara, and Sagnotti (DFS) [25],1

X3 = 0 . (6)

Here the ϑ2-component reads

�2
(
m − 1

4 D
2�

)
= −�W 2 . (7)

Of course, the partial breaking case with X2 = 0 also
solves X3 = 0, or in the N = 1 language, the solu-
tion to (5) solves Eq. (7) as well. However there is a more
general solution to (7) that does not satisfy the constraint
(5) (and by extension Eq. (4)). This solution breaks both
supersymmetries and eliminates the complex scalar in �,
rather than � itself, in terms of two goldstini associated
with the two fermions (the chiral fermion in � and the gaug-
ino).

1 See also [26] for further developments, and [27] for the general dis-
cussion of N -extended non-linear SUSY and its goldstino sector.

In this work we show that there is an even higher-order
and more general superfield constraint that can be imposed
on N = 2 vector multiplet, if we consider real, rather
than chiral, constraints on X and X . This is somewhat
similar to the N = 1 case, where in [28] it was shown
that one can generalize the quadratic nilpotent superfield
�2 = 0 to a cubic nilpotent superfield (� + �)3 = 0,
which is a weaker constraint and eliminates only the real
scalar Re �|θ=0. This cubic superfield constraint is applica-
ble to models where there is an axion (Im �|θ=0) which is
protected by an exact or approximate global shift symme-
try (an analogous constraint exists when � transforms by a
phase rotation under an abelian symmetry). In particular, in
the case where the axion is the goldstone boson of spon-
taneous R-symmetry breaking, this constrained superfield
could describe the low energy degrees of freedom of sponta-
neous supersymmetry and R-symmetry breaking (goldstino
and R-axion). Its generalization to N = 2 is motivated by
string theory D-branes due to the presence of a second bulk
supersymmetry which is realized non-linearly on their world-
volume.
The outline of our paper is the following. In Sect. 2 we
find that similar logic can be used to construct higher-
order N = 2 superfield constraint, but the constraint in
this case is of fifth order, (X + X)5 = 0, due to the
presence of two goldstini. We find the appropriate con-
straints and their solutions in two cases – when the N = 1
superfield � (as a component of X ) transforms under a
U (1) symmetry by a constant imaginary shift, and by a
phase rotation. We show that in the limit of decoupling
N = 1 vector multiplet, the quintic N = 2 constraint
(X + X)5 = 0 reduces to the cubic N = 1 constraint
(� + �)3 = 0 of [28]. In Sect. 3 we discuss the applica-
tion of the quintic constraint to N = 2 tensor multiplet,
and in Sect. 4 we construct an example of a UV model that
leads to the quintic constraint at low energies. We summa-
rize our findings and conclude in Sect. 5. Full component
form, to all orders in the fermions, of the quintic (shift-
symmetric) constraint can be found in Appendix A, and more
detailed study of the UV model can be found in Appendix
B.

2 Quintic constraint for N = 2 vector multiplet

As mentioned in Introduction, our goal is to study higher-
order N = 2 superfield constraints which in general break
both supersymmetries. In the case of a vector multiplet the
constraint is expected to eliminate one of the two real scalars
in terms of the goldstini, while preserving the other one
(which we call the axion), protected by a global abelian
symmetry, in analogy with the cubic constraints described
in [28].
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Assuming that the abelian symmetry is realized as a shift
symmetry, X → X + iα, where α is a real constant, we
consider a real nilpotency constraint of the form

(X + X)n = 0 , (8)

where n is some positive integer.
If we expect both supersymmetries to be broken, the lead-

ing component of the constraint, which we call �|θ=0 ≡ φ,
must be a bilinear of the goldstini χ and λ,2

φ + φ̄ ∼ χ2 + λ2 + χλ + · · · + h.c. (9)

Therefore we have

(φ + φ̄)2 ∼ χλχ̄λ̄ + χ2λ2 + χ̄2λ̄2 + · · · ,

(φ + φ̄)4 ∼ χ2λ2χ̄2λ̄2 , (10)

and

(φ + φ̄)5 = 0 . (11)

We then go back to the superfield level and impose this con-
straint on X ,

(X + X)5 = 0 . (12)

2.1 Component equation

The ϑ2ϑ̄2-component of the constraint (12) reads

�3+
( 1

8�+��+ + A
) − 3�2+B + 3�+W 2W 2 = 0 , (13)

where �± ≡ �±�. A and B are the following functions of
the N = 1 superfields,

A = 2
(
m − 1

4 D
2�

) (
m − 1

4 D
2�

)
+ 1

2 (∂m�−)2

− iWσm∂mW + i∂mWσmW ,

B = −
(
m − 1

4 D
2�

)
W 2 −

(
m − 1

4 D
2�

)
W 2

− iWσmW∂m�− .

(14)

The component expansion of � and W is

� = φ1 + iφ2 + √
2θχ + θ2F ,

Wα = −iλα + (δβ
α D + i

2σm
αα̇σ nα̇βFmn)θ

β + θ2σm
αα̇∂m λ̄α̇ .

(15)

2 We denote the components of the N = 1 superfields as � =
{φ, χα, F} and V = {λα, Am , D}.

Next we extract the θ2θ̄2-component of Eq. (13), which is
our master equation:

− 2
3φ4

1�2φ1 + φ3
1

(
P + 40

3 �φ1�φ1 + 16
3 ∂mnφ1∂mnφ1

)

+ φ2
1

(
J1 + Jmn

2 ∂mnφ1
)

+ φ1
(
I1 + Imn

2 ∂mnφ1
) + H1 + Hmn

2 ∂mnφ1 = 0 ,

(16)

where ∂mn ≡ ∂m∂n . We introduced P, H, I, J as (real) func-
tions of the independent fields φ2, χ, λ, Fmn, D, F and their
spacetime derivatives. Here it is sufficient to write down these
functions at the leading order in the fermions χ and λ, while
their full expressions can be found in Appendix A.

P starts with bosonic terms (meaning without fermions or
their derivatives) and is defined as (this is a full expression
for P)

3P ≡ 16�φ2�φ2 + 16∂mnφ2∂
mnφ2 + 4�(� + iχσm∂m χ̄

+ iλσm∂m λ̄) − 32∂mF∂mF

− 16∂mD∂mD + 8∂mFmn∂k F
kn + 4∂k Fmn∂

k Fmn

+ 4i F̃mn�Fmn

− 16i�χσm∂m χ̄ − 16i�λσm∂m λ̄ − 16i∂mnχσm∂nχ̄

− 16i∂mnλσm∂n λ̄ + h.c.
(17)

Here for convenience we introduce the shorthands

� ≡ D2 + 2 f̄ F − 1
2 F · F − i

2 F · F̃ − 2∂φ2∂φ2

− 2iχσm∂m χ̄ − 2iλσm∂m λ̄ ,

f ≡ F + m , F̃mn ≡ 1
2εmnkl F

kl , F±
mn ≡ Fmn ± i F̃mn ,

(18)

and use the notation F · F ≡ FmnFmn and ∂A∂B ≡
∂m A∂mB.

Next, for J1 and Jmn
2 we have

J1 ≡ 8i��φ2 + 16F̃mn∂k F
nk∂mφ2 − 2�(χ2F + λ2 f

+ χσm χ̄∂mφ2 + λσm λ̄∂mφ2)

− 8i∂m(2 f̄ F − iχσ n∂nχ̄ − iλσ n∂n λ̄)∂mφ2

+ 16
√

2i∂mχσmn∂nλD

+ 8(2∂mχσn∂m χ̄ + 2∂mλσn∂m λ̄ − iεmnkl∂
mχσ k∂ l χ̄

− iεmnkl∂
mλσ k∂ l λ̄)∂nφ2

− 8∂mχσmσ n∂nχ f̄ − 8∂mλσmσ n∂nλF

− 4
√

2i∂mχ∂nλ(ηmnD + 2i F+
mn)

− 4
√

2(∂mχσ nk∂kλ − ∂mλσ nk∂kχ)(F+
mn + 2i F̃mn)

+ h.c. + · · · , (19)

123
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Jmn
2 ≡ 8ηmn

(
3
2� + 3

2� + 4∂φ2∂φ2 + m2 + F · F
)

+ 16ηkl F
mk Fln − 32∂mφ2∂

nφ2 + · · · (20)

As can be seen both J1 and Jmn
2 start with bosonic terms. The

ellipsis denotes terms with more non-derivative fermions.
For I1 and Imn

2 we find

I1 ≡ 4�� − 16(m2 + F · F)∂φ2∂φ2

− 32FmnFnk∂
kφ2∂mφ2 + · · · , (21)

Imn
2 ≡ −4ηmn

[
χ2(F + 2 f̄ ) + λ2( f + 2F) + (χσ k χ̄

+ λσ k λ̄)∂kφ2 − 3
√

2iχλD + √
2χσ klλFkl

]

− 8(χσm χ̄ + λσm λ̄)∂nφ2

+ 16
√

2χσmlλFlkη
kn + h.c. , (22)

where I1 starts with bosonic terms, while Imn
2 is bilinear in

χ and λ.
Finally, H1 and Hmn

2 are given by

H1 ≡ −χ2(2 f̄ � + 4m∂φ2∂φ2) − λ2(2F� − 4m∂φ2∂φ2)

− χσm χ̄∂nφ2

[
ηmn(2D

2 + F · F + 4| f |2 − 4∂φ2∂φ2)

+ 4DF̃mn + 4ηkl Fml Fkn
]

− λσm λ̄∂nφ2

[
ηmn(2D

2 + F · F + 4|F |2 − 4∂φ2∂φ2)

− 4DF̃mn + 4ηkl Fml Fkn)
]

+ 2
√

2i�(χλD + iχσmnλFmn)

− 8
√

2χσmnλ(Fmn∂φ2∂φ2 + 2Fnk∂
kφ2∂mφ2)

+ 4
√

2iχσm λ̄∂nφ2
[
F(ηmnD − i F+

mn)

− f̄ (ηmnD − i F−
mn)

] + h.c. + · · · , (23)

Hmn
2 ≡ ηmn(χ2χ̄2 + λ2λ̄2 + 2χ2λ2 + 2χ̄2λ̄2)

− 4χσm χ̄λσ n λ̄ . (24)

Here H1 is at least bilinear and Hmn
2 is quadrilinear.

It is easy to check that the constraint (16) is invariant under
the discrete R-symmetry (see e.g. [25,29])

χ → iλ , λ → ±iχ , F → − f̄ , D → ∓D ,

Fmn → ±Fmn . (25)

As can be seen from Eq. (16), the solution φ1 has the form
∼ (H1 + . . .)/I1 which is well-defined only if the bosonic
part of I1 is non-vanishing,

I1|bos = 4�� − 16(m2 + F · F)∂φ2∂φ2

−32FmnFnk∂
kφ2∂mφ2 �= 0 . (26)

In particular this means that at the vacuum we have 〈�〉 =
〈D2 + 2(F + m)F〉 �= 0, i.e. at least one of the auxiliary

fields F and D must be non-vanishing. Then, by looking at
SUSY transformation of the fermions at the vacuum,

〈δεχ〉 = √
2ε1〈F〉 + iε2〈D〉 , (27)

〈δελ〉 = iε1〈D〉 + √
2iε2〈F + m〉 , (28)

we conclude that both supersymmetries must be broken,
while the parameter m sets the hierarchy between the two
breaking scales.

2.2 Leading-order solution and special case X3 = 0

At the leading (bilinear) order Eq. (16) can be readily solved
as

φ1 = −(H1/I1)|2 + · · · , (29)

where we introduce the notation |n which means extracting
terms that are at most nth order in χ, χ̄, λ, λ̄. For example |2
extracts terms that are at most bilinear such as χ2, λ2, χλ,
χσm λ̄, etc.

Since there is a particular solution to the constraint
(X + X)5 = 0 which satisfies X3 = 0, we should be able to
reproduce the DFS solution [25] which eliminates both real
scalars. The lowest component of X3 = 0 implies that both
φ1 and φ2 are bilinear, and therefore the terms in (29) con-
taining ∂mφ2 include three or more non-derivative fermions,
and can be ignored at the leading order. This yields

φ1 = 1

2
(φ + φ̄) = χ2 f̄ + λ2F − √

2i(χλD + iχσmnλFmn)

2D2 + 4 f̄ F − FmnFmn − i Fmn F̃mn

+h.c. + · · · , (30)

which agrees with the result of [25]. Without the additional
constraint X3 = 0, the solution (29) includes φ2 as a physical
real scalar.

2.3 Full solution

Let us now solve the constraint up to eighth-order in
χ, χ̄, λ, λ̄, since all higher-order terms identically vanish.
As we showed earlier, the fifth power of bilinear functions
vanish, i.e.

φ5
1 = (Imn

2 )5 = H5
1 = 0 . (31)

Since Hmn
2 is quadrilinear we have (Hmn

2 )3 = 0. Of course
any product of these functions containing more than eight
fermions also vanishes, e.g. H3

1 H
mn
2 = 0. This will help to

solve the constraint (16) by iteration.
It is convenient to rewrite the constraint (16) as

− 2
3φ4

1�2φ1 + φ3
1G3 + φ2

1G2 + φ1G1 + G0 = 0 , (32)
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where

G0 = H1 + Hmn
2 ∂mnφ1 ,

G1 = I1 + Imn
2 ∂mnφ1 ,

G2 = J1 + Jmn
2 ∂mnφ1 ,

G3 = P + 40
3 �φ1�φ1 + 16

3 ∂mnφ1∂mnφ1 .

(33)

Because (I1, J1, Jmn
2 , P) start with bosonic terms, H1 and

Imn
2 with bilinear, and Hmn

2 with fourth-order terms, it can
be seen that G0 is at least bilinear, while G1,2,3 start from
bosonic terms.

From (32) we have

φ1 = − 1

G1

(
G0 + φ2

1G2 + φ3
1G3 − 2

3φ4
1�2φ1

)
. (34)

As a first step we eliminate φ2
1 , φ3

1 , and φ4
1 on the RHS in

terms of G0,1,2,3. Squaring (34) we obtain,

φ2
1 = G2

0 + 2φ3
1G0G3 + φ4

1G
2
2

G2
1 − 2G0G2

. (35)

Further multiplying by (34) leads to

φ3
1 = − G3

0(G
2
1 − G0G2)

G1(G2
1 − 2G0G2)2

, φ4
1 = G4

0

G4
1

. (36)

Using Eqs. (35) and (36) in (34) we can write

φ1 = −G0

G1
− G2

0G2

G3
1

+ G3
0G3

G4
1

− 2G3
0G

2
2

G5
1

+ 5G4
0G2G3

G6
1

−5G4
0G

3
2

G7
0

+ 2G4
0

3G5
1

�2φ1 , (37)

where φ1 enters the RHS only through its derivatives.
The next step is to eliminate these derivatives, namely

∂mnφ1 and �2φ1, in terms of the independent fields contained
in the functions H, I, J, P . To do so we notice that in (37) (or
(34)), the second derivative ∂mnφ1 always multiplies at least
four goldstini, which means we must find ∂mnφ1 up to fourth-
order terms. As for �2φ1, it suffices to obtain its bosonic part
�2φ1|0 since it multiplies φ4

1 ∼ G4
0 ∼ χ2χ̄2λ2λ̄2.

It is useful to find the leading-order term of ∂mnφ1.
By applying ∂mn to (37) we obtain a simple expression
∂mnφ1|0 = −(∂mnH1)/I1.3 Now we can derive �2φ1|0 by
applying �2 to (37) and extracting the bosonic terms. We get

�2φ1|0 = −�2 H1 + Hmn
2 ∂mnφ1

I1 + Imn
2 ∂mnφ1

− �2H2
1

I 3
1

(J1 + Jmn
2 ∂mnφ1) . (38)

Since here we ignore terms proportional to goldstini, we can
use ∂mnφ1|0 = −(∂mnH1)/I1 on the RHS. Taking this into

3 In our notation, |n in ∂mnφ1|n is applied after the derivatives are taken.

account and Taylor-expanding the first term of (38) in Imn
2

(recall that it is at least bilinear in goldstini) we arrive at the
final expression

�2φ1|0 = 1

I 2
1

�2Hmn
2 ∂mnH1 − �2

(
H1

I1
+ H1

I 3
1

Imn
2 ∂mnH1

)

−�2H2
1

I 4
1

(I1 J1 − Jmn
2 ∂mnH1) . (39)

Before considering ∂mnφ1|4 let us obtain an expression
for ∂mnφ1 up to bilinear terms. From Eq. (37) we have

∂mnφ1|2 = −∂mn

(
G0

G1
+ G2

0G2

G3
1

)

= −∂mn

(
H1

I1
− 1

I 2
1

Hkl
2 ∂kl H1 + H1

I 3
1

I kl2 ∂kl H1

)

− ∂mnH2
1

I 4
1

(I1 J1 − J kl2 ∂kl H1) ,

(40)

where we used ∂mnφ1|0 = −(∂mnH1)/I1 and Taylor-
expansion in Imn

2 .
Now we are in a position to derive ∂mnφ1 up to fourth

order in goldstini. Again, from (37) we have

∂mnφ1|4 = −∂mn

(
G0

G1
+ G2

0G2

G3
1

− G3
0G3

G4
1

+ 2G3
0G

2
2

G5
1

)
.

(41)

From the definitions (33) of the functions G0,1,2,3 it can be
seen that on the RHS of Eq. (41) the derivative ∂mnφ1 is
needed only up to bilinear terms, as higher-order terms do
not contribute to ∂mnφ1|4. Expanding the G-functions, we
have

∂mnφ1|4 = −∂mn

{
1

I 5
1

(H1 + Hkl
2 ∂klφ1|2)

[
I 3
1 (I1 − I pq2 ∂pqφ1|2)

+ (I pq2 ∂pq H1)
2
]

+ (J1 + J kl2 ∂klφ1|2)(H1 I
2
1 − 2I1H

pq
2 ∂pq H1

+ 3H1 I
pq

2 ∂pq H1)

}

+ ∂mnH3
1

I 6
1

(
I 2
1 P + 40

3 �H1�H1 + 16
3 ∂kl H1∂kl H1

)

− 2∂mnH3
1

I 7
1

(I1 J1 − J kl2 ∂kl H1)
2 .

(42)
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Knowing Eqs. (39), (40), and (42) we can write down the
full solution to the quintic constraint by inserting these into
(37). We obtain

φ1 = −H1 + Hmn
2 ∂mnφ1|4

I1 + I kl2 ∂klφ1|4
− (H1 + Hmn

2 ∂mnφ1|2)2(J1 + J kl2 ∂klφ1|4)
I1 + I pq2 ∂pqφ1|2

+H2
1 (H1 I1 − 3Hmn

2 ∂mnH1)
(
P + 40

3 (�φ1|2)2 + 16
3 ∂klφ1|2∂klφ1|2

)

I 3
1 (I 2

1 − 4I pq2 ∂pq H1)

−2H2
1 (H1 I1 − 3Hmn

2 ∂mnH1)(J1 + J kl2 ∂klφ1|2)2

I 4
1 (I 2

1 − 5I pq2 ∂pq H1)
+ 5H4

1

I 7
1

(I1 J1 − Jmn
2 ∂mnH1)

(
P + 40

3I 2
1

�H1�H1

+ 16

3I 2
1

∂kl H1∂kl H1

)
− 5H4

1

I 10
1

(I1 J1 − Jmn
2 ∂mnH1)

3 + 2H4
1

3I 5
1

�2φ1|0 . (43)

All the leading-order (bilinear) terms come from −H1/I1,
while the rest of the expression is higher-order, containing
up to eight (non-derivative) fermions.

2.4 U (1) as a phase symmetry

The constraint (X+X)5 = 0 is applicable in situations where
X transforms by imaginary shift under a global (exact or
approximate)U (1), and the corresponding axion is identified
with the imaginary scalar component of X .

AU (1) symmetry can also act on the N = 1 chiral super-
field as a phase rotation. If it is not an R-symmetry (fermionic
coordinates are inert),m is forced to vanish since it will intro-
duce non-invariant terms in the action, and the three compo-
nents of X transform as,

� → �eiα , Wα → Wα , D2� → D2� e−iα . (44)

In contrast, if the U (1) is an R-symmetry, it rotates the
fermionic coordinates {θ, ϑ} → {θ, ϑ}eiα/2, and therefore
we have Wα → Wα eiα/2 and D2� → D2�. As the result,
X transforms homogeneously as X → Xeiα , while the mag-
netic parameter m is not required to vanish.

Regardless of whether the U (1) phase symmetry is R-
symmetry or not, we can impose the following invariant con-
straint at N = 2 level,

(XX − ν2)5 = 0 , (45)

where ν is the VEV of X which leads to spontaneous break-
ing of the U (1). In the limit ν = 0, the U (1) is unbroken
and the constraint reduces to either X3 = 0 with complete
SUSY breaking, or X2 = 0 with partial breaking, because
the components of the constraints other than these two do not
lead to new solutions.

The forms of the two quintic constraints (shift-symmetric
and phase-symmetric) are similar to the cubic N = 1 super-

field constraints studied in [28], which are given by (calling
the chiral superfield S)

(S + S)3 = 0 , (46)

(SS − 1)3 = 0 , (47)

where in (47) we set the VEV of S to one. The constraint (47)
can be obtained from (46) by a simple redefinition of theN =
1 chiral superfield, S → log S. After the redefinition, (46)
becomes (log SS)3 = 0, and we can expand SS around its
unit VEV, SS = 1+�, where � denotes goldstino-dependent
terms:

[log(1 + �)]3 = �3 (
1 − 1

2� + · · · )3 = 0 . (48)

This is solved by �3 = 0, which is exactly the constraint
(47), and implies that the leading component of � is a (real)
bilinear function of the goldstino.

When it comes to N = 2 chiral superfield X , the redef-
inition X = log X̃ cannot be performed. This is because its
lowest and highest ϑ-components,

� = log �̃ , m− 1
4 D

2� = �̃−1
(
m̃ − 1

4 D
2�̃ − 1

2 �̃−1W̃ 2
)

(49)

are incompatible with each other due to the fact that the “F-
term” of X is not independent but is a function of D2�.
Therefore the phase-symmetric N = 2 constraint (45) (and
its solution) cannot be derived from (X+X)5 = 0 in analogy
with the aforementioned N = 1 case, and must be solved
separately, which we are going to do next.

The ϑ2ϑ̄2-component of (45) reads

1
8�4(��+10 Ã)+ν2�3 Ã−3ν4�2 B̃+3ν4�W 2W 2 = 0 ,

(50)

where we introduce for convenience

� ≡ �� − ν2 , � ≡ − i

2
log

�

�
, (51)
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and Ã and B̃ are defined as

Ã ≡ 2
(
m − 1

4 D
2�

) (
m − 1

4 D
2�

)
− 2ν2∂m�∂m�

− 16WσmW∂m�

−
[
iWσm∂mW − 13

2ν
ei�

(
m − 1

4 D
2�

)
W 2 + h.c.

]
,

(52)

B̃ ≡ −1

ν
ei�

(
m − 1

4 D
2�

)
W 2

− 1

ν
e−i�

(
m − 1

4 D
2�

)
W 2

+ 2WσmW∂m� − 4

ν2 W
2W 2 , (53)

From the lowest component of (45) we have �5 = 0. By
using the variation of the N = 1 superfields under second
supersymmetry,

δε2� = √
2iεα

2 Wα ,

δε2Wα = −√
2iεα

2

(
m − 1

4 D
2�

)
+ √

2σm
αα̇ε̄α̇

2 ∂m� , (54)

we find that

�4Wα = �4W α̇ = 0 . (55)

Varying (55) shows that �3W 2 ∝ �4 and so �3W 2W α̇ = 0.
We used these identities in the derivation of Eq. (50).

It is convenient to parametrize the scalar component of �

as

�| = |φ|eia , (56)

where a is our axion in this case, such that �| = a (the
vertical bar denotes θ = θ̄ = 0 component).

Our master equation now is the highest component of Eq.
(50), which can be solved (for �|) by the same method we
used in the previous subsection. At the leading order in gold-
stini there are no derivatives of �| and the solution is (after
rescaling a → a/ν)

ν−1�| =
[
�� − 4(m2 + F · F)∂a∂a − 8FmnFnk∂ma∂ka

]−1

×
{
χ2e−ia/ν( f̄� + 2m ∂a∂a)

+ λ2e−ia/ν(F� − 2m ∂a∂a)

+ χσm χ̄∂na
[
ηmn

(
D2 + 1

2 F · F + 2| f |2 − 2∂a∂a
)

+2DF̃mn + 2ηkl Fmk Fln
]

+ λσm λ̄∂na
[
ηmn

(
D2 + 1

2 F · F + 2|F |2 − 2∂a∂a
)

−2DF̃mn + 2ηkl Fmk Fln
]

− √
2i�e−ia/ν(χλD + iχσmnλFmn)

+ 4
√

2e−ia/νχσmnλ(Fmn∂a∂a + 2Fnk∂
ka∂ma)

− 2
√

2iχσm λ̄∂na
[
F(ηmnD − i F+

mn)

− f̄ (ηmnD − i F−
mn)

] + h.c.

}
+ · · · , (57)

where the ellipsis denotes higher-order terms. Here � is the
same as before but with φ2 replaced by a,

� ≡ D2 + 2 f̄ F − 1
2 F · F − i

2 F · F̃ − 2∂a∂a − 2iχσm∂m χ̄

−2iλσm∂m λ̄ , (58)

Since �| = |φ|2 − ν2, we can write |φ| in terms of �| as

|φ| = ν + �|
2ν

− �|2
8ν3 + �|3

16ν5
− 5�|4

128ν7 , (59)

which is an exact expression because �5 = 0. Thus the radial
scalar |φ| is eliminated by the quintic N = 2 constraint
(XX − ν2)5 = 0, while the axion a survives along with two
goldstini and abelian gauge field.

2.5 Decoupling N = 1 vector multiplet

Let us go back to the shift-symmetric constraint

(X + X)5 = 0 , (60)

and decouple theN = 1 vector multiplet, λ = Am = D = 0,
expecting that the constraint will describe N = 1 → N =
0 breaking with a single chiral superfield. In this case the
leading component of (60) reduces from quintic nilpotent to
cubic nilpotent scalar, (φ + φ̄)3 = 0, because when λ = 0,
the saxion φ + φ̄ ≡ 2φ1 becomes a bilinear of χ and χ̄ , and
its third power necessarily vanishes. This also means that
in terms of the N = 1 chiral superfield �, the constraint
becomes,

(� + �)3 = 0 . (61)

It was shown in [28] that the cubic constraint (61) indeed
describes spontaneous breaking of N = 1 SUSY, and pre-
serves the axion φ2, protected by the shift-symmetry, and the
goldstino χ .

Let us now reproduce the solution to Eq. (61) found in
[28] by simply taking the full solution (43) to the quintic
constraint, and setting λ = Am = D = 0. Vanishing λ

means that only the first line in (43) survives. After some
algebra we find

φ1 = 1

2U
(χ2F + χ̄2F + 2χσm χ̄∂mφ2)

+
[
iχ2

2U 2 χ̄(σm∂mχF − ∂χ̄∂φ2
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+2σmn∂nχ̄∂mφ2) + h.c.
]

−χ2χ̄2

2U 3

[
∂m χ̄σmn∂nχ̄F + ∂mχσmn∂nχF

+∂nχ(2ηnkσm − ηmkσ n − ηmnσ k

−iεmnklσl)∂k χ̄∂mφ2

]
, (62)

where U ≡ 2(|F |2 − ∂φ2∂φ2). This solution exactly coin-
cides with the one found in [28]. Thus, we conclude that the
cubic N = 1 constraint (61) and its general solution pre-
serving the axion of the U (1) shift symmetry, can be viewed
as the special case of the quintic constraint (60) where the
N = 1 vector multiplet decouples.

3 Tensor multiplet case

The quintic constraints can be applied to another off-shell
N = 2 multiplet – tensor multiplet – which can be repre-
sented by chiral-antichiral superfield, Dα̇Y = DαY = 0. It
can be expanded as

Y = � − √
2i ϑ̄DL + ϑ̄2

(
m − 1

4 D
2�

)
, (63)

where � is again an N = 1 chiral superfield, and m is a
real parameter for partial SUSY breaking. The N = 1 real
superfield L is defined by the linearity constraint

D2L = D2L = 0 , (64)

so that its superfield strength DL is an N = 1 chiral super-
field, and has the component expansion

Dα̇L = ψ̄α̇ + θασm
αα̇(Bm − i∂mϕ) + iθ2∂mψασm

αα̇ , (65)

where ψ is Weyl fermion, ϕ is real scalar, and Bm ≡
1
2εmnkl∂

n Bkl with two-form field Bkl encoding a real scalar
on-shell degree of freedom (in four dimensions).

We can again impose one of the two quintic constraints

(Y + Y )5 = 0 , (66)

(YY − ν2) = 0 , (67)

depending on the realization of a global U (1) on Y (or
more precisely on its leading component �). As in the
case of N = 2 vector multiplet, general solutions to the
constraints (66) and (67) eliminate real scalar components
(� + �)|θ=θ̄=0 and |�|θ=θ̄=0, respectively. The surviving
(on-shell) degrees of freedom are then the axion, the real
scalar ϕ, two goldstini, and the two-form Bmn . As the lin-
ear superfield L does not include any auxiliary fields, in the

denominator of the solution we will find the quantity (coun-
terpart of � from Eq. (18)),

(F + m)F + derivative terms , (68)

which leads to 〈F〉 �= 0 (and of course 〈F〉 �= −m).

4 A UV model for the quintic constraint

Here we provide an example of a microscopic theory for
N = 2 vector multiplet (within the realm of rigid SUSY),
that can lead to the superfield constraint (X + X)5 = 0 in
the infrared (IR).

In [25] the authors proposed a microscopic theory for the
cubic constraint X3 = 0, which relies on the integral over the
whole N = 2 superspace in order to generate large masses
for the two scalars, so that they decouple in the IR. Here we
follow the same route and introduce the Lagrangian

L =
(

− i

2

∫
d2θd2ϑF(X) + h.c.

)
−γ

∫
d4θd4ϑG(X, X) , (69)

where the first term is chiral half-superspace integral of a
holomorphic prepotential F(X), and leads to the usual two-
derivative action for N = 2 vector multiplet with Kähler
potential, superpotential, and gauge kinetic function given
by

K = i
2 (�F �̄ − �F�) , W = − i

2mF� , g = −iF�� ,

(70)

respectively, where F should be understood as a function
of � = X |ϑ=0. The second term of (69) is a real function
G(X, X) integrated over the wholeN = 2 superspace, which
gives rise to higher-derivative terms among other things.

Requiring that the theory is invariant under constant shifts,
X → X + iα, fixes the prepotential as F(X) = i

2 X
2, and G

as G(X + X). Then, performing the ϑ-integration we get the
N = 1 superspace formulation of the Lagrangian (69),

L =
[

1
2

∫
d2θ

(
− 1

4�D2� + m� + 1
2W

2
)

+ h.c.

]

− 1
4γ

∫
d4θ

{
G′��+ + 4G′′

[∣∣∣m − 1
4 D

2�

∣∣∣
2

− 1
4∂m�−∂m�− − i

2Wσm∂mW + i
2∂mWσmW

]

+ 2G′′′ [W 2
(
m − 1

4 D
2�

)
+ W 2

(
m − 1

4 D
2�

)

+iWσmW∂m�−
] + G(4)W 2W 2

}
, (71)
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where �± ≡ � ± �, G′ ≡ ∂
∂�+G(�+), and G(4) ≡

∂4

∂�4+
G(�+). We discuss the details of this model in Appendix

B, while here we focus on the resulting scalar potential. Due
to the absence of electric FI term ξD, we have D = 0 as a
solution to its equation of motion. Therefore the potential is
determined by the F-term part of the Lagrangian,

L ⊃ FF + 1
2m(F + F) − γG(4)FF |F + m|2 , (72)

and its equation of motion

F + 1
2m − 2γG(4)F(F + m)(F + 1

2m) = 0 , (73)

where G = G(φ + φ̄). Equation (73) has an obvious solution
F = − 1

2m, consistent with the limit γ → 0. This gives rise
to the scalar potential

V = 1
4m

2 + 1
16γ m4G(4) . (74)

As long as γ > 0, a mass term for the real part of φ can be
generated if we take for example

G(X + X) = 1

1440
(X + X)6 , (75)

so that

G(4)(φ + φ̄) = 1
4 (φ + φ̄)2 = φ2

1 , (76)

where φ1 is the real part of φ. The imaginary part of φ – the
axion – is absent from the potential due to the shift symmetry.
We confirm in Appendix B that the choice (75) does not lead
to ghosts and new propagating degrees of freedom.

As can be seen from (74) and (75), the mass of the sax-
ion φ1 is proportional to

√
γm2. Thus, at scales much lower

than
√

γm2 (and SUSY breaking scale4) the saxion decou-
ples, and the effective theory can be described by the half-
superspace integral,

1
4

∫
d2θd2ϑX2 + h.c. , (77)

with the help of the quintic constraint (X + X)5 = 0.
We could also add electric FI terms (with complex param-

eter e and real ξ )

LFI =
(
e
∫
d2θ � + h.c.

)
+ ξ

∫
d4θV , (78)

to the Lagrangian (69), as they are N = 2 supersymmetric.
In this case the equations of motion for F and D will have

4 In this model both supersymmetries are broken at the same scale
√
m

as can be seen from SUSY transformations of the fermions (28).

more complicated forms, but it is sufficient that the saxion
mass squared, given by γ 〈FF |F + m|2〉 (see (72)), is non-
vanishing and positive.

5 Conclusion

In this work we studied fifth-order constraint for abelian
N = 2 vector multiplet described by (short) chiral-chiral
superfield X . The constraint takes the form of the nilpotency
constraint of degree five on the real superfield X + X . We
found most general solution of the constraint, which elim-
inates the real scalar component of X as a function of the
imaginary scalar, two fermions, and the gauge field. This
solution necessarily breaks both supersymmetries (thus both
Weyl fermions are goldstini) which are non-linearly realized,
while the imaginary scalar can be identified as an axion of a
broken global U (1) symmetry. Therefore the constraint can
be used to describe low-energy dynamics of a microscopic
theory of N = 2 → N = 0 SUSY breaking by a vector
multiplet, where the real scalar component becomes heavy
and decouples, while the imaginary scalar is protected by a
(exact or approximate) global abelian symmetry. We provide
one example of such microscopic theory which is discussed
in more detail in Appendix B.

The constraint can be generalized to the case where an
abelian symmetry acts on X (or more precisely on its complex
scalar component φ) as a phase rotation, in which case it takes
the form,

(XX − ν2)5 = 0 , (79)

where ν is the VEV of X . For ν �= 0, the U (1) is sponta-
neously broken and the general solution to (79) eliminates the
radial scalar |φ|, while preserving the angular part log (φ/φ̄)

as the corresponding axion. It is also straightforward to gen-
eralize the quintic constraints to N = 2 chiral-antichiral
superfield describing N = 2 tensor multiplet.

Our quintic superfield constraints seem to be the highest-
order – and thus most general – constraints that can be
imposed on N = 2 vector and tensor multiplets, yield-
ing unique solutions which break both supersymmetries.5

As such, the quintic constraints and their general solutions
reduce in the appropriate limits to various lower-order con-
straints known in the literature. In particular, in the limit
where the “axion” acquires a large mass and decouples, our
quintic constraint, for example (X + X)5 = 0, reduces to the
cubic chiral constraint X3 = 0 of Ref. [25], which eliminates

5 This is because if we construct a general bilinear function of the
goldstini χ, λ and their hermitian conjugates, its fifth power will always
vanish.
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Fig. 1 The relations between various N = 2 and N = 1 superfield constraints and their solutions, stemming from our quintic constraints. V
stands for the N = 1 vector multiplet, and DFS for Dudas–Ferrara–Sagnotti [25]. “Axion solution” is the solution that preserves the corresponding
axion

both real scalars. Then, as shown in [25], one can consistently
decouple the N = 1 vector multiplet so that the constraint
further reduces to the well-known quadratic constraint for
N = 1 chiral superfield, �2 = 0 [8]. We can also take the
following alternative route. First decouple the N = 1 vector
multiplet as we described in Sect. 2.5: this leads to theN = 1
real cubic constraint (� + �)3 = 0 of Ref. [28], which pre-
serves the axion. Then we can eliminate the axion by impos-
ing the stronger quadratic constraint �2 = 0. If we go back
to theN = 2 constraint X3 = 0, aside from the DFS solution
[25], it also admits a special solution which satisfies X2 = 0,
and describes partial breaking N = 2 → N = 1. This solu-
tion of course describes supersymmetric Born–Infeld theory
[18] with one linear (unbroken) and one non-linear (broken)
supersymmetry, where the whole N = 1 chiral superfield
decouples, and the N = 1 vector multiplet plays the role of
the goldstino multiplet. We summarize the relations between
all these constraints in Fig. 1. The same applies to N = 2
tensor multiplet if we replace N = 1 vector with N = 1
tensor (linear) multiplet.
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Appendix A: Full component expression of the quintic
constraint

In this Appendix we present the full component form of the
quintic constraint (12) of Sect. 2. The component equation
is given by (16), we repeat it here for convenience,

− 2
3φ4

1�2φ1 + φ3
1

(
P + 40

3 �φ1�φ1 + 16
3 ∂mnφ1∂mnφ1

)

+ φ2
1

(
J1 + Jmn

2 ∂mnφ1
) + φ1

(
I1 + Imn

2 ∂mnφ1
)

+ H1 + Hmn
2 ∂mnφ1 = 0 . (80)

The expressions for P, H, I, J to all orders in the fermions
are,

3P = 16�φ2�φ2 + 16∂mnφ2∂mnφ2 + 4�(� + iχσm∂m χ̄

+ iλσm∂m λ̄) − 32∂mF∂mF

− 16∂mD∂mD + 8∂mFmn∂k F
kn + 4∂k Fmn∂

k Fmn

+ 4i F̃mn�Fmn

− 16i�χσm∂m χ̄ − 16i�λσm∂m λ̄ − 16i∂mnχσm∂n χ̄

− 16i∂mnλσm∂n λ̄ + h.c. , (81)

J1 = 8i��φ2 + 16F̃mn∂k F
nk∂mφ2 − 2�(χ2F + λ2 f

+ χσm χ̄∂mφ2 + λσm λ̄∂mφ2)

− 8i∂m(2 f̄ F − iχσ n∂n χ̄ − iλσ n∂n λ̄)∂mφ2

+ 8(χσm∂n χ̄ + λσm∂n λ̄)∂mnφ2

+ 8(2∂mχσn∂m χ̄ + 2∂mλσn∂m λ̄ − iεmnkl∂
mχσ k∂l χ̄

− iεmnkl∂
mλσ k∂l λ̄)∂nφ2

− 8∂m(χσmσ n∂nχ f̄ ) − 8∂m(λσmσ n∂nλF)

− 4
√

2i∂mχ∂nλ(ηmnD + 2i F+
mn)

+ 16
√

2i∂mχσmn∂nλD − 4
√

2(∂mχσ nk∂kλ

− ∂mλσ nk∂kχ)(F+
mn + 2i F̃mn)

− 2
√

2χσmn�λFmn + 2
√

2λσmn�χFmn

− 8
√

2χσmn∂n∂
kλFmk

+ 8
√

2λσmn∂n∂
kχFmk − 16

√
2χσmn∂mλ∂k Fnk

+ 16
√

2λσmn∂mχ∂k Fnk

− 8
√

2i(χσmn∂mλ + λσmn∂mχ)∂nD
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− 16χ�χ f̄ − 16λ�λF

+ 6
√

2i(χ�λ + λ�χ)D − 4
√

2(χ∂mλ

− λ∂mχ)∂n Fmn + 8∂χ2∂F

+ 8∂λ2∂F − 8
√

2i∂m(χλ)∂mD + 2
√

2iχλ�D

− 2
√

2χσmnλ�Fmn + h.c. , (82)

Jmn
2 = 4ηmn(3� + 4∂φ2∂φ2 + m2 + F · F + iχσ k∂k χ̄

+ iλσ k∂k λ̄) + 8ηkl F
mk Fln

− 16∂mφ2∂nφ2 − 8iχσm∂n χ̄

− 8iλσm∂n λ̄ + h.c. , (83)

I1 = 2�� − 8(m2 + F · F)∂φ2∂φ2

− 16FmnFnk∂
kφ2∂mφ2

− 8iχσm∂m χ̄(| f |2 + ∂φ2∂φ2)

− 8iλσm∂m λ̄(|F |2 + ∂φ2∂φ2)

− 4i(χσm∂n χ̄ + λσm∂n λ̄)
[
ηmn(D

2 + 1
2 F · F)

+2ηkl Fnl Fkm − 4∂mφ2∂nφ2

]

− 8i(χσm∂n χ̄ − λσm∂n λ̄)DF̃mn − 8i(χ2 f̄

+ λ2F − √
2iχλD + √

2χσmnλFmn)�φ2

− 4
√

2F(χσm∂n λ̄ − ∂nχσm λ̄

− χσm λ̄∂n)(ηmnD − i F+
mn)

− 4
√

2 f (λσm∂n χ̄ − ∂nλσm χ̄

− λσm χ̄∂n)(ηmnD + i F+
mn)

+ 8i
(
m ∂mχ2 − m ∂mλ2 − 4χσmn∂nχ f̄

− 4λσmn∂nλF

+ 2
√

2iχσmn∂nλD + 2
√

2iλσmn∂nχD
)
∂mφ2

− 8
√

2i(χ∂mλ − λ∂mχ)∂nφ2F
+
mn + 8

√
2i(χσmn∂kλ

− λσmn∂kχ)∂mφ2F
−
nk

+ 8
√

2i(χσmn∂nλ − λσmn∂nχ)∂kφ2(F+
mk + 2i F̃mk)

+ χ2(8i∂F∂φ2 + �χ̄2 + 4λ�λ)

+ λ2(8i∂F∂φ2 + �λ̄2 + 4χ�χ)

+ 4χσm χ̄(2i f ∂mF + D∂n Fmn − ∂nDFmn

+ F̃mk∂n F
kn + ∂nλσ n∂m λ̄ − λσ n∂mn λ̄)

+ 4λσm λ̄(2i F∂mF − D∂n Fmn + ∂nDFmn

+ F̃mk∂n F
kn + ∂nχσ n∂m χ̄ − χσ n∂mn χ̄ )

+ 8
√

2χλ∂φ2∂D + 16
√

2iχσmnλ∂nφ2∂k Fmk

+ 4∂m(χ2λ)σmσ n∂nλ

+ 4∂m(λ2χ)σmσ n∂nχ − 8
√

2χσm λ̄∂n F(ηmnD

− i Fmn) − ∂χ2∂χ̄2 − ∂λ2∂λ̄2

− 2(χσm∂n χ̄ − ∂nχσm χ̄)(λσn∂m λ̄

− ∂mλσn λ̄)

− 2(χσm∂m χ̄ − ∂mχσm χ̄ )(λσ n∂n λ̄

− ∂nλσ n λ̄) + h.c. , (84)

Imn
2 = −4ηmn

[
χ2(F + 2 f̄ ) + λ2( f + 2F)

+ (χσ k χ̄ + λσ k λ̄)∂kφ2

− 3
√

2iχλD + √
2χσ klλFkl

]

− 8(χσm χ̄ + λσm λ̄)∂nφ2 + 16
√

2χσmlλFlkη
kn + h.c. ,

(85)

H1 = −χ2[
2 f̄ � + 4m∂φ2∂φ2 − 2i F(λσm∂m λ̄ − ∂mλσm λ̄)

+ 2i∂χ̄2∂φ2

− 4iλσmσ n∂nλ∂mφ2 − 2iλσm λ̄∂mF

+ √
2λσm∂m(χ̄D) + √

2iλσm∂n(χ̄F−
mn)

]

− λ2[
2F� − 4m∂φ2∂φ2 − 2i f (χσm∂m χ̄

− ∂mχσm χ̄) + 2i∂λ̄2∂φ2

− 4iχσmσ n∂nχ∂mφ2 − 2iχσm χ̄∂mF

+ √
2χσm∂m(λ̄D) − √

2iχσm∂n(λ̄F−
mn)

]

− χσm χ̄∂mφ2(2D2 + F · F + 4| f |2
− 4∂φ2∂φ2 − 4iλσ n∂n λ̄)

− 4χσm χ̄∂nφ2(DF̃mn + ηkl Fml Fkn − iλσn∂m λ̄)

− λσm λ̄∂mφ2(2D2 + F · F
+ 4|F |2 − 4∂φ2∂φ2 − 4iχσ n∂n χ̄)

− 4λσm λ̄∂nφ2(−DF̃mn + ηkl Fml Fkn − iχσn∂m χ̄)

+ 2
√

2i�(χλD + iχσmnλFmn)

− 8
√

2χσmnλ(Fmn∂φ2∂φ2 + 2Fnk∂
kφ2∂mφ2)

+ 4
√

2iχσm λ̄∂nφ2
[
F(ηmnD − i F+

mn)

− f̄ (ηmnD − i F−
mn)

]

+ √
2χσm∂n(λ̄χ̄2)(ηmnD − i F+

mn)

+ √
2λσm∂n(χ̄ λ̄2)(ηmnD + i F+

mn)

− 2iχσm χ̄∂mλ2 f − 2iλσm λ̄∂mχ2F

+ 2iχ2λ2�φ2 + h.c. , (86)

Hmn
2 = ηmn(χ2χ̄2 + λ2λ̄2 + 2χ2λ2 + 2χ̄2λ̄2)

− 4χσm χ̄λσ n λ̄ . (87)

� is defined in (18).

Appendix B: Details of the UV model

The Lagrangian of the UV model of Sect. 4 in N = 2 super-
space reads

L =
(

− i

2

∫
d2θd2ϑF(X) + h.c.

)
−γ

∫
d4θd4ϑG(X, X) ,

(88)

where F = i
2 X

2, and G is a function of X + X , as required
by the global symmetry X → X + iα.
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After integrating over ϑ , we obtain the N = 1 form of the
Lagrangian for which we introduce the following notation.
The first term in (88) is denoted L1, and is given by

L1 = 1
2

∫
d2θ

(
− 1

4�D2� + m� + 1
2W

2
)

+ h.c. . (89)

For convenience we divide the second term of (88) into seven
parts (integrated over ϑ, ϑ̄):

L2 = − γ
4

∫
d4θG′��+ ,

L3 = −γ

∫
d4θG′′(m − 1

4 D
2�)(m − 1

4 D
2�) ,

L4 = γ
4

∫
d4θG′′∂m�−∂m�− ,

L5 = γ i
2

∫
d4θG′′(Wσm∂mW − h.c.) ,

L6 = − γ
2

∫
d4θG′′′W 2(m − 1

4 D
2�) + h.c. ,

L7 = − γ i
2

∫
d4θG′′′WσmW∂m�− ,

L8 = − γ
4

∫
d4θG(4)W 2W 2 . (90)

Next, let us find the full component Lagrangian up to two
fermions, using the expansion of � and W given by (15).
L1 is the usual (two-derivative) action for the N = 2 vector
multiplet,

L1 = −∂φ1∂φ1 − ∂φ2∂φ2 − iχσm∂m χ̄ − iλσm∂m λ̄

− 1
4 FmnF

mn + 1
2m(F + F) + FF + 1

2 D
2 ,

(91)

while L2, . . . ,L8 extend the simplest model by higher-order
interactions and higher derivatives. They are given by (up to
total derivatives)

4
γ
L2 = −G′′′�φ1(FF − ∂φ2∂φ2 − iχσm∂m χ̄)

+ G(4)�φ1(χ
2F + χσm χ̄∂mφ2)

+ G′′′(χσm�χ̄∂mφ2 + 1
2χσm χ̄∂m�φ2

+ χ�χF + 1
2χ2�F)

− G′′( 1
2�φ1�φ1 + i

2∂mχσm�χ̄ − i
2χσm∂m�χ̄

+ F�F − ∂mφ2∂
m�φ2)

− 1
4G′�2φ1 + h.c. , (92)

1
γ
L3 = 1

2G(5) f f̄ (χ2F + χσm χ̄∂mφ2) − 1
2G(4) f f̄ (FF

− ∂φ2∂φ2 − iχσm∂m χ̄)

+ 1
4G(4)

[
2i f Fχσm∂m χ̄

+ χ2 f̄ �(φ1

+ iφ2) + iχσm χ̄ f̄ ∂mF

+ 2i f̄ χσ nσm∂mχ∂nφ2
]

− 1
2G′′′[2 f F�(φ1 − iφ2)

− 2i f̄ ∂mφ2∂
mF + 1

2 f f̄ �φ1

− f̄ χ�χ − χσmσ n∂nχ∂mF

− 2iχσm∂m χ̄�(φ1 + iφ2) − f̄ ∂mχσmσ n∂nχ

+ ∂mχσmσ nσ k∂k χ̄∂nφ2
]

− 1
2G′′(�φ1�φ1 + �φ2�φ2 + 1

2 f̄ �F

− 1
2∂F∂F − i�χσm∂m χ̄ ) + h.c. , (93)

2
γ
L4 = G(5)∂φ2∂φ2(χ

2F + χσm χ̄∂mφ2)

− G(4)∂φ2∂φ2(FF − ∂φ2∂φ2 − iχσm∂m χ̄ )

+ G(4)(2iχσm∂nχ̄∂mφ2∂nφ2 − 2iχ∂mχ∂mφ2F

− χσm χ̄∂nφ2∂mnφ1 + iχ2∂mφ2∂
mF)

− G′′′( 1
2∂φ2∂φ2�φ1 + 2∂mφ2∂

nφ2∂mnφ1

− 2i F∂mF∂mφ2 + 1
2∂χ∂χF

− χ∂mχ∂mF − ∂nχσ n∂m χ̄∂mφ2

− 1
2∂mχσ n∂m χ̄∂nφ2

+ iχσ n∂m χ̄∂mnφ1 + χσ n∂mnχ̄∂mφ2
)

− 1
2G′′(∂mφ2∂m�φ2 + ∂F∂F − ∂mnφ1∂

mnφ1

− i
2∂mχσ n∂mnχ̄ ) + h.c. , (94)

4
γ
L5 = G′′∂k(ηmnD − i F+

mn)∂
n(ηkmD + i Fkm− )

− G′′(ηmkD − i Fmk+ )∂k∂
n(ηmnD − i F−

mn)

+ 2iG′′′∂kφ2(ηmnD − i F+
mn)∂

n(ηkmD + i Fkm− )

+ 2iG(4)(FF − ∂φ2∂φ2)λσm∂m λ̄

+ √
2G(4)(χσ kσm∂nλ∂kφ2 + 1

2χσ kσmλ∂kφ2∂
n

− λσm χ̄F∂n)(ηmnD + i F−
mn)

+ iG(4)χσk χ̄ (ηmnD − i F+
mn)∂

n(ηmkD − i Fmk− )

+ √
2G(4)χσm∂n λ̄F(ηmnD − i F+

mn)

− √
2iG′′′(χ�λD + iχσmn�λFmn)

+ i
2G′′(5�λσm∂m λ̄ + λσm∂m�λ̄ − 2i∂nλσm∂mn λ̄)

+ 2G′′′(λσm∂mn λ̄∂nφ2 − ∂nλσm∂m λ̄∂nφ2

+ i
2λσm∂m λ̄�φ1 − ∂mλσmσ n∂nλF + λ�λF

)

+ √
2iG′′′[χσmσ k(∂kλ + λ∂k)∂

n(ηmnD − i F+
mn)

− 1
4∂kχσ kσmλ∂n(ηmnD + i F−

mn)
]

−
√

2i
4 G′′′[χσ kσm(∂kλ + λ∂k)∂

n

+ 2χσ kσm(∂k∂
nλ − ∂nλ∂k)

]
(ηmnD + i F−

mn)

− i√
2
G′′′∂kχσ kσm∂nλ(ηmnD + i F−

mn) + h.c. ,

(95)
2
γ
L6 = −G(4) f F(D2 − 1

2 F · F − i
2 F · F̃)

− G′′′�φ1(D
2 − 1

2 F · F) + 1
2G′′′�φ2F · F̃

123
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+ G(5)λ2 f (FF − ∂φ2∂φ2) + 1
2G(5)χ2 f̄ (D2

− 1
2 F · F + i

2 F · F̃)

− √
2iG(5) f

[
λσm χ̄∂nφ2(ηmnD + i F+

mn)

+ F(χλD + iχσmnλFmn)
]

+ iG(4)
[
χσm∂m χ̄ (D2 − 1

2 F · F + i
2 F · F̃)

+ 2 f (λσm∂m λ̄F + λ∂λ∂φ2 − i
4λ2�φ1)

]

− 1√
2
G(4)

[
∂nλσm χ̄ f − λσm∂nχ̄ f

− 2iλσmσ k∂kχ∂n(φ1 − iφ2)
]
(ηmn + i F+

mn)

+ G(4)λ2(�φ1 + i�φ2 − i∂mφ2∂
m)F

+ 1
2G′′′(�λ2 + 1

2λ2� − ∂mλ2∂m) f

+ 2iG′′′λσm∂m λ̄�(φ1 + iφ2) − √
2iG(4)(χλD

− iχσmnλFmn)�(φ1 + iφ2)

− √
2iG′′′(λ�χD − iλσmn�χFmn)

+ 1√
2
G(4)λσm χ̄ (∂n F − f ∂n)(ηmnD + i F+

mn) (96)

2
γ
L7 = (G(4)∂nφ2∂kφ2 − 1

2G′′′∂n∂kφ1)(δ
k
n D

2

+ 1
2δkn F · F + 2FkmFmn)

− G′′′∂nφ2(2D∂mFmn + ∂k F
km F̃mn)

− 2G(4)∂mφ1∂nφ2F
mnD

− G(5)λσm λ̄∂mφ2∂φ2∂φ2 + G(4)λσm λ̄(∂nφ2∂mnφ1

+ 1
2∂mφ2�φ1 − i F∂mF)

+ G′′′[2∂mλσm∂n λ̄∂nφ2 + iλσm∂n λ̄∂mn(φ1

− iφ2) + 1
4λσm λ̄∂m�φ2

+ 1
2�λσm λ̄∂mφ2 − 3

2∂nλσm∂n λ̄∂mφ2

+ iεmnkl∂nλσl∂k λ̄∂mφ2 + λσmσ n∂nλ∂mF
]

− G(4)λσm[
2i(∂n λ̄∂nφ2 − σ n∂nλF)∂mφ2

+ 1√
2
(∂nχ̄F − χ̄∂n F)(ηmnD + i F−

mn)
]

+ 1
2χσk(iG(4)∂nχ̄ + G(5)χ̄∂nφ2)(δ

k
n D

2

+ 1
2δkn F · F + 2FkmFmn + 2ηkmDF̃mn)

+ √
2iG(5)λσm(χ̄F

− σ kχ∂kφ2)∂
nφ2(ηmnD + i F−

mn)

− 1√
2
G(4)λσmσ k(∂kχ∂nφ2

+ ∂nχ∂kφ2)(ηmnD + i F−
mn)

+ √
2∂kλσ kσm(G(4)χ∂nφ2

− i
2G′′′∂nχ)(ηmnD − i F+

mn)

− 1√
2
G(4)∂nφ2χσ kσm(∂kλ

− λ∂k)(ηmnD + i F−
mn)

+ i√
2
λσmσ k(G(4)χ∂n∂kφ1

− G(4)∂nχ∂kφ1 − G′′′∂nχ∂k)(ηmnD + i F−
mn)

+ h.c. , (97)
8
γ
L8 = −G(4)|D2 − 1

2 F · F + i
2 F · F̃ |2

+ 2iG(4)λσm∂m λ̄(3D2 − 1
2 F · F + i F · F̃)

− 4iG(4)λσk∂
n λ̄(FmnF

mk

− ηmn F̃
mk D) + G(5)λ2F(2D2 − F · F + i F · F̃)

+ 2G(5)λσk λ̄∂nφ2(δ
k
n D

2

+ 1
2δkn F · F − 2FmnF

mk + 2ηmn F̃
mk D)

− 2G(4)λσm λ̄(Fmn∂nD − D∂n F
mn + F̃mn∂k Fnk)

− 4G(4)(λσm∂m λ̄)(∂nλσ n λ̄)

+ G(4)∂λ2∂λ̄2 − √
2iG(5)(χλD

+ iχσmnλFmn)(2D
2 − F · F + i F · F̃) + h.c. ,

(98)

where we ignored terms with three or more fermions, and
denoted f ≡ m + F as before (also �± ≡ �±�, and same
for its scalar component φ).

As long as the derivatives of G w.r.t. φ+ (up to fifth) van-
ish at the vacuum, new degrees of freedom are not generated,
since all the terms fromL2,...,8 will vanish as well. For exam-
ple the possible kinetic terms ∂F∂F and ∂D∂D multiply
G′′, so we require 〈G′′〉 = 0 in order to keep F and D fields
auxiliary. Another question is whether or not the γ -terms
can introduce ghost instabilities for the existing propagating
fields φ1, φ2, χ, λ, Am . To answer this, let us write down the
terms (from the entire Lagrangian) containing at most two
derivatives in the bosonic sector, and at most one derivative
in the fermionic sector. Then for the bosonic Lagrangian we
have

Lbos = −[
1 − γG(4)(m2 + 3mF + 3mF

+ 6FF + 3D2)
]
∂φ1∂φ1

− [
1 − γG(4)(m2 + mF + mF + D2)

]
∂φ2∂φ2

− 1
4

[
1 − γG(4)(mF + mF + 2FF + D2)

]
FmnF

mn

+ 1
2m(F + F) + FF + 1

2 D
2 − γG(4)|mF

+ FF + 1
2 D

2|2 + · · · , (99)

where . . . stands for irrelevant terms containing derivatives
of the auxiliary fields and derivative interactions between φ1

and φ2 (since these do not contribute to the kinetic terms).
It can be seen from (99) that the positivity of the kinetic

terms (i.e. positivity of the expressions in the square brackets)
is not guaranteed, and depends on the model. The model of
our interest, as argued in Section 4, is determined by the
choice

G = 1
1440 (X + X)6 
⇒ G(4)(φ+) = 1

4φ2+ = φ2
1 . (100)
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We then eliminate F and D by their equations of motion
(these hold regardless of the choice of G),

F = − 1
2m , D = 0 , (101)

and the bosonic Lagrangian (99) becomes

Lbos = −(1 + 1
2γm2φ2

1)∂φ1∂φ1 − ∂φ2∂φ2

− 1
4 (1 + 1

2γm2φ2
1)FmnF

mn

− 1
4m

2 − 1
16γm4φ2

1 ,

(102)

where the third line is the scalar potential of this model. As
can be seen, for positive γ the kinetic terms always have the
correct sign for any value of φ1. At the same time, the scalar
potential is stable, with the minimum at φ1 = 0, while φ1

has the mass
√

γm2/4.
As for the fermionic Lagrangian, up to one derivative and

up to two fermions, it reads

Lfermi = − i
2

[
1 − γG(4)(m2 + mF + 3mF + 3FF

+ 3
2 D

2)
]
χσm∂m χ̄

− i
2

[
1 − γG(4)(2mF + 3FF + 3

2 D
2)

]
λσm∂m λ̄

−
√

2
4 γmG(4)D(χσm∂m λ̄ − λσm∂m χ̄)

+ 1
2γG(5)

[|m + F |2Fχ2 + 1
2 (m + F)D2χ2

+ (m + F)FFλ2 + 1
2 FD2λ2

− √
2i(m + F)FDχλ − i√

2
D3χλ

] + h.c.

+ · · · ,

(103)

After using Eqs. (100) and (101) we have

Lfermi = − i
2 (1 + 1

4γm2φ2
1)(χσm∂m χ̄ + λσm∂m λ̄)

− 1
16γm3φ1(χ

2 − λ2) + h.c. . (104)

Similarly to the bosonic sector, fermions have the correct
sign of the kinetic terms for any value of φ1 provided that
γ > 0. On the other hand, the masses of χ and λ vanish at
the minimum when φ1 = 0.

We conclude that the model has well-behaved kinetic
terms, but possible contribution of higher-derivatives (such
as �φ1�φ1) to the effective scalar potential may require fur-
ther investigation.
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