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tract

paper investigates the accuracy and the convergence properties of the augmented finite element method (AFE

AFEM is here used to model strong discontinuities independently of the underlying mesh. One noticeable

age of the AFEM over other partition of unity methods is that it does not introduce additional global unkno

present cracks. Numerical 2D experiments illustrate the performance of the method and draw comparisons w

lement deletion method (EDM), the phantom node method (PNM), the finite element method (FEM) and

dded finite element method (EFEM). The h-convergence in the energy norm of the AFEM is studied for the

and it is shown to outperform the aforementioned numerical methods when cracks are loaded in Mode I.

words: embedded discontinuities, embedded finite elements, strong discontinuities, augmented finite elemen

od, phantom node method

NTRODUCTION

he finite element method (FEM) has become a classical tool to design and analyse engineering structures.

ict structural failure scenarios, the nucleation and propagation of cracks have to be explicitly considered.

f standard finite elements can then become prohibitive since remeshing is needed as cracks grow. Moreo

umber of degrees of freedom (DOF) may drastically increase, especially in three-dimensional applications,

cting the solution on the updated mesh is costly besides potentially degrading the quality of results [1]. Thu

s desirable to take another road for the modelling of multiple crack propagation in structures.

o ease analysis involving cracks, numerous variants of the FEM allowing embedded cracks within elements h

developed. These variants, usually gathered as “enriched finite element methods” [2, 3], encompass a wide var

ethods such as the extended finite element method (XFEM) [4], the generalized finite element method (GFE

he phantom node method (PNM) [6], the cut finite element method (CutFEM) [7] or the embedded finite elem

od (EFEM) [8], to name a few.

hese methods exhibit numerous differences, but, the most striking one is that EFEMs can model an arbit

ber of (possibly growing) cracks without increasing the number of DOF per element, or the size of the assem

ess matrix. Yet, this attractive property, not shared by any of the aforementioned methods, comes at a price:

element compatibility of the displacement field is lost (see Figure 1).
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, [B−] Strain-displacement matrices of the upper and lower subdomains, respectively

C− Stiffness tensors of the upper and lower subdomains, respectively

, {d−} Vectors of degrees of freedom of the upper and lower subdomains

t+}, {dext−} Vectors of external nodal displacements of subdomains Ω+ and Ω+

t+}, {dint−} Vectors of nodal displacements related to surfaces Γ+
c and Γ−c

Error measure

Young’s modulus

hesive+}, {fcohesive−} Vectors of nodal cohesive forces applied on Γ+
c and Γ−c

t+}, {fext−} Vectors of nodal external forces applied on the upper and lower subdomains

Energy release rate

K2 Mode I and Mode II stress intensity factors

, [L−] Stiffness matrices of the upper and lower subdomains

, [L−ij ] Submatrices of [L+] and [L−]

n− Outward pointing normals of Ω+ and Ω−

, [N−] Shape function matrices that interpolate the displacement field in Ω+ and Ω−

Weight function

t−ext External tractions applied on the upper and lower subdomains

t−int Tractions along the discontinuity surfaces Γ+
c and Γ−c

u− Displacement field in the upper and lower subdomains

ū− Imposed displacement in the upper and lower subdomains

Strain energy density

Domain occupied by the crack surface

Γ−c Crack surfaces in the upper and lower subdomains

Kronecker delta function

− Strain field in the upper and lower subdomains

Relative error measure

2



ν

σ+,

Ω30

Ω+,

AFE

AQ4

AQ4

AQ435

AT3

CutF

DOF

EDM

EFE40

EFE

FEM

GFE

IP

PNM45

P5

Q4

SIF

SKO

T350

XFE

Desp hed

meth cely

used ave

been cent55
Poisson’s ratio

σ− Stress field in the upper and lower subdomains

Volume occupied by the cracked solid

Ω− Domains occupied by the upper and lower subdomains

M Augmented Finite Element Method

-TIP, AQ4 4-node Augmented Quadrilateral element with and without crack-tip treatment

-1 4-node Augmented Quadrilateral element made of two quadrilateral subdomains

-2 4-node Augmented Quadrilateral element made of a triangular and a pentagonal subdomains

-TIP, AT3 3-node Augmented Triangular element with and without crack-tip treatment

EM Cut Finite Element Method

Degrees Of Freedom

Element Deletion Method

M Embedded Finite Element Method

M-SM Embedded Finite Element Method with enhanced Strain Modes

Finite Element Method

M Generalized Finite Element Method

Integration Point

Phantom Node Method

5-node Pentagonal finite element

4-node Quadrilateral finite element

Stress Intensity Factor

N Statically and Kinematically Optimal Nonsymmetric Formulation

3-node Triangular finite element

M eXtended Finite Element Method

ite this drawback, some EFEMs have been reported to be more “coarse mesh accurate” than well-establis

ods such as the XFEM [9, 10]. Even though EFEMs possess numerous desirable properties, they are scar

compared to the other aforesaid methods. One reason probably stems from the numerous variants that h

published so far, moreover, they are still undergoing significant evolutions, see, e.g., [11–13]. The most re
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and
Ms have never been compared and their performance and convergence rates are little known. Hence, altho

Ms have proven to be valuable tools with a broad scope of application, key information is still missing to w

acceptance and use, and it remains unclear how to decide which EFEM is best suited to solve a given prob

w it compares with other EFEM variants.

he goal of this study is to narrow this knowledge gap. To do so, quantitative estimates of the convergence r

accuracy of various EFEMs must be made available. Previous EFEMs studies mainly focused on the converge

cal quantities of interest, such as reaction forces, but, when a deeper understanding or assessment is sought, m

nced measures are also needed[14]. This is in sharp contrast with methods such as the XFEM, whose converge

een proven [15], and convergence rates numerically checked[16, 17].

ur study will focus on the EFEM proposed by Yang and co-workers: the augmented finite element method[18

M). These authors developed an EFEM whose formulation is straightforward and that departs from others EFE

veral aspects: i) it allows to model weak discontinuities (i.e., material interfaces) and strong discontinuities (

s) as well as the transition from the former to the latter, ii) it gives rise to symmetrical stiffness matrices, ii

its to embed multiple intersecting discontinuities within an element and iv) it does not require iterations at

ent level, even if nonlinear cohesive cracks are employed[20]. The relative simplicity of the AFEM formula

ed the authors to rapidly extend it to thermomechanical applications [21], dynamic loadings [22], three-dimensi

ies of heterogeneous materials [23] as well as large deformation of shells [24]. The method has been implemen

user element in Abaqus and is reported to be ' 50 times faster than the phantom node method (PNM) nati

able in this software[20].

n the present work, we restricted ourselves to the modelling of traction-free cracks, thus omitting the us

sive zones. From their very inception, EFEMs were designed to model the propagation of cohesive cracks

el stress singularities and circumvent pathological mesh-dependency [25]. Nevertheless, much is to be gained f

traction-free study” since we can rely on available analytical solutions and hence provide precise estimates of

racy and convergence properties of the AFEM in this situation. Such estimates would be notoriously more diffi

mpute in the presence of cohesive cracks (see, e.g., [14]). Our assessment of the AFEM accuracy includes: i)

y of locking properties, ii) the investigation of crack-induced stiffness losses in structures, iii) the h-converge

e energy norm and iv) the accuracy of the estimated stress-intensity factors. Quantitative comparisons with

ard finite element method (FEM), the phantom node method (PNM), the element deletion method (EDM)

her embedded finite element method (EFEM) will also be drawn. In Section 2, the methods that will be compa

the AFEM in this study are presented. In Section 3, the derivation of the AFEM for the modelling of traction-

s is detailed. In Section 4, we consider several numerical tests to evaluate the performances of the AFEM

are it to the other aforementioned methods.

ODELLING OF TRACTION-FREE CRACKS WITH SOME FINITE ELEMENT BASED ME

DS

his section introduces the methods to be compared with the augmented finite element method (AFEM) through

aper: the element deletion method (EDM), the finite element method (FEM), the phantom node method (PN

the embedded finite element method (EFEM).
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e 1: Modelling of a cracked solid with various numerical methods: the element deletion method (EDM), the finite element me

), the phantom node method (PNM) and the embedded finite element method (EFEM)

The element deletion method (EDM)

he element deletion method (EDM), also called “kill element strategy”, “element removal methodology” or “

erosion”, is one of the earliest method employed to represent cracks with standard finite elements. Its applica

aightforward since cracks are simply modelled by a set of deleted elements, see Figure 1. Although the met

lled element deletion method, elements are not necessarily suppressed from the mesh, but their stresses are se

whatever the strain state. The EDM gives rise to cracked volumes, termed “blunt cracks” [26], instead of c

ces, denoted as “sharp cracks” or “discrete cracks” in the remainder of this work. One noteworthy applicatio

DM is crash/impact simulations conducted with the so-called explicit finite element scheme (see, among oth

. Explicit schemes are conditionally stable and the stable time step decreases as the mesh gets distorted, (

chapter 4.5[27]). Thus, to get a solution in an acceptable amount of time, some authors erode the elements

ce the stable time step below a user-defined value (see, e.g., chapter 4.3[27]).

everal fracture mechanics related theories also involve the use of the EDM, in conjunction with the standard FE

nfracture [28], Continuum Damage Models[29], or Finite Fracture Mechanics [30] to name a few. To the best of

ors’ knowledge, the accuracy at which sharp cracks can be modelled with the EDM has not been fully evalua

e literature. The EDM was shown to give sufficiently accurate stress intensity factor to be considered for c

agation analysis[26]. Yet, its convergence rate (e.g., in the energy norm) remains unknown. In this study,

ents intersected by a crack are not deleted but their stress state is set to zero. The meshes are made of stand

elements: either constant strain triangles integrated with a 1-point integration scheme or bilinear quadrilat

rated with a 2×2 Gauss integration scheme. The formulation of standard finite elements is not recalled here

efer the interested reader to reference textbooks[31–33].

The standard finite element method (FEM)

straightforward manner to represent cracks, also called strong discontinuities[25], is to mesh them explicitly w

tandard FEM, as depicted in Figure 1. It is one of the most employed technique to model strong discontinu

and, contrary to the element deletion method, it allows to represent cracks as surfaces. When the simula

owing cracks is undertaken, adaptative remeshing must be employed so that the mesh conforms to the evolv

geometry. Continuously updating the mesh and computing quantities of interest (e.g., stress intensity factor

5
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y release rate) is a tedious task and sophisticated algorithms need to be employed[35]. Furthermore, the prese

acks makes the stress field singular, which in turns degrades the convergence rate of the FEM. Indeed, probl

rising strong discontinuities converge with an error of O(h0.5) in the energy norm, independently of the o

e finite elements [36]. Moreover, special finite elements are often employed in the vicinity of the crack tip

rately compute stress intensity factors see, e.g., [37]. The FE meshes used in this study are either compose

r triangular elements with one integration point or bilinear quadrilateral elements integrated with a 2×2 G

e.

The phantom node method (PNM)

o overcome the remeshing difficulties, enriched variants of the standard FEM that allow embedding cracks wi

ents have been developed. The most popular extensions include the extended finite element method (XFEM

eneralized finite element method (GFEM) [5] and the phantom node method (PNM) [6]. These approaches

ial instances of the partition of unity method (PUM) [15] and are now recognised to be closely related [38]. T

mplemented in numerous commercial softwares (e.g., SAMCEF, ABAQUS, LS-DYNA or ANSYS) and are u

lve problems of industrial complexity [2]. Their main drawback is that the discontinuities are modelled thank

tional degrees of freedom located at the standard element nodes. Hence, as the cracks grow, the set of equat

e solved at the global level increases. The resulting dynamic allocation of degrees of freedom complicates

ent implementation of these methods. The PNM, the GFEM, and the XFEM are closely related as the extri

hments used in these methods have the same structure. When employed to model traction-free cracks, they ar

ar accuracy and share the same convergence rates [39]. As with the FEM, the convergence rate of these meth

modelling traction-free cracks is suboptimal. Indeed, unless a special geometrical enrichment [16, 17] is use

icinity of the crack tip, these methods converge with an error of O(h0.5) in the energy norm, whatever the orde

hape functions [17]. In this paper, we make use of the phantom node method natively integrated in the softw

QUS v6.16. A noteworthy attribute of the PNM is that it is easier to implement than other enriched formula

as the XFEM since cracks are somewhat modelled thanks to overlapping elements[38, 39]. The formulatio

hantom node method is not recalled here and we direct the interested reader to dedicated papers [6].

Embedded finite element method (EFEM) with enhanced strain modes (SM)

he development of embedded finite element methods, also called finite element methods with embedded disco

es (EFEMs) [8], started in the early 90’s [40]. They share the same purpose as the XFEM or the PNM: represen

ntinuities independently of the mesh. To model cracks, EFEMs make use of element-supported enrichments, w

gly differs from the XFEM that employs node-supported enrichments [9]. As a result, the degrees of freed

represent the EFEMs enrichments can be condensed at the element-level. The condensation process lead

element discontinuities in the displacement field, see Figure 1, but the resulting problem is not larger than

nal one, no matter the number of discontinuities, which is a striking advantage when compared with the XFE

NM or the GFEM. Despite their noteworthy convenience, EFEMs have not been incorporated into commer

s yet, possibly due to the limitations inherent to early formulations of EFEMs. In the late 90’s, Jirásek compa

classified the EFEMs published at that time [8]. He concluded that only three classes of EFEMs existed, and

as superior to the others: the so-called statically and kinematically optimal nonsymmetric formulation (SKO

6
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hen used it to solve typical concrete fracture problems [41] and, although satisfactory results were obtained, s

e drawbacks were also noticed[42]. In the aforementioned reference, the authors demonstrated that the str

oth part of an embedded finite element split up by a crack are not fully decoupled, even after complete fail

ng to stress locking, i.e., non-vanishing stress transfers across a fully opened discontinuity. They concluded

M was preferable due its superior kinematic properties. Later EFEMs formulations aimed at overcoming t

iencies. Their root causes lie in a poor kinematic description of the crack opening, as discovered in [43]. Ind

nstant crack opening was usually adopted with early EFEMs and led to stress locking. The incorporatio

uniform crack openings, also called hinge modes [43], non-uniform discontinuity modes [44], strain modes [45

ration modes [46], proved to be a successful way to suppress locking. It was for instance demonstrated in [3]

se of the SKON, equipped with enhanced strain mode, produces similar results as the XFEM. Hence, the us

Ms with non-uniform crack openings is a promising way to model discrete cracks without introducing additi

ees of freedom. Nevertheless, the design of the aforesaid strain modes is involved and, to the authors best kn

, has been seldom performed in 3D or with high-order elements[47, 48]. In this paper, we will consider som

esults published by Linder and Armero, related to an EFEM equipped with enhanced strain modes[45]. T

M will be denoted as “EFEM with Strain Modes” (EFEM-SM) in the remainder of this work. The formula

is EFEM-SM is not presented here and we direct the interested reader to the aforesaid paper.

ODELLING OF TRACTION-FREE CRACKS WITH THE AUGMENTED FINITE ELEME

ETHOD (AFEM)

he augmented finite element method (AFEM), developed by Yang and co-workers[18], belongs to the categor

dded finite element methods (EFEMs). It departs from other EFEMs since it does not make use of enhan

n modes and, yet, it is free from stress locking. Another noteworthy attribute of the AFEM is that it all

odel weak discontinuities (i.e., material interfaces) and strong discontinuities, as well as the transition from

er to the latter. Moreover, it permits to embed multiple intersecting discontinuities within an element. The AF

ture focuses on the modelling of cohesive cracks. In this document, we will however deal with traction-free cra

“traction-free crack derivation” of the AFEM that we are about to present must not be considered as ano

M, but as a subset of the original one. Indeed, as soon as a cohesive crack is fully damaged and opened,

nal AFEM and the “traction-free crack AFEM” are identical. The traction-free crack derivation allowed u

ver some key aspects of the AFEM while keeping the number of equations to a minimum.

Strong form, weak form and condensed discretized equilibrium equation

he reference situation to be considered is schematised in Figure 2. Let Ω be the domain occupied by a so

aterial point inside the domain is labelled as x ∈ Ω. A strong discontinuity surface Γc = Γ+
c ∪ Γ−c splits Ω

subdomains Ω+ and Ω−. The prescribed external tractions t+
ext and t−ext are applied on boundary Γt = Γ+

t ∪
eas the displacements ū+ and ū− are imposed on boundary Γu = Γ+

u ∪ Γ−u . The domains on both sides of

ntinuity are assumed to be elastic and homogeneous, yet Ω+ and Ω− can be made of different materials.

er assume small strain and displacement conditions. In the absence of body forces the field equations govern

7
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Figure 2: Solid body crossed by a strong discontinuity surface

oundary value problem obey the following relations

∇σ+(x) = 0 x ∈ Ω+ ∇σ−(x) = 0 x ∈ Ω−

σ+(x).n+(x) = t+
ext(x) x ∈ Γ+

t σ−(x).n−(x) = t−ext(x) x ∈ Γ−t

u+(x) = ū+(x) x ∈ Γ+
u u−(x) = ū−(x) x ∈ Γ−u

t+
int(x) = σ+(x).n+(x) x ∈ Γ+

c t−int(x) = σ−(x).n−(x) x ∈ Γ−c

nd σ− stand for the stress fields in Ω+ and Ω− respectively, t+
int and t−int are the tractions along the discontin

ces Γ+
c and Γ−c whereas n+ and n− are the outward pointing normals of Ω+ and Ω− respectively. The constitu

nd the strain-displacement equations for the two subdomains read

σ+(x) = C+ : ε+(x) x ∈ Ω+ ε+(x) =
1

2
(∇Tu+(x) +∇u+(x)) x ∈ Ω+

σ−(x) = C− : ε−(x) x ∈ Ω− ε−(x) =
1

2
(∇Tu−(x) +∇u−(x)) x ∈ Ω−

e C+ and C− are the stiffness tensors of the subdomains Ω+ and Ω− respectively. The displacement fields

u− are subsets of the kinematically admissible displacement field, U:

u+ ∈ U = {v+ ∈ H1 : v+ = 0 x ∈ Γ+
u } u− ∈ U = {v− ∈ H1 : v− = 0 x ∈ Γ−u }

e H1 is the space of functions with square-integrable derivatives (i.e., the Sobolev space of degree 1). Equat

7) can be converted into a weak form using the principle of virtual work. Its application to the two subdom

nd Ω− leads to

∫

Ω+

σ+(x) : ε+(v+(x))dΩ =

∫

Γ+
t

t+
ext(x).v+(x)dΓ +

∫

Γ+
c

t+
int(x).v+(x)dΓ ∀v ∈ U

∫

Ω−
σ−(x) : ε−(v−(x))dΩ =

∫

Γ−
t

t−ext(x).v−(x)dΓ +

∫

Γ−
c

t−int(x).v−(x)dΓ ∀v ∈ U

left-hand sides of equations (8) and (9) are the internal virtual work, the right-hand sides are the virtual w

ed out by the external forces and the tractions along the strong discontinuity surface. The existence of a tract

strong discontinuity surface translates into the following condition:

t−int(x) = t+
int(x) = 0 x ∈ Γc

8
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subdomains Ω+ and Ω− are now discretized with finite elements. Let {d+} and {d−} be the vectors of deg

edom of Ω+ and Ω− respectively. The displacement field in each sub-domain is obtained thanks to standard

e function matrices [N+] and [N−]:

u+(x) = [N+(x)]{d+} x ∈ Ω+ u−(x) = [N−(x)]{d−} x ∈ Ω−

e shape functions are expressed as if the strong discontinuity surfaces were defined from the onset of the numer

lation using a conforming mesh. Substitution of (11) into the weak forms (8) and (9) followed by the stand

ov–Galerkin approach leads to the discretized equilibrium equations

[L+]{d+} =





fext+

fcohesive+



 [L−]{d−} =





fext−

fcohesive−





e [L+] and [L−] are the stiffness matrices of the two subdomains, {fext+} and {fext−} are the external f

rs induced by the external tractions and {fcohesive+} and {fcohesive−} are the equivalent force vectors indu

e tractions on the strong discontinuity surface such that

[L+] =

∫

Ω+

[B+(x)]t[C+][B+(x)]dΩ [L−] =

∫

Ω−
[B−(x)]t[C−][B−(x)]dΩ

{fext+} =

∫

Γ+
t

[N+(x)]t+
ext(x)dΓ {fext−} =

∫

Γ−
t

[N−(x)]t−extdΓ

{fcohesive+} =

∫

Γ+
c

[N+(x)]t+
int(x)dΓ {fcohesive−} =

∫

Γ−
c

[N−(x)]t−int(x)dΓ

tion (13) introduces the strain-displacement matrices, [B+] and [B−], which contain the derivatives of the class

hape functions (see, e.g., [31] section 2.5). Substitution of (10) into (15) leads to:

{fcohesive+} = {fcohesive−} = {0}

degrees of freedom vectors in (11) are further partitioned between those associated with the strong discontin

ce (called {dint+} and {dint−}) and those associated with the bulk (called {dext+} and {dext−}).

{d+} =




dext+

dint+



 {d−} =




dext−

dint−





partition is used to rewrite (12) the following way:


L11+ L12+

L21+ L22+






dext+

dint+



 =




fext+

0






L11− L12−

L21− L22−






dext−

dint−



 =




fext−

0





tions (18) allow to express the displacement at the discontinuity as a function of the external displacement:

{dint+} = −[L22+ ]−1[L21+ ]{dext+} {dint−} = −[L22− ]−1[L21− ]{dext−}

titution of (19) into (18) allows to eliminate {dint+} and {dint−} from the discretized equilibrium equati

resulting relation is called the condensed discretized equilibrium equation and reads

{fext} =


L
−
11 − L12−L−1

22−L21− 0

0 L+
11 − L12+L−1

22+L21+


 {dext}

9
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{dext} =




dext−

dext+



 {fext} =




fext−

fext+





tion (20) introduces the stiffness matrix of the augmented finite elements. These element matrices are assem

rm the global matrix of the system. Since {dint+} and {dint−} do not appear in the condensed discret

ibrium equation (20), the nodes associated with these DOF, called internal nodes (see Figure 3) do not contrib

e size of the global stiffness matrix. As highlighted by Equation (11), the AFEM and the classical FEM m

f the same shape functions to describe the displacement field on both sides of a strong discontinuity. The m

rence between the FEM and the AFEM lies in the fact that the internal nodes (see Figure 3) are condense

lement level with the AFEM. As a result, the DOF associated with these internal nodes are absent from

etized equilibrium equation (20). Hence, the AFEM can model an arbitrary number of strong discontinu

out modifying the number of DOF per element or the size of the assembled stiffness matrix. This attrac

erty, not shared by the FEM or the XFEM, comes at a price: since the internal nodes are condensed at

ent level, the interelement compatibility is lost.

quation (20) has been derived under the assumption of a traction-free crack. It thus differ from the conden

etized equilibrium of the original AFEM which contains additional terms linked to the existence of cohe

ses, see, e.g., Equation 19 in [19]. One can nevertheless check that the former equation reduces to (20) w

sive stresses are null. Hence, as stated in the introduction of the present section, the AFEM we just derived

riginal AFEM are fully equivalent in the presence of traction-free cracks.

he compactness of the traction-free crack discretized equilibrium, (20), greatly facilitates comparisons of

M with other newly developed EFEMs. For instance, one can readily check that the AFEM, the so-ca

inuum decohesive finite element method [49] and the extended cohesive damage model [50] share the very s

etized condensed equilibrium equation (see, e.g., equation 12 in [50]). The only difference between the AFEM

wo aforementioned methods lies in the technique employed to account for the cohesive stresses. Thus, the us

of these methods will deliver identical results if traction-free cracks are modelled, which is the topic of this pa

he compactness of the traction-free discretized equilibrium equation (20) also highlights some flaws of the AF

ch equally affect the continuum decohesive finite element method and the extended cohesive damage mod

ed, the use of the former equation requires the invertibility of some stiffness submatrices. These submatr

tibility is related to i) the parent element employed (i.e., constant strain triangular element, bilinear quadrilat

ent, etc.) and to ii) the location of the crack within the element. As will be shown later, the use of constant st

gular elements unavoidably induces the singularity of the aforesaid submatrices. To the authors best knowle

topic of prime importance has only been briefly discussed in [18] without being satisfactorily resolved. The n

ter particularizes the above equations to 2D elements while dealing with this issue.

Application to the 2D elements of this study

he condensed discretized equilibrium equation (20) can be applied to parent elements of any dimension

r. Particularization to 2D elements with linear shape functions is considered next. The parent elements use

study are the constant strain triangle, called hereafter T3, and the bilinear quadrilateral called Q4. A str

10
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ntinuity splits a T3 into a triangular domain and a quadrangle, the resulting element is called an AT3. W

is augmented, two situations can occur depending on the location of the discontinuity i) it is split into

rangles and the resulting element is named AQ4-1 or ii) it is split into a triangle and a pentagon, the resul

ent is called AQ4-2, see Figure 3. As stated in the introduction, the most salient feature of the AFEM is

ented elements and their parent elements share the same degrees of freedom, see Table 1. In this study,

Figure 3: Node numbering of the augmented elements used in this study

ess matrices of quadrilateral and triangular subdomains are computed thanks to a 2×2 points Gauss integra

e and a 1-point integration scheme respectively. Pentagonal elements, called P5, are implemented using

gonal finite element method proposed by Sukumar and co-workers [51]. A 6-point integration scheme has b

to evaluate the stiffness matrices of the P5 used in this study.

Table 1: Degrees of freedom of the augmented elements used in this study

gmented Element {dext+}t {dext−}t {dint+}t (condensed DOF) {dint−}t (condens

3 {u3, v3} {u1, v1, u2, v2} {u4, v4, u5, v5} {u7, v7, u6, v

4-1 {u3, v3, u4, v4} {u1, v1, u2, v2} {u5, v5, u6, v6} {u8, v8, u7, v

4-2 {u4, v4} {u1, v1, u2, v2, u3, v3} {u5, v5, u6, v6} {u8, v8, u7, v

he condensed discretized equilibrium equation (20) makes use of the inverse of matrices
[
L+

22

]
and

[
L−22

]
.

lighted by Equation (18), [L±22] are submatrices of [L±]. A mechanical interpretation of the involved submatr

w provided to ease the study of their invertibility. Submatrices [L±22] appear when one incorporates essen

dary conditions in the stiffness matrix by the method of reduction (see, e.g.,[52]). To illustrate this fact, supp

one seeks to impose the essential boundary conditions {dext±} = {0} in equation (12) thanks to the metho

ction. The discretized equilibrium equations in Ω+ and Ω− would write:


L11± L12±

L21± L22±






dext±

dint±



 =


L11± L12±

L21± L22±







0

dint±



 =





fext±

fcohesive±





olve for the unconstrained degrees of freedom, {dint±}, one needs to invert the stiffness submatrices [L22± ]:

{
dint±

}
=
[
L22±

]−1 {
fcohesive±

}

11
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Figure 4: Graphical representation of the submatrices [L22± ] of 2D elements

, [L22+ ] (respectively [L22− ]) is the stiffness matrix of the subdomain Ω+ (respectively Ω−) with degrees of freed

t+} (respectively {dext−}) fully constrained. A graphical representation of these submatrices is proposed for

ugmented elements of this study in Figure 4. This graphical representation allows to readily assess the rank

atrices
[
L22±

]
. If rigid body motions of the subdomains are allowed, the associated submatrices are sing

e.g., [31] chapter 2.8 for a proof). Hence, submatrices [L22+ ] of elements AQ4-2 and AT3, are singular since

ion of the associated subdomains is not prevented, see Figure 4. As a result, the condensed discretized equilibr

tion (20) is not applicable to these elements. To circumvent these singularities, the authors of the AFEM sugge

t fully relax the cohesive stresses, which stabilizes the elements [19]. Nevertheless, this approach prevents

elling of truly traction-free cracks. Moreover, the amount of cohesive stresses needed to stabilize the elements is

ssed. Singular stiffness submatrices also arise in other EFEM formulations, see, e.g. [44–46]. To suppress t

larities some authors impose kinematic constraints on the crack opening: a constant opening is often enfor

may induce stress-locking [44, 45] or involve the use of a problem-dependent stabilization parameter that n

calibrated [45, 46]. In this paper we propose a parameter-free way to deal with the inversion of singular matr

ompute the Moore-Penrose inverse (also called pseudo-inverse) of the singular matrices. Some useful propertie

do-inverses are briefly recalled i) the pseudo-inverse of a matrix always exists and is unique, ii) if a matrix [M

tible, its pseudo-inverse equals its inverse: M−1 = M†. As a result, the use of the pseudo-inverses does not aff

ormulation of the AQ4-1 whose submatrices, [L22+ ], are invertible. A great advantage of this “pseudo-inv

egy” is that the modification with respect to the original derivation is minimal: equation (19) is rewritten

{dint+} = −[L22+ ]†[L21+ ]{dext+} {dint−} = −[L22− ]†[L21− ]{dext−}

equation (20) becomes

{fext} =


L
−
11 − L12−L†22−L21− 0

0 L+
11 − L12+L†22+L21+


 {dext}

UMERICAL BENCHMARKS

his section presents the results obtained in a series of numerical tests designed to evaluate the performance of

ented finite element method (AFEM). The absence of stress locking in augmented finite elements is confir

ks to the partial tension test performed in Section 4.1. Section 4.2 focuses on the stiffness loss induced by

nce of a crack in a structure, and compares the performances of the AFEM, the element deletion method (ED

12
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Figure 5: Element partial tension test: a) geometry definition, b) employed discretization, c) boundary conditions

Figure 6: Reaction forces and stresses in the subdomain Ω+ measured through the partial tension test

nite element method (FEM) and the phantom node method (PNM). The convergence rate in the energy norm

FEM, the FEM and the EDM is studied in Section 4.3, under Mode I and Mode II loading conditions. Fin

ccuracy at which stress intensity factors can be computed with these methods is evaluated in Section 4.4.

Partial tension test

he partial tension test is a numerical experiment designed by Linder and Armero to assess the level of st

ng of some embedded finite element methods (EFEMs) [45]. Slightly modified versions of this test can also

untered in the literature [3, 46]. Linder and Armero showed that classical EFEMs, i.e., with a constant c

ing, failed this test and that the use of embedded finite element methods with enhanced strain modes (EFEM-S

compulsory to pass it [45]. The partial tension test consists in modelling a homogeneous square block, cut in

traction-free crack, see Figure 5 a. The block is discretized with a single augmented element: the AQ4-1 presen

ction 3.2, see Figure 5 b. We recall that, although the AQ4-1 embeds a crack, its stiffness matrix is only 8

hoice of the PNM or the FEM to model the cracked block would result in the use of a 16 × 16 stiffness mat

zontal displacements of equal magnitudes δ, but opposite directions, are imposed on the bottom corner node

racked structure, leading to an axial stretching of the lower subdomain, denoted as Ω−, see Figure 5 c. The

ssed if the upper domain, Ω+, is stress-free and if no reaction forces are measured on the nodes located in Ω+.

e use of the same geometry, material properties and load steps as in [45]: a plane stress state is assumed, the b

length is L = 200mm, the Young’s modulus is E = 30GPa, the Poisson’s ratio is ν = 0, the total displacem

= 0.1mm and it is applied in 10 steps. The reaction forces and the stresses at the four integration po

ed in Ω+ are plotted in Figure 6. It can be seen that the test is passed: the subdomain Ω+ is stress-free and

13
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gure 10: Geometry and boundary conditions of the cracked plate submitted to a) Mode I loading, b) Mode II dominated loadin

ion forces at nodes 3 and 4 are null. It is demonstrated that the reaction forces exerted on the augmented elem

onsistent with those predicted by the FEM: indeed, if Ω− was modelled with a standard bilinear quadrilat

ent (Q4), one would have −fx1(δ) = fx2(δ) = δE(ν(3ν+2)−6)
12(ν2−1) (the proof is provided in Appendix A). It is

uctive to inspect the stresses measured in the lower subdomain, Ω−, and to compare them with those obta

the EFEM-SM of Linder and Armero[45]. As highlighted by Figure 7, the EFEM-SM predicts a constant unia

s state in Ω− while a multiaxial and heterogeneous stress state is obtained with the AFEM. To get a be

ht into the exact stress state in Ω−, we discretized the cracked block with a refined mesh comprising around 50

rilateral elements and 100000 degrees of freedom, see Figure 8. The crack is once again modelled with augmen

elements (AQ4-1 and AQ4-2) while the other elements are classical Q4. The boundary conditions represen

gure 5 c are imposed with δ = 0.1mm. The resulting stress field is plotted in Figure 9. It is heterogeneous

iaxial, as predicted with a single augmented element. Cross-checking the results presented in Figure 9 and Fig

ows to thoroughly evaluate the predictions made with a single AQ4-1. The stress sate obtained with the refi

is σxx-dominated, σxx decreases as y increases, σyy is approximately null at the location of the integration po

4 represented in Figure 5 b and σxy is positive (respectively negative) in the bottom right (respectively

er. All these results were decently assessed with a single augmented element, as depicted in Figure 7.

Crack-induced stiffness loss

o further compare the AFEM and the EFEM-SM, we perform a numerical experiment, designed by Linder

ero, that consists in measuring the stiffness of a cracked plate as the mesh is refined [45]. To enrich the compari

lso benchmark the element deletion method (EDM), the finite element method (FEM) and the phantom n

od (PNM). The geometry of interest is a cracked rectangular plate, with a height h = 20mm, a width w = 10

a crack length a = 5mm, see Figure 10. As in[45], plane strain conditions are assumed, the Young’s modulu

206.9GPa, the Poisson’s ratio is ν = 0.29 and we only consider structured meshes made of quadrilateral eleme

rtical displacement, δ = 1mm, is imposed on the upper edge of the plate and induces a Mode I loading of

, see Figure 10 a. The evolution of the associated reaction force is plotted in Figure 11. One can observe

e benchmarked methods seem to converge toward the same reaction force as the mesh is refined. The EDM,

M and the EFEM-SM produce virtually identical results and give rise to models that are softer than the ac
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e 11: Mode I loading: reaction force as a function of the mesh size obtained with the FEM, the PNM, the EDM, the AFEM and

-SM of Linder and Armero[45]

ture as they systematically underestimate the reaction forces. This was also observed when using the AF

odel weak discontinuities, and was proved to be caused by the presence of interelement discontinuities[53]

gly contrasts with the standard FEM and the PNM that are known to overestimate the stiffness[31–33].

e 12: Mode I loading: relative error in reaction force, η, as a function of the mesh size, h, and associated asymptotic converg

R, obtained with the FEM, the PNM, the EDM, the AFEM and the EFEM-SM[45]

o get a better insight into the error levels of the benchmarked methods, we have computed the relative erro

ion force, defined as:

η = 100%× |
̂freaction − freaction|

freaction

e freaction is the exact reaction force and ̂freaction is the reaction force computed with the numerical methods

study, the “exact” reaction force is estimated with the finest FEM mesh of Figure 11 which comprises aroun

on elements. The relative error in reaction force, along with the associated convergence rates, is plotted in Fig

t clearly highlights the different asymptotic convergence rates of the benchmarked methods: the EDM, the AF

the EFEM-SM converge with an error of O(h0.7) while the FEM and the PNM converge at approximately O
ite their faster convergence rate, the latter methods perform worse than the EDM, the AFEM and the EFEM

lement sizes ranging from 5mm to 50µm. Hence, unless a “highly refined” mesh is employed, a method as cr

e EDM outperforms advanced modelling techniques such as the PNM (in the authors’ opinion, a mesh mad
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elements can already be considered as “highly refined” since the structure is 10mm wide). The EFEM-SM

FEM perform slightly better than the EDM but the differences are marginal, see Figure 12.

e 14: Mode II loading: relative error in reaction force, η, as a function of the mesh size, h, and associated asymptotic converg

R, obtained with the FEM, the PNM, the EDM and the AFEM

t is instructive to evaluate the performances of the studied numerical methods under a loading of the crack

ode II dominated. To generate such a loading, we made use of the boundary conditions depicted in Figure 1

e a horizontal displacement, δ = 1mm, is imposed on the upper edge of the plate. The evolution of the associa

ion force is plotted in Figure 13. The EFEM-SM is no longer part of the comparisons since no result could

d in the literature with these boundary conditions. As observed in Mode I, all the methods seem to conv

rd the same value, the FEM and the PNM are stiffer than the actual structure and the EDM and the AF

ystematically softer than the solid they are modelling. The PNM and the FEM provide notably different res

the coarsest meshes, which is surprising and contrasts with other observations[39]. As mentioned in Sec

we made use of the PNM implemented in Abaqus v6.16 and no indications regarding the integration schem

ssociated elements have been found in the documentation. It is likely that the PNM implemented in Aba

use of selective reduced integration schemes, which often outperforms full integration schemes as the one
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oyed with the Q4, (see, e.g., Chapter 9.9[32]). The asymptotic convergence rates are nevertheless not affected

feature. To get a better insight into the error levels of the benchmarked methods, the evolution of the rela

in reaction force with mesh refinement is plotted in Figure 14. It can be seen the asymptotic convergence r

e numerical methods are the same as in Mode I. For the coarsest meshes the EDM and the AFEM exhib

monotonic behaviour as the error may increase as the mesh is refined. Nevertheless, in the present test c

ange of mesh sizes where this non-monotonic behaviour is observed coincides with the region where the AF

erforms both the FEM and the PNM (i.e, for mesh size ranging from 5mm to 0.9mm). Hence, despite the

the convergence rate of the AFEM is not monotonic in Mode II, the AFEM is more “coarse mesh accurate” t

EM or the PNM. One also notices that the AFEM performs better than the EDM in Mode II: it is approxima

as accurate as the EDM for a given element size.

h-convergence in the energy norm

n this section we will focus on the error in the energy norm, rather than on the computation of some local quant

, the reaction forces). This error measure is at the core of some fundamental properties of the FEM, such as

rkin orthogonality (see, e.g., Chapter 4.3 [33] and references therein), and is frequently employed to assess

ergence behaviour of the FEM and its variants. Since the use of the AFEM induces interelement discontinuities

otonic convergence toward the exact solution of a mathematical problem cannot be guaranteed (see, e.g., Cha

3]). The goal of this section is to study the AFEM convergence behaviour, in the energy norm, through numer

riments. Comparisons with the finite element method (FEM) and the element deletion method (EDM) will als

n and the performances of both triangular and quadrilateral elements will be investigated. Let us first introd

rror in the energy norm, as well as some related quantities, before presenting the tests performed in this sect

be the exact solution of a mechanical problem and û an approximate solution, the error e is defined by:

e = u− û

be the volume occupied by the structure of interest, the error in the energy norm reads:

||e||Ω =

(∫

Ω

(ε− ε̂) : C : (ε− ε̂) dΩ

) 1
2

e ε is the exact strain field, ε̂ the approximate one and C the elasticity tensor. We will also make use of the ene

of a given finite element, defined as:

||e||Ωi
=

(∫

Ωi

(ε− ε̂) : C : (ε− ε̂) dΩ

) 1
2

e the subscript i refers to individual elements such that
⋃
i Ωi = Ω. We finally introduce the relative error in

y error norm, ||η||:

||η|| =
(∫

Ω
(ε− ε̂) : C : (ε− ε̂) dΩ∫

Ω
ε : C : ε dΩ

) 1
2

vestigate the AFEM convergence, we perform a test case often encountered in the XFEM literature [16, 17]

ite plate containing a horizontal crack is loaded by a remote stress field. We successively consider Mode I

e II loading of the crack. Plane strain is assumed and the material is homogeneous and isotropic with a You
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e 15: Geometry, polar coordinate system and displacement boundary conditions imposed on the boundary of the plate in Mode I

II loadings

ulus E and a Poisson’s ratio ν. The analytical solution of the asymptotic displacement field under Mode I load

ted as uI = {uIx, uIy}, reads[54]:

uIx =
KI

E

√
r

2π
(1 + ν)cos

(
θ

2

)
(3− 4ν − cos(θ))

uIy =
KI

E

√
r

2π
(1 + ν)sin

(
θ

2

)
(3− 4ν − cos(θ))

e KI is the Mode I stress intensity factor and (r, θ) are the polar coordinates associated with a reference fr

red at the crack tip, as depicted in Figure 15. The closed-form solution of the displacement field under Mod

ng, denoted as uII , is[54]:

uIIx =
KII

E

√
r

2π
(1 + ν)sin

(
θ

2

)
(5− 4ν + cos(θ))

uIIy =
KII

E

√
r

2π
(1 + ν)cos

(
θ

2

)
(−1 + 4ν − cos(θ))

e numerical model we consider a square domain Ω = [0, 5]× [−2.5, 2.5] cut by a crack Γc = [0, 2.5]×{0}. You

ulus and Poisson’s ratio are respectively E = 200000 and ν = 0.3, and the imposed stress intensity factors

KII = 2802, 5. Following Laborde and co-workers[17], we impose the closed-form displacement field on

dary of the plate, as depicted in Figure 15. The evolution of the error in the energy norm with the mesh

r Mode I loading of the crack, is plotted in Figure 16. It is shown that the FEM, the EDM and the AF

f similar accuracy. When quadrilateral elements are considered, the AFEM slightly outperforms the afore

erical methods, but the differences are marginal. The convergence rate of both the FEM, the AFEM and the E

bobtimal: O(h0.5) in the energy norm. The FEM suboptimal convergence is due to the crack-induced singula

e stress field, as demonstrated by Pian and co-workers[36]. This reasoning seems to hold with the EDM and

M, indeed, the spatial distribution of error is fairly independent of the employed numerical method under M

ding, see Figure 18 MODE I.
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e 16: Mode I loading of a crack: error in the energy norm, ||η||, as a function of the mesh size, h, and associated convergence rat

ned with the finite element method (FEM), the element deletion method (EDM) and the augmented finite element method (AF

e 17: Mode II loading of a crack: error in the energy norm, ||η||, as a function of the mesh size, h, and associated convergence

tained with the (FEM), the element deletion method (EDM) and the augmented finite element method (AFEM)

he benchmarked numerical methods provide noticeably different results when Mode II loading of the crac

idered. Indeed, as depicted in Figure 17, the FEM is more accurate and converge faster than the AFEM and

. Despite their similar converge rate, the AFEM is shown to be 25% more accurate than the EDM under Mod

ng. To gain further insights into these results, the spatial distribution of error is plotted in Figure 18. Conver

e Mode I case, the energy error is no longer negligible along the crack lips when the EDM and the AFEM

oyed.
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e 18: Spatial distribution of energy error in the elements, ||e||Ωi
, under Mode I and Mode II loadings, with the FEM, the AFEM

DM (results obtained with a mesh size h ≈ 0.15)

he inter-element incompability of the displacement field, induced by the use of the AFEM, is thought to

nsible for its underperformance under Mode II loading of the crack. A so far unmentioned treatment h

cing the amount of inter-element incompabilities: in Reference [19] Yang and colleagues implemented a sim

k-tip treatment” that guarantees the inter-element continuity of the displacement field along the edge tha

d by the crack-tip element and the element immediately ahead of it, which is a standard finite element.

acement continuity at the crack-tip is enforced through simple multiple-point constraints involving the no

acements at the considered edge, as illustrated in Figure 19. With the notations introduced in the afore

re, the multiple-point constraints to enforce read:




u6

v6



 =




u7

v7



 =

(
1− l72

l23

)

u2

v2



+

l72

l23




u3

v3





e l72 and l23 are the lengths of segments 7-2 and 2-3, respectively.
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e 19: Crack-tip treatment allowing for a continuous displacement field along the edge shared by an augmented and a standard fi

nt

hese multiple-point constraints are imposed thanks to Lagrange Multipliers introduced in Equation 18.

ensation procedure of the AFEM internal DOF, described in Section3.1, remains unchanged since no additi

have to be introduced at the global level. In the remainder of this work, the suffix “-TIP” will be emplo

dicate simulations performed with the crack-tip treatment. As depicted in Figure 20, the use of the crack

ment only slightly improves the results provided by the AFEM in Mode II. Hence, wether one uses the crack

ment or not, the AFEM energy error is higher than the FEM one when cracks are loaded in pure Mode II.

e 20: Influence of the crack-tip treatment, indicated by the suffix “-TIP”, under Mode II loading of a crack: error in the energy n

as a function of the mesh size, h, and associated convergence rate, R, with the FEM, the AFEM and the AFEM with a crac

ent

o understand the reasons for this Mode II underperformance, we further studied the stress field in several zo

terest defined in Figure 21. As depicted in Figure 18, under Mode II loading of the crack, the most strick

rence between the AFEM and the standard FEM is the error level along the crack lips. The stress field prov

e AFEM in this area is compared with the exact stress field in Figure 22.
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Figure 21: Zones of interest defined to study the stress field provided by the AFEM under Mode II loading of the crack

e 22: Comparisons of the exact stress field (on top) with those obtained with AQ4 elements and mesh sizes h = 0.025, 0.15, 0.3 (

bottom), within the surface of interest defined in Figure 21 and under Mode II loading of the crack

hatever the mesh size, the stress field obtained with the AFEM is free from parasitic stresses and reprod

the main characteristics of the exact stress field. A closer look at the transverse stress field, i.e. σxx, reveals

tresses are too low within the augmented elements. Thus, the error in transverse stresses is responsible for

y error observed all along the crack lips in Mode II (see Figure 18). To get quantitative insights on this asp

ransverse stress along the line of interest defined in Figure 22 is plotted in Figure 23.

e 23: Comparisons of the exact transverse stress field, σxx, with those obtained with AQ4 elements, along the line of interest de

ure 21 and under Mode II loading of the crack
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ne can observe that σxx is approximately two times lower than expected in the immediate vicitiny of the c

The convergence of this local value is noticeably slow. Despite this undesirable local attribute, the transv

s is smooth and converges monotonically. These observations led us to the following conclusion: the inter-elem

ntinuities induce a local loss of transverse stiffness which has a detrimental effect on the energy error when c

are submitted to transverse loads. Hence, the use of the AFEM induces higher energy error levels than

ard FEM or the PNM when cracks are loaded in pure Mode II. While Figures 23 and 22 only highlight the res

ined with the AQ4 formulation, the above conclusions were found to be equally valid with the other augmen

ents benchmarked in this study (i.e., the AT3, the AT3-TIP and the AQ4-TIP ).

Computation of stress intensity factors (SIFs)

his final benchmark investigates the relative accuracy of the stress intensity factors (SIFs) computed with

element method (FEM), the element deletion method (EDM) and the augmented finite element method (AFE

rate computations of SIFs is of prime importance in most of the crack growth analysis[34, 35], but, to the

e authors knowledge, the AFEM ability to assess SIFs has never been put to test. To evaluate the accurac

enchmarked numerical methods, we make use of the same Mode I and Mode II load cases as those employe

on 4.3 (see also, Figure 15). Material parameters and boundary conditions are kept the same and plane st

itions are still assumed. The applied remote stress gives rise to the following SIFs: KI = 2802.5 and KII = 28

re Mode I and pure Mode II, respectively.

o numerically estimate the stress intensity factors (SIFs) we proceed as follows: the energy release rate, G
uted thanks to a domain integral method and Irwin’s relation[55] is employed to compute the SIFs in pure M

II, denoted as K̂1 and K̂2:

K̂i =

√
G × E
1− ν2

for i ∈ {I, II}

relative error in stress intensity factors (SIFs) is then computed as:

η = 100%× |Ki − K̂i|
Ki

for i ∈ {I, II}

ain integral methods are commonly employed to assess energy release rates since they were shown to be co

accurate and more precise than contour integral methods [56]. In our study, we made use of the domain inte

osed by Needleman and co-workers [56] which reads:

G = −
∫

A

(
σij

∂ui
∂x1
−Wδ1j

)
∂q1

∂xj
dA

e, δij is the Kronecker delta function (such that δij = 1 if i = j and δij = 0 if i 6= j), ui is the i component of

acement field, σij is the (i, j) component of the stress tensor, W is the strain energy density, {x1, x2} = {x
he 2D Cartesian coordinates (see Figure 15), A is an annular region around the crack tip delimited by cont

nd C2 and the crack lips, see Figure 24. and q1 is a “sufficiently smooth”[56] scalar field defined over A, tha

on C1 and vanishes on C2. In our computations, we chose C1 and C2 to be two crack tip-centered circle

s r1 = 1.1 and r2 = 1.4, respectively, and q1 to be an axisymmetrical field such that:

q1(r, θ) = q1(r) =





r−r2
r1−r2 if r1 ≤ r ≤ r2

1 if r < r1

0 if r > r2
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Figure 24: Surface A enclosed by contour C1, contour C2 and the crack lips, and associated finite elements

e (r, θ) are the polar coordinates associated with a reference frame centered at the crack tip (see Figure15).

tion of the error in the stress intensity factor K1, under Mode I loading of the crack, is plotted in Figure

SIF convergence rate is fairly independent from the employed numerical method (i.e., the FEM, the AFEM

DM); Moes and co-workers also observed that SIFs converged with an error of O(h) when using the XFEM

ilar domain integral method [16]. This convergence rate is in accordance with the theoretical estimates prov

estuynder and co-workers[57]. Despite the fact that SIFs computed with the FEM, the EDM and the AF

erge at approximately the same rate, the FEM is noticeably less accurate than the two other methods for a g

size.

e 25: Mode I loading of a crack: error in the first stress intensity factor, η, as a function of the mesh size, h, and associated converg

R, obtained with the finite element method (FEM), the element deletion method (EDM) and the augmented finite element me

M)

y contrast, the FEM generally outperforms both the EDM and the AFEM when Mode II loading is conside

igure 26. One also notices that the AFEM is more accurate than the EDM in Mode II. The use of the AF

-tip treatment, introduced in Section 4.3, greatly improves the AFEM solutions with coarse meshes but

ades the SIF asymptotic convergence rate and even seems to be detrimental when fine meshes are employed.

ns for this decrease of convergence rate have yet to be elucidated. On the whole, the results of this benchm

imilar to those related to the h-convergence in the energy norm, where the AFEM was shown to perform be

the FEM in Mode I, while being less accurate in Mode II (see Section 4.3). Thus, the underlying cause is li

the same: the transverse stresses at the vicinity of the crack lips, σxx(x ∈ [0, 2.5], y = 0), are poorly represen
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the AFEM and makes it suboptimal, as demonstrated in Section 4.3.

e 26: Mode II loading of a crack: error in the second stress intensity factor, η, as a function of the mesh size, h, and assoc

rgence rate, R, obtained with the FEM, the EDM, the AFEM and the AFEM with a crack-tip treatment

ONCLUSION

he ability of the augmented finite element method (AFEM) to model traction-free cracks has been thoroug

tigated in 2D. To make this investigation as complete as possible, triangular and quadrilateral elements were u

atio of element sizes between the coarsest and the finest meshes was systematically greater than 10 and er

action forces, the energy norm and stress intensity factors were studied. The accuracy of the AFEM has b

ared with that of the element deletion method (EDM), the finite element method (FEM), the phantom n

od (PNM) and the embedded finite element method with enhanced strain modes (EFEM-SM).

he partial tension test performed in Section 4.1 allowed us to ensure that the AFEM was free from spur

s transfer across a fully separated discontinuity. It was also discovered that, although both the EFEM-SM

FEM do pass the partial tension test, they give rise to noticeably different results. We demonstrated that

ion forces and the stresses computed with the AFEM were consistent with those obtained with the standard F

ell as with refined solutions.

he study of crack-induced stiffness loss made in Section 4.2 revealed that, under Mode I loading, the use of

M, the EDM and the EFEM-SM i) produces virtually identical results ii) that outperform those obtained w

EM and the PNM for a wide range of mesh size. By contrast, under Mode II loading, the FEM and the P

ass the other numerical methods. The above remarks also hold with other quantity of interests, such as

in the energy norm (see Section 4.3) and stress intensity factors (see Section 4.4). The AFEM can be use

nction with a crack-tip treatment that was generally shown to improve its performance under Mode II load

e more precise, the crack-tip treatment systematically decreased the AFEM energy error and improved its co

accuracy when computing stress intensity factors. Despite these enhancements, the crack-tip treatment is

gh to make the AFEM solutions as accurate as the FEM ones under Mode II loading of a crack. This Mod

rperformance was found to be caused by inter-element discontinuities that locally induce an overly soft behavi

h has a detrimental effect when crack lips are submitted to transverse stresses. A similar lack of stiffness

dy been observed when using the AFEM to model weak discontinuities [53].
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Let
[

the
ne goal of the current study was to determine wether the AFEM was accurate enough to be employed in anal

ving cracks. Our results demonstrated the superior accuracy of the AFEM over well-accepted methods, suc

EM or the PNM, under Mode I loading of a crack. Yet, this is no longer the case if Mode II loading is con

However,Carpinteri and co-workers performed a series of cracking experiments involving double-edge notc

imens made of concrete and showed that, in this particular case, the energy dissipated through crack prop

was primarily ascribed to the Mode I fracture energy, even for mixed-mode crack propagation[58]. Moreo

established criteria such as the principle of local symmetry[59] state that cracks propagate in the direction

nders a pure Mode I loading. Hence, our numerical experiments prove that the AFEM can be reliably emplo

sess structural failure scenarios the superior Mode I accuracy of the AFEM makes it a promising method to as

tural failure scenarios. Yet, additional tests involving curved cracks or heterogeneous materials would be requ

finitely ensure that a traction-free AFEM delivers reliable results in these situations.

he findings of this study also suggest that the AFEM realizes an optimal compromise between accuracy, flexib

implementation complexity. Indeed, it performs noticeably better than the EDM in Mode II and, unlike the lat

access to crack openings and allows to model contact and friction between the crack lips. The accuracy of

and the AFEM is on par, but the latter enjoys the same flexibility as the PNM (or the extended finite elem

od) in modelling cracks independently of the mesh. Moreover, a great advantage of the AFEM over methods s

e PNM is that it permits to represent an arbitrary number of cracks without increasing the number of degree

om per element, or the size of the assembled stiffness matrix. Finally, the AFEM formulation is straightforw

it does not make use of enhanced strain modes, it is thus easier to implement than other EFEMs such as

M-SM.

ur study focused on traction-free cracks and, as a result, does not allow to rigorously estimate the performanc

FEM in situations where (frictional) contact between the crack lips or/and cohesive crack growth are mode

ough the AFEM has already been successfully employed in cohesive crack propagation[18, 19, 21], it is belie

these aspects deserve further investigations geared towards assessing the convergence rate of the AFEM in s

tions.

research did not receive any specific grant from funding agencies in the public, commercial, or not-for-p

rs.

endix A. Closed-form expression of the stiffness of a bilinear quadrilateral finite element submit

to partial tension

n this appendix, we derive a closed-form expression of the stiffness of the lower subdomain for the element pa

described in Section 4.1. To do so, the lower subdomain, Ω−, is discretized with a bilinear quadrilateral elem

and one seeks the analytical expression of the horizontal reaction force at node 2, fx2, as a function of the impo

acement, δ, see Figure A.27. To obtain it, we first make use of the exact expressions of the Q4 stiffness ma

ided by Hacker and Schreyer[60]. The sought reaction force is then derived thanks to the method of reduction

K∗
]

be the exact stiffness matrix of the aforesaid Q4, with the associated degrees of freedom, {q∗}, ordered
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follow

.1)

[
K∗
]

.2)

Fi t

T

K∗aa

B8

7

8

B7




.3)

Und on’s

ratio

.4)

.5)

.6)

.7)

To c d as
[
K
]

rees

of fre are
ing way:

{q∗} = {u1, u2, u3, u4, v1, v2, v3, v4}> (A

is split into four 4× 4 submatrices:

[
K∗
]

=


K

∗
aa K∗ab

K∗>ab K∗bb


 (A

gure A.27: Displacement boundary conditions imposed on the Q4 that modelling the lower subdomain in the partial tension tes

he introduced submatrices read:

=




B1 B2 −B1
2 B3

B2 B1 B3 −B1
2

−B1
2 B3 B1 B2

B3 −B1
2 B2 B1




K∗bb =




B4 B5 −B4
2 B6

B5 B4 B6 −B4
2

−B4
2 B6 B4 B5

B6 −B4
2 B5 B4




K∗ab =




B7 B8 −B7 −
−B8 −B7 B8 B

−B7 −B8 B7 B

B8 B7 −B8 −
(A

er the assumption of a plane stress state, if the material is isotropic with a Young’s modulus, E, and a Poiss

, ν, the closed-form expressions of B1 to B8, for the Q4 represented in Figure A.27, are:

B1 =
E(2ν − 3)

6 (ν2 − 1)
B2 =

Eν

6 (ν2 − 1)
(A

B3 =
E(3− 4ν)

12 (ν2 − 1)
B4 =

E(ν − 9)

12 (ν2 − 1)
(A

B5 = − E(ν + 3)

12 (ν2 − 1)
B6 =

E(ν + 15)

24 (ν2 − 1)
(A

B7 =
E

8− 8ν
B8 =

E− 3Eν

8 (ν2 − 1)
(A

ompute the sought reaction forces, the stiffness matrix
[
K∗
]

is re-ordered and the resulting matrix, denote

, is partitioned into blocks related to known and unknown degrees of freedom. The unknown and known deg

edom are denoted as {q1} and {q2}, respectively. The associated known and unknow external forces vectors
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.8)

.9)

.10)

.11)

.12)

With

.13)

All t

.14)

The

.15)

The

.16)

The ness

of th

.17)

Refe

[1] in435

ring

[2] res,

440

[3] lied
ted as {f1} and {f2}, respectively. For the test case represented in Figure A.27, one has:

{q1} = {u3, v3, u4, v4}> (A

{q2} = {u1, v1, u2, v2}> = {−δ, 0, δ, 0}> (A

{f1} = {fx3, fy3, fx4, fy4}> = {0, 0, 0, 0}> (A

{f2} = {fx1, fy1, fx2, fy2}> (A

(A

the above notations, the discretized equilibrium equation of the Q4 reads:




f1

f2



 =

[
K
]



q1

q2



 =


K11 K12

K>12 K22






q1

q2



 (A

he unknowns can be obtained in two steps, one first solves for {q1}:

{
q1
}

= −
[
K11

]−1 [
K12

]{
q2
}

=





u3

v3

u4

v4





=





δ(2−3ν)ν
ν(3ν+2)−6

δν(3ν−2)
ν(3ν+2)−6

δ(3−2ν)ν
ν(3ν+2)−6

δ(3−2ν)ν
ν(3ν+2)−6





(A

unknown reaction forces, {f2}, are then readily computed:

{
f2
}

=
[
K12

]> {
q1
}

+
[
K22

]{
q2
}

(A

sought reaction forces are:

−fx1 = fx2 =
δE(ν(3ν + 2)− 6)

12 (ν2 − 1)
(A

material properties employed in the partial tension test of Section 4.1 are: E = 30GPa and ν = 0. The stiff

e subdomain Ω− in this case is:

fx2/δ = 15kN/mm (A
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