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Abstract

This paper investigates the accuracy and the convergence properties of the augmented finite element method (AFEM).
The AFEM is here used to model strong discontinuities independently of the underlying mesh. One noticeable ad-
vantage of the AFEM over other partition of unity methods is that it does not introduce additional global unknowns
to represent cracks. Numerical 2D experiments illustrate the performance of the method and draw comparisons with
the element deletion method (EDM), the phantom node method (PNM), the finite element method (FEM) and the
embedded finite element method (EFEM). The h-convergence in the energy norm of the AFEM is studied for the first
time and it is shown to outperform the aforementioned numerical methods when cracks are loaded in Mode 1.

Key words: embedded discontinuities, embedded finite elements, strong discontinuities, augmented finite element

method, phantom node method

1. INTRODUCTION

The finite element method (FEM) has become a classical tool to design and analyse engineering structures. To
predict structural failure scenarios, the nucleation and propagation of cracks have to be explicitly considered. The
use of standard finite elements can then become prohibitive since remeshing is needed as cracks grow. Moreover,
the number of degrees of freedom (DOF) may drastically increase, especially in three-dimensional applications, and
projecting the solution on the updated mesh is costly besides potentially degrading the quality of results [1]. Thus, it
seems desirable to take another road for the modelling of multiple crack propagation in structures.

To ease analysis involving cracks, numerous variants of the FEM allowing embedded cracks within elements have
been developed. These variants, usually gathered as “enriched finite element methods” [2, 3], encompass a wide variety
of methods such as the extended finite element method (XFEM) [4], the generalized finite element method (GFEM)
[5], the phantom node method (PNM) [6], the cut finite element method (CutFEM) [7] or the embedded finite element
method (EFEM) [8], to name a few.

These methods exhibit numerous differences, but, the most striking one is that EFEMs can model an arbitrary
number of (possibly growing) cracks without increasing the number of DOF per element, or the size of the assembled
stiffness matrix. Yet, this attractive property, not shared by any of the aforementioned methods, comes at a price: the

interelement compatibility of the displacement field is lost (see Figure 1).
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Nomenclature

[BT], [B~] Strain-displacement matrices of the upper and lower subdomains, respectively
C™, C™ Stiffness tensors of the upper and lower subdomains, respectively

{d*}, {d~} Vectors of degrees of freedom of the upper and lower subdomains

{dext™}, {dext™} Vectors of external nodal displacements of subdomains Q7 and QT
{dint*}, {dint~} Vectors of nodal displacements related to surfaces I'} and ',

e Error measure

E Young’s modulus

{feohesive™}, { fcohesive™} Vectors of nodal cohesive forces applied on I'} and ',
{fextt}, {fext™} Vectors of nodal external forces applied on the upper and lower subdomains
g Energy release rate

K, K2 Mode I and Mode II stress intensity factors

[LT], [L™] Stiffness matrices of the upper and lower subdomains

[L}), [L;;] Submatrices of [LT] and [L]

nt, n~ Outward pointing normals of O+ and Q~

[NT], [N~] Shape function matrices that interpolate the displacement field in Q* and Q™
Q1 Weight function

tl ¢, to External tractions applied on the upper and lower subdomains

ext

.t

i 4s b Tractions along the discontinuity surfaces I'J and I'y

ut, u™ Displacement field in the upper and lower subdomains
at, u~ Imposed displacement in the upper and lower subdomains
w Strain energy density

r. Domain occupied by the crack surface

'Y, ' Crack surfaces in the upper and lower subdomains

0ij Kronecker delta function

€t, €= Strain field in the upper and lower subdomains

n Relative error measure
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v Poisson’s ratio

ot

, 0~ Stress field in the upper and lower subdomains

Q Volume occupied by the cracked solid

Q%, Q= Domains occupied by the upper and lower subdomains

AFEM Augmented Finite Element Method

AQ4-TTP, AQ4 4-node Augmented Quadrilateral element with and without crack-tip treatment
AQ4-1 4-node Augmented Quadrilateral element made of two quadrilateral subdomains
AQ4-2 4-node Augmented Quadrilateral element made of a triangular and a pentagonal subdomains
AT3-TIP, AT3 3-node Augmented Triangular element with and without crack-tip treatment
CwtFEM Cut Finite Element Method

DOF Degrees Of Freedom

EDM Element Deletion Method

EFEM Embedded Finite Element Method

EFEM-SM Embedded Finite Element Method with enhanced Strain Modes

FEM Finite Element Method

GFEM Generalized Finite Element Method

1P Integration Point

PNM Phantom Node Method

P5 5-node Pentagonal finite element

Q4 4-node Quadrilateral finite element

SIF Stress Intensity Factor

SKON Statically and Kinematically Optimal Nonsymmetric Formulation

T3 3-node Triangular finite element

XFEM eXtended Finite Element Method

Despite this drawback, some EFEMs have been reported to be more “coarse mesh accurate” than well-established
methods such as the XFEM [9, 10]. Even though EFEMs possess numerous desirable properties, they are scarcely
used compared to the other aforesaid methods. One reason probably stems from the numerous variants that have

been published so far, moreover, they are still undergoing significant evolutions, see, e.g., [11-13]. The most recent
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EFEMs have never been compared and their performance and convergence rates are little known. Hence, although
EFEMSs have proven to be valuable tools with a broad scope of application, key information is still missing to widen
their acceptance and use, and it remains unclear how to decide which EFEM is best suited to solve a given problem,
or how it compares with other EFEM variants.

The goal of this study is to narrow this knowledge gap. To do so, quantitative estimates of the convergence rates
and accuracy of various EFEMs must be made available. Previous EFEMs studies mainly focused on the convergence
of local quantities of interest, such as reaction forces, but, when a deeper understanding or assessment is sought, more
advanced measures are also needed[14]. This is in sharp contrast with methods such as the XFEM, whose convergence
has been proven [15], and convergence rates numerically checked[16, 17].

Our study will focus on the EFEM proposed by Yang and co-workers: the augmented finite element method[18, 19]
(AFEM). These authors developed an EFEM whose formulation is straightforward and that departs from others EFEMs
on several aspects: i) it allows to model weak discontinuities (i.e., material interfaces) and strong discontinuities (i.e.,
cracks) as well as the transition from the former to the latter, ii) it gives rise to symmetrical stiffness matrices, i) it
permits to embed multiple intersecting discontinuities within an element and v) it does not require iterations at the
element level, even if nonlinear cohesive cracks are employed[20]. The relative simplicity of the AFEM formulation
allowed the authors to rapidly extend it to thermomechanical applications [21], dynamic loadings [22], three-dimensional
studies of heterogeneous materials [23] as well as large deformation of shells [24]. The method has been implemented
as a user element in Abaqus and is reported to be ~ 50 times faster than the phantom node method (PNM) natively
available in this software[20].

In the present work, we restricted ourselves to the modelling of traction-free cracks, thus omitting the use of
cohesive zones. From their very inception, EFEMs were designed to model the propagation of cohesive cracks that
cancel stress singularities and circumvent pathological mesh-dependency [25]. Nevertheless, much is to be gained from
our “traction-free study” since we can rely on available analytical solutions and hence provide precise estimates of the
accuracy and convergence properties of the AFEM in this situation. Such estimates would be notoriously more difficult
to compute in the presence of cohesive cracks (see, e.g., [14]). Our assessment of the AFEM accuracy includes: ) the
study of locking properties, ) the investigation of crack-induced stiffness losses in structures, 4) the h-convergence
in the energy norm and iv) the accuracy of the estimated stress-intensity factors. Quantitative comparisons with the
standard finite element method (FEM), the phantom node method (PNM), the element deletion method (EDM) and
another embedded finite element method (EFEM) will also be drawn. In Section 2, the methods that will be compared
with the AFEM in this study are presented. In Section 3, the derivation of the AFEM for the modelling of traction-free
cracks is detailed. In Section 4, we consider several numerical tests to evaluate the performances of the AFEM and

compare it to the other aforementioned methods.

2. MODELLING OF TRACTION-FREE CRACKS WITH SOME FINITE ELEMENT BASED METH-
ODS

This section introduces the methods to be compared with the augmented finite element method (AFEM) throughout
the paper: the element deletion method (EDM), the finite element method (FEM), the phantom node method (PNM)
and the embedded finite element method (EFEM).
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Figure 1: Modelling of a cracked solid with various numerical methods: the element deletion method (EDM), the finite element method

(FEM), the phantom node method (PNM) and the embedded finite element method (EFEM)
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2.1. The element deletion method (EDM)

The element deletion method (EDM), also called “kill element strategy”, “element removal methodology” or “ele-
ment erosion”, is one of the earliest method employed to represent cracks with standard finite elements. Its application
is straightforward since cracks are simply modelled by a set of deleted elements, see Figure 1. Although the method
is called element deletion method, elements are not necessarily suppressed from the mesh, but their stresses are set to
zero whatever the strain state. The EDM gives rise to cracked volumes, termed “blunt cracks” [26], instead of crack
surfaces, denoted as “sharp cracks” or “discrete cracks” in the remainder of this work. One noteworthy application of
the EDM is crash/impact simulations conducted with the so-called explicit finite element scheme (see, among others,
[27]). Explicit schemes are conditionally stable and the stable time step decreases as the mesh gets distorted, (see,
e.g., chapter 4.5[27]). Thus, to get a solution in an acceptable amount of time, some authors erode the elements that
reduce the stable time step below a user-defined value (see, e.g., chapter 4.3[27]).

Several fracture mechanics related theories also involve the use of the EDM, in conjunction with the standard FEM:
Eigenfracture [28], Continuum Damage Models[29], or Finite Fracture Mechanics [30] to name a few. To the best of the
authors’ knowledge, the accuracy at which sharp cracks can be modelled with the EDM has not been fully evaluated
in the literature. The EDM was shown to give sufficiently accurate stress intensity factor to be considered for crack
propagation analysis[26]. Yet, its convergence rate (e.g., in the energy norm) remains unknown. In this study, the
elements intersected by a crack are not deleted but their stress state is set to zero. The meshes are made of standard
finite elements: either constant strain triangles integrated with a 1-point integration scheme or bilinear quadrilateral
integrated with a 2x2 Gauss integration scheme. The formulation of standard finite elements is not recalled here and

we refer the interested reader to reference textbooks[31-33].

2.2. The standard finite element method (FEM)

A straightforward manner to represent cracks, also called strong discontinuities[25], is to mesh them explicitly with
the standard FEM, as depicted in Figure 1. It is one of the most employed technique to model strong discontinuities
[34], and, contrary to the element deletion method, it allows to represent cracks as surfaces. When the simulation
of growing cracks is undertaken, adaptative remeshing must be employed so that the mesh conforms to the evolving

crack geometry. Continuously updating the mesh and computing quantities of interest (e.g., stress intensity factors or
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energy release rate) is a tedious task and sophisticated algorithms need to be employed[35]. Furthermore, the presence
of cracks makes the stress field singular, which in turns degrades the convergence rate of the FEM. Indeed, problems
comprising strong discontinuities converge with an error of O(h%%) in the energy norm, independently of the order
of the finite elements [36]. Moreover, special finite elements are often employed in the vicinity of the crack tip to
accurately compute stress intensity factors see, e.g., [37]. The FE meshes used in this study are either composed of
linear triangular elements with one integration point or bilinear quadrilateral elements integrated with a 2x2 Gauss

scheme.

2.3. The phantom node method (PNM)

To overcome the remeshing difficulties, enriched variants of the standard FEM that allow embedding cracks within
elements have been developed. The most popular extensions include the extended finite element method (XFEM)[4],
the generalized finite element method (GFEM) [5] and the phantom node method (PNM) [6]. These approaches are
special instances of the partition of unity method (PUM) [15] and are now recognised to be closely related [38]. They
are implemented in numerous commercial softwares (e.g., SAMCEF, ABAQUS, LS-DYNA or ANSYS) and are used
to solve problems of industrial complexity [2]. Their main drawback is that the discontinuities are modelled thanks to
additional degrees of freedom located at the standard element nodes. Hence, as the cracks grow, the set of equations
to be solved at the global level increases. The resulting dynamic allocation of degrees of freedom complicates the
efficient implementation of these methods. The PNM, the GFEM, and the XFEM are closely related as the extrinsic
enrichments used in these methods have the same structure. When employed to model traction-free cracks, they are of
similar accuracy and share the same convergence rates [39]. As with the FEM, the convergence rate of these methods
when modelling traction-free cracks is suboptimal. Indeed, unless a special geometrical enrichment [16, 17] is used in
the vicinity of the crack tip, these methods converge with an error of O(h%®) in the energy norm, whatever the order of
the shape functions [17]. In this paper, we make use of the phantom node method natively integrated in the software
ABAQUS v6.16. A noteworthy attribute of the PNM is that it is easier to implement than other enriched formulation
such as the XFEM since cracks are somewhat modelled thanks to overlapping elements[38, 39]. The formulation of

the phantom node method is not recalled here and we direct the interested reader to dedicated papers [6].

2.4. Embedded finite element method (EFEM) with enhanced strain modes (SM)

The development of embedded finite element methods, also called finite element methods with embedded disconti-
nuities (EFEMs) [8], started in the early 90’s [40]. They share the same purpose as the XFEM or the PNM: representing
discontinuities independently of the mesh. To model cracks, EFEMs make use of element-supported enrichments, which
strongly differs from the XFEM that employs node-supported enrichments [9]. As a result, the degrees of freedom
that represent the EFEMs enrichments can be condensed at the element-level. The condensation process leads to
interelement discontinuities in the displacement field, see Figure 1, but the resulting problem is not larger than the
original one, no matter the number of discontinuities, which is a striking advantage when compared with the XFEM,
the PNM or the GFEM. Despite their noteworthy convenience, EFEMs have not been incorporated into commercial
codes yet, possibly due to the limitations inherent to early formulations of EFEMs. In the late 90’s, Jirasek compared
and classified the EFEMs published at that time [8]. He concluded that only three classes of EFEMs existed, and that

one was superior to the others: the so-called statically and kinematically optimal nonsymmetric formulation (SKON).
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He then used it to solve typical concrete fracture problems [41] and, although satisfactory results were obtained, some
severe drawbacks were also noticed[42]. In the aforementioned reference, the authors demonstrated that the strains
on both part of an embedded finite element split up by a crack are not fully decoupled, even after complete failure,
leading to stress locking, i.e., non-vanishing stress transfers across a fully opened discontinuity. They concluded that
XFEM was preferable due its superior kinematic properties. Later EFEMs formulations aimed at overcoming these
deficiencies. Their root causes lie in a poor kinematic description of the crack opening, as discovered in [43]. Indeed,
a constant crack opening was usually adopted with early EFEMs and led to stress locking. The incorporation of
non-uniform crack openings, also called hinge modes [43], non-uniform discontinuity modes [44], strain modes [45] or
separation modes [46], proved to be a successful way to suppress locking. It was for instance demonstrated in [3] that
the use of the SKON, equipped with enhanced strain mode, produces similar results as the XFEM. Hence, the use of
EFEMs with non-uniform crack openings is a promising way to model discrete cracks without introducing additional
degrees of freedom. Nevertheless, the design of the aforesaid strain modes is involved and, to the authors best knowl-
edge, has been seldom performed in 3D or with high-order elements[47, 48]. In this paper, we will consider some of
the results published by Linder and Armero, related to an EFEM equipped with enhanced strain modes[45]. Their
EFEM will be denoted as “EFEM with Strain Modes” (EFEM-SM) in the remainder of this work. The formulation

of this EFEM-SM is not presented here and we direct the interested reader to the aforesaid paper.

3. MODELLING OF TRACTION-FREE CRACKS WITH THE AUGMENTED FINITE ELEMENT
METHOD (AFEM)

The augmented finite element method (AFEM), developed by Yang and co-workers[18], belongs to the category of
embedded finite element methods (EFEMs). It departs from other EFEMs since it does not make use of enhanced
strain modes and, yet, it is free from stress locking. Another noteworthy attribute of the AFEM is that it allows
to model weak discontinuities (i.e., material interfaces) and strong discontinuities, as well as the transition from the
former to the latter. Moreover, it permits to embed multiple intersecting discontinuities within an element. The AFEM
literature focuses on the modelling of cohesive cracks. In this document, we will however deal with traction-free cracks.
The “traction-free crack derivation” of the AFEM that we are about to present must not be considered as another
AFEM, but as a subset of the original one. Indeed, as soon as a cohesive crack is fully damaged and opened, the
original AFEM and the “traction-free crack AFEM” are identical. The traction-free crack derivation allowed us to

discover some key aspects of the AFEM while keeping the number of equations to a minimum.

3.1. Strong form, weak form and condensed discretized equilibrium equation

The reference situation to be considered is schematised in Figure 2. Let §2 be the domain occupied by a solid.
A material point inside the domain is labelled as x € 2. A strong discontinuity surface I'. = T'} UT, splits Q into

t+

ext

two subdomains QF and Q7. The prescribed external tractions and t_,, are applied on boundary Ty = '} UT},
whereas the displacements it and @~ are imposed on boundary I', = ') UT,,. The domains on both sides of the
discontinuity are assumed to be elastic and homogeneous, yet Q7 and Q= can be made of different materials. We

further assume small strain and displacement conditions. In the absence of body forces the field equations governing
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Figure 2: Solid body crossed by a strong discontinuity surface

the boundary value problem obey the following relations

Vot(x)=0 xeQf Vo~ (x)=0 x €N (1)
ot (x)n"(x) = t5 (%) xelf o (x).n7 (x) =ty (x) xely (2)
ut(x) = @t (x) xeT] (%) =1 (x) xely (3)
(%) = o (x)n" (x) xert () = 0~ (x)-n" () x el (4)

ot and o~ stand for the stress fields in Qt and Q~ respectively, t;

int and t; . are the tractions along the discontinuity

surfaces I'} and I', whereas n™ and n™ are the outward pointing normals of Q* and Q respectively. The constitutive

law and the strain-displacement equations for the two subdomains read
1
ot(x)=C":et(x) xeQt et (x) = E(VTqu(x) + Vu'(x)) xeQf (5)
1
o (x)=C" 1€ (x) xeN” € (x)= §(VTu_ (x) + Vu™ (x)) xe N (6)

where C* and C~ are the stiffness tensors of the subdomains QF and Q= respectively. The displacement fields u™

and u~ are subsets of the kinematically admissible displacement field, U:
uteU={vieH v =0 xeT} u eU={v eH':v =0 xeT,} (7)

where H! is the space of functions with square-integrable derivatives (i.e., the Sobolev space of degree 1). Equations
(1)-(7) can be converted into a weak form using the principle of virtual work. Its application to the two subdomains

Qt and Q~ leads to

/ ot (x): e (vh(x))dQ = / td e (x).vT(x)dl +/ ti . (x).vi(x)dl  VvwelU (8)
Q+ rf rf

t

/97 o™ (x): e (v (x))dQ = /1“— byt (X).v™ (x)dl + /1“‘ t(x) v (x)dll VYvelU 9)

t c

c

The left-hand sides of equations (8) and (9) are the internal virtual work, the right-hand sides are the virtual work
carried out by the external forces and the tractions along the strong discontinuity surface. The existence of a traction-

free strong discontinuity surface translates into the following condition:

te(x) =t (x)=0 xel. (10)



The subdomains QF and Q= are now discretized with finite elements. Let {d*} and {d~} be the vectors of degrees
of freedom of QT and Q™ respectively. The displacement field in each sub-domain is obtained thanks to standard FE

shape function matrices [N 1] and [N~]:
ut (x) = [N+ Gol{d* ) xe 0t w (x) = [N~ (ol{d) xe0~ (1)

These shape functions are expressed as if the strong discontinuity surfaces were defined from the onset of the numerical
calculation using a conforming mesh. Substitution of (11) into the weak forms (8) and (9) followed by the standard

Bubnov—Galerkin approach leads to the discretized equilibrium equations

ext™ ext™
ey =1 iy =4 (12
fcohesive™ fcohesive™
where [LT] and [L™] are the stiffness matrices of the two subdomains, {fext*} and {fext™} are the external force

vectors induced by the external tractions and { fcohesive™} and { fcohesive™} are the equivalent force vectors induced

by the tractions on the strong discontinuity surface such that

4= [ et Bt ol 1= [ el iB e (1)
Q+ -
(feat™y = [ Vot (ar (feat y = [ N Gt (14
{fcohesivet} = /+[N+(x)]t$t(x)df {fcohesive™ } = /7 [N7(x)]t;n (x)dl’ (15)
I r;

Equation (13) introduces the strain-displacement matrices, [B] and [B~], which contain the derivatives of the classical

FE shape functions (see, e.g., [31] section 2.5). Substitution of (10) into (15) leads to:
{fcohesive™} = {fcohesive™ } = {0} (16)

The degrees of freedom vectors in (11) are further partitioned between those associated with the strong discontinuity

surface (called {dint*} and {dint=}) and those associated with the bulk (called {dext*} and {dext™}).

dext™ 5 dext™
{d*t} = {d7} = (17)

dint™ dint™

This partition is used to rewrite (12) the following way:

L+ Ligr | | dext™ fext™ Lii- Lo | |dext™ fext™ (18)
L21+ L22+ d’L’ﬂt+ 0 L21— L22— dznt7 O

Relations (18) allow to express the displacement at the discontinuity as a function of the external displacement:
{dint™} = —[Log+] Loy+]{dextt} {dint™} = —[Log-] Loy~ |{dext™} (19)

Substitution of (19) into (18) allows to eliminate {dint™} and {dint~} from the discretized equilibrium equations.

The resulting relation is called the condensed discretized equilibrium equation and reads

Ly, — Lio- Ly, Loy 0

N . {dext} (20)
0 Lll - L12+L22+L21Jr

{feat} =
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where

dext™ fext™
{dext} = {fext} = (21)

dext™ fextt

Equation (20) introduces the stiffness matrix of the augmented finite elements. These element matrices are assembled
to form the global matrix of the system. Since {dint™} and {dint~} do not appear in the condensed discretized
equilibrium equation (20), the nodes associated with these DOF, called internal nodes (see Figure 3) do not contribute
to the size of the global stiffness matrix. As highlighted by Equation (11), the AFEM and the classical FEM make
use of the same shape functions to describe the displacement field on both sides of a strong discontinuity. The main
difference between the FEM and the AFEM lies in the fact that the internal nodes (see Figure 3) are condensed at
the element level with the AFEM. As a result, the DOF associated with these internal nodes are absent from the
discretized equilibrium equation (20). Hence, the AFEM can model an arbitrary number of strong discontinuities
without modifying the number of DOF per element or the size of the assembled stiffness matrix. This attractive
property, not shared by the FEM or the XFEM, comes at a price: since the internal nodes are condensed at the
element level, the interelement compatibility is lost.

Equation (20) has been derived under the assumption of a traction-free crack. It thus differ from the condensed
discretized equilibrium of the original AFEM which contains additional terms linked to the existence of cohesive
stresses, see, e.g., Equation 19 in [19]. One can nevertheless check that the former equation reduces to (20) when
cohesive stresses are null. Hence, as stated in the introduction of the present section, the AFEM we just derived and
the original AFEM are fully equivalent in the presence of traction-free cracks.

The compactness of the traction-free crack discretized equilibrium, (20), greatly facilitates comparisons of the
AFEM with other newly developed EFEMs. For instance, one can readily check that the AFEM, the so-called
continuum decohesive finite element method [49] and the extended cohesive damage model [50] share the very same
discretized condensed equilibrium equation (see, e.g., equation 12 in [50]). The only difference between the AFEM and
the two aforementioned methods lies in the technique employed to account for the cohesive stresses. Thus, the use of
any of these methods will deliver identical results if traction-free cracks are modelled, which is the topic of this paper.

The compactness of the traction-free discretized equilibrium equation (20) also highlights some flaws of the AFEM
(which equally affect the continuum decohesive finite element method and the extended cohesive damage model).
Indeed, the use of the former equation requires the invertibility of some stiffness submatrices. These submatrices
invertibility is related to i) the parent element employed (i.e., constant strain triangular element, bilinear quadrilateral
element, etc.) and to ) the location of the crack within the element. As will be shown later, the use of constant strain
triangular elements unavoidably induces the singularity of the aforesaid submatrices. To the authors best knowledge,
this topic of prime importance has only been briefly discussed in [18] without being satisfactorily resolved. The next

chapter particularizes the above equations to 2D elements while dealing with this issue.

3.2. Application to the 2D elements of this study

The condensed discretized equilibrium equation (20) can be applied to parent elements of any dimension and
order. Particularization to 2D elements with linear shape functions is considered next. The parent elements used in

this study are the constant strain triangle, called hereafter T3, and the bilinear quadrilateral called Q4. A strong

10
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discontinuity splits a T3 into a triangular domain and a quadrangle, the resulting element is called an AT3. When
a Q4 is augmented, two situations can occur depending on the location of the discontinuity %) it is split into two
quadrangles and the resulting element is named AQ4-1 or ) it is split into a triangle and a pentagon, the resulting
element is called AQ4-2, see Figure 3. As stated in the introduction, the most salient feature of the AFEM is that

augmented elements and their parent elements share the same degrees of freedom, see Table 1. In this study, the

— strong discontinuity surface
@ external node

@ internal node 4 3 4 6 3
6
5 7 5
8 8
1 1 1
2 2
AT3 AQ4-1 AQ4-2 2

Figure 3: Node numbering of the augmented elements used in this study

stiffness matrices of quadrilateral and triangular subdomains are computed thanks to a 2x2 points Gauss integration
scheme and a 1-point integration scheme respectively. Pentagonal elements, called P5, are implemented using the
polygonal finite element method proposed by Sukumar and co-workers [51]. A 6-point integration scheme has been

used to evaluate the stiffness matrices of the P5 used in this study.

Table 1: Degrees of freedom of the augmented elements used in this study

Augmented Element {dextt}! {dext™}! {dint*}* (condensed DOF) {dint™}' (condensed DOF)
AT3 {usz,vs} {u1,v1,u2,v2} {uq,vq,us5,v5} {uz,v7,ug,v6}
AQ4-1 {us, v3,us,v4} {u1,v1,u2,v2} {us,vs,ug, ve } {us, vs, ur,v7}
AQ4-2 {uq,v4} {u1,v1,uz,v2,u3, v3} {us,vs, ug, v } {us,vs,ur,v7}

The condensed discretized equilibrium equation (20) makes use of the inverse of matrices [ L;&] and [ L2_2}' As
highlighted by Equation (18), [L%,] are submatrices of [LE]. A mechanical interpretation of the involved submatrices
is now provided to ease the study of their invertibility. Submatrices [L;CQ] appear when one incorporates essential
boundary conditions in the stiffness matrix by the method of reduction (see, e.g.,[52]). To illustrate this fact, suppose
that one seeks to impose the essential boundary conditions {dext*} = {0} in equation (12) thanks to the method of

reduction. The discretized equilibrium equations in QF and Q= would write:

Llli ngi demti Llli lei 0 feacti (22)
Loj+  Log+ dint* Loj+  Loo+ dint* feohesive™
To solve for the unconstrained degrees of freedom, {dint*}, one needs to invert the stiffness submatrices [Log+]:
-1
{dinti} = [L22:t} {fcohcsivei} (23)

11
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Figure 4: Graphical representation of the submatrices [Lyy+] of 2D elements

Thus, [Los+] (respectively [Los-]) is the stiffness matrix of the subdomain QF (respectively Q) with degrees of freedom
{dext™} (respectively {dext™}) fully constrained. A graphical representation of these submatrices is proposed for the
2D augmented elements of this study in Figure 4. This graphical representation allows to readily assess the ranks of
submatrices [ L22i]. If rigid body motions of the subdomains are allowed, the associated submatrices are singular
(see, e.g., [31] chapter 2.8 for a proof). Hence, submatrices [Loo+] of elements AQ4-2 and AT3, are singular since the
rotation of the associated subdomains is not prevented, see Figure 4. As a result, the condensed discretized equilibrium
equation (20) is not applicable to these elements. To circumvent these singularities, the authors of the AFEM suggested
to not fully relax the cohesive stresses, which stabilizes the elements [19]. Nevertheless, this approach prevents the
modelling of truly traction-free cracks. Moreover, the amount of cohesive stresses needed to stabilize the elements is not
discussed. Singular stiffness submatrices also arise in other EFEM formulations, see, e.g. [44-46]. To suppress these
singularities some authors impose kinematic constraints on the crack opening: a constant opening is often enforced.
This may induce stress-locking [44, 45] or involve the use of a problem-dependent stabilization parameter that needs
to be calibrated [45, 46]. In this paper we propose a parameter-free way to deal with the inversion of singular matrices:
we compute the Moore-Penrose inverse (also called pseudo-inverse) of the singular matrices. Some useful properties of
pseudo-inverses are briefly recalled i) the pseudo-inverse of a matrix always exists and is unique, #) if a matrix [M] is
invertible, its pseudo-inverse equals its inverse: M~ = M. As a result, the use of the pseudo-inverses does not affect
the formulation of the AQ4-1 whose submatrices, [Loo+], are invertible. A great advantage of this “pseudo-inverse

strategy” is that the modification with respect to the original derivation is minimal: equation (19) is rewritten
{dint*} = —[Lyy+|"[Loy+ {dext™} {dint™} = —[Lyy-1T[Lyy - [{dext™} (24)
and equation (20) becomes

L — Lo LY, Loy~ 0

N ; {dext} (25)
0 Lll —L12+L22+L21+

{fext} =

4. NUMERICAL BENCHMARKS

This section presents the results obtained in a series of numerical tests designed to evaluate the performance of the
augmented finite element method (AFEM). The absence of stress locking in augmented finite elements is confirmed
thanks to the partial tension test performed in Section 4.1. Section 4.2 focuses on the stiffness loss induced by the

presence of a crack in a structure, and compares the performances of the AFEM, the element deletion method (EDM),
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Figure 5: Element partial tension test: a) geometry definition, b) employed discretization, ¢) boundary conditions
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Figure 6: Reaction forces and stresses in the subdomain Q1 measured through the partial tension test

the finite element method (FEM) and the phantom node method (PNM). The convergence rate in the energy norm of
the AFEM, the FEM and the EDM is studied in Section 4.3, under Mode I and Mode II loading conditions. Finally,

the accuracy at which stress intensity factors can be computed with these methods is evaluated in Section 4.4.

4.1. Partial tension test

The partial tension test is a numerical experiment designed by Linder and Armero to assess the level of stress
locking of some embedded finite element methods (EFEMs) [45]. Slightly modified versions of this test can also be
encountered in the literature [3, 46]. Linder and Armero showed that classical EFEMs, i.e., with a constant crack
opening, failed this test and that the use of embedded finite element methods with enhanced strain modes (EFEM-SM)
was compulsory to pass it [45]. The partial tension test consists in modelling a homogeneous square block, cut in half
by a traction-free crack, see Figure 5 a. The block is discretized with a single augmented element: the AQ4-1 presented
in Section 3.2, see Figure 5 b. We recall that, although the AQ4-1 embeds a crack, its stiffness matrix is only 8 x 8;
the choice of the PNM or the FEM to model the cracked block would result in the use of a 16 x 16 stiffness matrix.
Horizontal displacements of equal magnitudes d, but opposite directions, are imposed on the bottom corner nodes of
the cracked structure, leading to an axial stretching of the lower subdomain, denoted as Q~, see Figure 5 ¢. The test
is passed if the upper domain, Q7 is stress-free and if no reaction forces are measured on the nodes located in QF. We
made use of the same geometry, material properties and load steps as in [45]: a plane stress state is assumed, the block
side length is L = 200mm, the Young’s modulus is £ = 30G Pa, the Poisson’s ratio is v = 0, the total displacement
is § = 0.1mm and it is applied in 10 steps. The reaction forces and the stresses at the four integration points

located in Q7T are plotted in Figure 6. It can be seen that the test is passed: the subdomain Q7 is stress-free and the
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Figure 7: Comparisons of stresses in Q7 at given integration points (IP), obtained with the AFEM and the EFEM-SM[45] through the

partial tension test

Figure 8: Refined mesh, made of randomly oriented elements, used to run the element partial tension test, augmented elements are

represented in red and standard bilinear finite elements are coloured in white
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Figure 10: Geometry and boundary conditions of the cracked plate submitted to a) Mode I loading, b) Mode II dominated loading

reaction forces at nodes 3 and 4 are null. It is demonstrated that the reaction forces exerted on the augmented element
are consistent with those predicted by the FEM: indeed, if 2~ was modelled with a standard bilinear quadrilateral
element (Q4), one would have —f,1(0) = f.2(0) = % (the proof is provided in Appendix A). It is also
instructive to inspect the stresses measured in the lower subdomain, 2~, and to compare them with those obtained
with the EFEM-SM of Linder and Armero[45]. As highlighted by Figure 7, the EFEM-SM predicts a constant uniaxial
stress state in 2~ while a multiaxial and heterogeneous stress state is obtained with the AFEM. To get a better
insight into the exact stress state in 27, we discretized the cracked block with a refined mesh comprising around 50000
quadrilateral elements and 100000 degrees of freedom, see Figure 8. The crack is once again modelled with augmented
finite elements (AQ4-1 and AQ4-2) while the other elements are classical Q4. The boundary conditions represented
in Figure 5 ¢ are imposed with § = 0.1mm. The resulting stress field is plotted in Figure 9. It is heterogeneous and
multiaxial, as predicted with a single augmented element. Cross-checking the results presented in Figure 9 and Figure
7 allows to thoroughly evaluate the predictions made with a single AQ4-1. The stress sate obtained with the refined
mesh is 0,,-dominated, 0., decreases as y increases, o, is approximately null at the location of the integration points
1 to 4 represented in Figure 5 b and oy, is positive (respectively negative) in the bottom right (respectively left)

corner. All these results were decently assessed with a single augmented element, as depicted in Figure 7.

4.2. Crack-induced stiffness loss

To further compare the AFEM and the EFEM-SM, we perform a numerical experiment, designed by Linder and
Armero, that consists in measuring the stiffness of a cracked plate as the mesh is refined [45]. To enrich the comparison,
we also benchmark the element deletion method (EDM), the finite element method (FEM) and the phantom node
method (PNM). The geometry of interest is a cracked rectangular plate, with a height h = 20mm, a width w = 10mm
and a crack length a = 5mm, see Figure 10. As in[45], plane strain conditions are assumed, the Young’s modulus is
FE = 206.9G Pa, the Poisson’s ratio is ¥ = 0.29 and we only consider structured meshes made of quadrilateral elements.
A vertical displacement, § = 1mm, is imposed on the upper edge of the plate and induces a Mode I loading of the
crack, see Figure 10 a. The evolution of the associated reaction force is plotted in Figure 11. One can observe that
all the benchmarked methods seem to converge toward the same reaction force as the mesh is refined. The EDM, the

AFEM and the EFEM-SM produce virtually identical results and give rise to models that are softer than the actual
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Figure 11: Mode I loading: reaction force as a function of the mesh size obtained with the FEM, the PNM, the EDM, the AFEM and the
EFEM-SM of Linder and Armero[45]

structure as they systematically underestimate the reaction forces. This was also observed when using the AFEM
to model weak discontinuities, and was proved to be caused by the presence of interelement discontinuities[53]. It

strongly contrasts with the standard FEM and the PNM that are known to overestimate the stiffness[31-33].

n (%)
10- [ J
. — FEM R=1.12
« PNM R=1.04
1 — EDM R=0.68
0:50 _ AFEM R=0.69
0.10 . EFEM-SM R=0.69[45]
0.05
T 0.01 0.05 0.10 050 1 5 N (mm)

Figure 12: Mode I loading: relative error in reaction force, 7, as a function of the mesh size, h, and associated asymptotic convergence

rate, R, obtained with the FEM, the PNM, the EDM, the AFEM and the EFEM-SM][45]

To get a better insight into the error levels of the benchmarked methods, we have computed the relative error in

reaction force, defined as:

n= 100% % |freaction - freaction' (26)
freaction

where freqction 1S the exact reaction force and fre/a\ction is the reaction force computed with the numerical methods. In
this study, the “exact” reaction force is estimated with the finest FEM mesh of Figure 11 which comprises around 1
million elements. The relative error in reaction force, along with the associated convergence rates, is plotted in Figure
12. Tt clearly highlights the different asymptotic convergence rates of the benchmarked methods: the EDM, the AFEM
and the EFEM-SM converge with an error of O(h%7) while the FEM and the PNM converge at approximately O(h).
Despite their faster convergence rate, the latter methods perform worse than the EDM, the AFEM and the EFEM-SM
for element sizes ranging from 5mm to 50um. Hence, unless a “highly refined” mesh is employed, a method as crude

as the EDM outperforms advanced modelling techniques such as the PNM (in the authors’ opinion, a mesh made of
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Figure 13: Mode II loading: reaction force as a function of the mesh size provided by the FEM, the PNM, the EDM and the AFEM

50um elements can already be considered as “highly refined” since the structure is 10mm wide). The EFEM-SM and
20 the AFEM perform slightly better than the EDM but the differences are marginal, see Figure 12.

n (%) [ FEM R=1.12
~ PNM R=1.04
5 | . EDMR=0.68
. AFEM R=0.69

h (mm)

0.01 0.050.10 0.50 1 5

Figure 14: Mode II loading: relative error in reaction force, 7, as a function of the mesh size, h, and associated asymptotic convergence

rate, R, obtained with the FEM, the PNM, the EDM and the AFEM

It is instructive to evaluate the performances of the studied numerical methods under a loading of the crack that

is Mode II dominated. To generate such a loading, we made use of the boundary conditions depicted in Figure 10 b
where a horizontal displacement, § = 1mm, is imposed on the upper edge of the plate. The evolution of the associated
reaction force is plotted in Figure 13. The EFEM-SM is no longer part of the comparisons since no result could be

25 found in the literature with these boundary conditions. As observed in Mode I, all the methods seem to converge
toward the same value, the FEM and the PNM are stiffer than the actual structure and the EDM and the AFEM

are systematically softer than the solid they are modelling. The PNM and the FEM provide notably different results
with the coarsest meshes, which is surprising and contrasts with other observations[39]. As mentioned in Section
2.3, we made use of the PNM implemented in Abaqus v6.16 and no indications regarding the integration scheme of

w0 the associated elements have been found in the documentation. It is likely that the PNM implemented in Abaqus

make use of selective reduced integration schemes, which often outperforms full integration schemes as the one we
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employed with the Q4, (see, e.g., Chapter 9.9[32]). The asymptotic convergence rates are nevertheless not affected by
this feature. To get a better insight into the error levels of the benchmarked methods, the evolution of the relative
error in reaction force with mesh refinement is plotted in Figure 14. It can be seen the asymptotic convergence rates
of the numerical methods are the same as in Mode I. For the coarsest meshes the EDM and the AFEM exhibit a
non-monotonic behaviour as the error may increase as the mesh is refined. Nevertheless, in the present test case,
the range of mesh sizes where this non-monotonic behaviour is observed coincides with the region where the AFEM
outperforms both the FEM and the PNM (i.e, for mesh size ranging from 5mm to 0.9mm). Hence, despite the fact
that the convergence rate of the AFEM is not monotonic in Mode II, the AFEM is more “coarse mesh accurate” than
the FEM or the PNM. One also notices that the AFEM performs better than the EDM in Mode II: it is approximately

twice as accurate as the EDM for a given element size.

4.83. h-convergence in the energy norm

In this section we will focus on the error in the energy norm, rather than on the computation of some local quantities
(e.g., the reaction forces). This error measure is at the core of some fundamental properties of the FEM, such as the
Galerkin orthogonality (see, e.g., Chapter 4.3 [33] and references therein), and is frequently employed to assess the
convergence behaviour of the FEM and its variants. Since the use of the AFEM induces interelement discontinuities, its
monotonic convergence toward the exact solution of a mathematical problem cannot be guaranteed (see, e.g., Chapter
4.4 [33]). The goal of this section is to study the AFEM convergence behaviour, in the energy norm, through numerical
experiments. Comparisons with the finite element method (FEM) and the element deletion method (EDM) will also be
drawn and the performances of both triangular and quadrilateral elements will be investigated. Let us first introduce
the error in the energy norm, as well as some related quantities, before presenting the tests performed in this section.

Let u be the exact solution of a mechanical problem and @ an approximate solution, the error e is defined by:
e=u—1u (27)

Let © be the volume occupied by the structure of interest, the error in the energy norm reads:

lelle = (/Q(H) i) da)é (28)

where € is the exact strain field, é the approximate one and C the elasticity tensor. We will also make use of the energy

error of a given finite element, defined as:

Qi(/ﬂl(e—é):C:(e—é)dQ>; (29)

where the subscript ¢ refers to individual elements such that [ J, Q; = Q. We finally introduce the relative error in the

llel

energy error norm, ||n]l:

HnH:<fﬂ(e—é):C:(e—é)dQ>5 (30)

fQ e:C:ed)
To investigate the AFEM convergence, we perform a test case often encountered in the XFEM literature [16, 17]: an
infinite plate containing a horizontal crack is loaded by a remote stress field. We successively consider Mode I and

Mode II loading of the crack. Plane strain is assumed and the material is homogeneous and isotropic with a Young’s
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Figure 15: Geometry, polar coordinate system and displacement boundary conditions imposed on the boundary of the plate in Mode I and

Mode II loadings

modulus F and a Poisson’s ratio v. The analytical solution of the asymptotic displacement field under Mode I loading,

denoted as uy = {usz,ury}, reads[54]:

wr =50 [ eos (§) 6= a0 = cos(0) (31)
ury :% \/;(1 + v)sin (g) (3 —4v — cos(9)) (32)

where K is the Mode I stress intensity factor and (r,6) are the polar coordinates associated with a reference frame

centered at the crack tip, as depicted in Figure 15. The closed-form solution of the displacement field under Mode II

- :% \/;(1 +v)sin (g) (5 — dv + cos(9)) (33)

wiry z%\/;u +v)cos (g) (=14 4v — cos(6)) (34)

In the numerical model we consider a square domain Q = [0, 5] x [—2.5,2.5] cut by a crack I'. = [0,2.5] x {0}. Young’s

loading, denoted as wujy, is[54]:

modulus and Poisson’s ratio are respectively £ = 200000 and v = 0.3, and the imposed stress intensity factors are
K; = Kj; = 2802,5. Following Laborde and co-workers[17], we impose the closed-form displacement field on the
boundary of the plate, as depicted in Figure 15. The evolution of the error in the energy norm with the mesh size,
under Mode I loading of the crack, is plotted in Figure 16. It is shown that the FEM, the EDM and the AFEM
are of similar accuracy. When quadrilateral elements are considered, the AFEM slightly outperforms the aforesaid
numerical methods, but the differences are marginal. The convergence rate of both the FEM, the AFEM and the EDM
is subobtimal: O(h%®) in the energy norm. The FEM suboptimal convergence is due to the crack-induced singularity
of the stress field, as demonstrated by Pian and co-workers[36]. This reasoning seems to hold with the EDM and the
AFEM, indeed, the spatial distribution of error is fairly independent of the employed numerical method under Mode
I loading, see Figure 18 MODE I.
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Figure 16: Mode I loading of a crack: error in the energy norm, ||n||, as a function of the mesh size, h, and associated convergence rate, R,

obtained with the finite element method (FEM), the element deletion method (EDM) and the augmented finite element method (AFEM)
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Figure 17: Mode II loading of a crack: error in the energy norm, ||n||, as a function of the mesh size, h, and associated convergence rate

R, obtained with the (FEM), the element deletion method (EDM) and the augmented finite element method (AFEM)

The benchmarked numerical methods provide noticeably different results when Mode II loading of the crack is

considered. Indeed, as depicted in Figure 17, the FEM is more accurate and converge faster than the AFEM and the

EDM. Despite their similar converge rate, the AFEM is shown to be 25% more accurate than the EDM under Mode IT

loading. To gain further insights into these results, the spatial distribution of error is plotted in Figure 18. Conversely

to the Mode I case, the energy error is no longer negligible along the crack lips when the EDM and the AFEM are

employed.
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Figure 18: Spatial distribution of energy error in the elements, ||e||q,, under Mode I and Mode II loadings, with the FEM, the AFEM and

the EDM (results obtained with a mesh size h =~ 0.15)

The inter-element incompability of the displacement field, induced by the use of the AFEM, is thought to be
responsible for its underperformance under Mode II loading of the crack. A so far unmentioned treatment helps
reducing the amount of inter-element incompabilities: in Reference [19] Yang and colleagues implemented a simple
“crack-tip treatment” that guarantees the inter-element continuity of the displacement field along the edge that is
shared by the crack-tip element and the element immediately ahead of it, which is a standard finite element. The
displacement continuity at the crack-tip is enforced through simple multiple-point constraints involving the nodal

displacements at the considered edge, as illustrated in Figure 19. With the notations introduced in the aforesaid

0.5

Figure, the multiple-point constraints to enforce read:

MODE Il
.

\—/.

llellz,

E— o
0 0.250.500.75 1.00

us | _ Jur :(l l72> Uz +l72 u3

Ve Clrd

s

Vo l23 U3

where l79 and ly3 are the lengths of segments 7-2 and 2-3, respectively.
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Figure 19: Crack-tip treatment allowing for a continuous displacement field along the edge shared by an augmented and a standard finite
element

These multiple-point constraints are imposed thanks to Lagrange Multipliers introduced in Equation 18. The
condensation procedure of the AFEM internal DOF, described in Section3.1, remains unchanged since no additional
DOF have to be introduced at the global level. In the remainder of this work, the suffix “-TIP” will be employed
to indicate simulations performed with the crack-tip treatment. As depicted in Figure 20, the use of the crack-tip
treatment only slightly improves the results provided by the AFEM in Mode II. Hence, wether one uses the crack-tip
treatment or not, the AFEM energy error is higher than the FEM one when cracks are loaded in pure Mode II.
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Figure 20: Influence of the crack-tip treatment, indicated by the suffix “-TIP”, under Mode II loading of a crack: error in the energy norm,

[|n]], as a function of the mesh size, h, and associated convergence rate, R, with the FEM, the AFEM and the AFEM with a crack-tip
treatment

To understand the reasons for this Mode II underperformance, we further studied the stress field in several zones
of interest defined in Figure 21. As depicted in Figure 18, under Mode II loading of the crack, the most stricking
difference between the AFEM and the standard FEM is the error level along the crack lips. The stress field provided
by the AFEM in this area is compared with the exact stress field in Figure 22.
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Figure 21: Zones of interest defined to study the stress field provided by the AFEM under Mode II loading of the crack
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Figure 22: Comparisons of the exact stress field (on top) with those obtained with AQ4 elements and mesh sizes h = 0.025, 0.15, 0.3 (from
top to bottom), within the surface of interest defined in Figure 21 and under Mode II loading of the crack

Whatever the mesh size, the stress field obtained with the AFEM is free from parasitic stresses and reproduces
well the main characteristics of the exact stress field. A closer look at the transverse stress field, i.e. 0., reveals that
the stresses are too low within the augmented elements. Thus, the error in transverse stresses is responsible for the
energy error observed all along the crack lips in Mode II (see Figure 18). To get quantitative insights on this aspect,

us  the transverse stress along the line of interest defined in Figure 22 is plotted in Figure 23.
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Figure 23: Comparisons of the exact transverse stress field, 0., with those obtained with AQ4 elements, along the line of interest defined

in Figure 21 and under Mode II loading of the crack
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One can observe that o,, is approximately two times lower than expected in the immediate vicitiny of the crack
lips. The convergence of this local value is noticeably slow. Despite this undesirable local attribute, the transverse
stress is smooth and converges monotonically. These observations led us to the following conclusion: the inter-element
discontinuities induce a local loss of transverse stiffness which has a detrimental effect on the energy error when crack
lips are submitted to transverse loads. Hence, the use of the AFEM induces higher energy error levels than the
standard FEM or the PNM when cracks are loaded in pure Mode II. While Figures 23 and 22 only highlight the results
obtained with the AQ4 formulation, the above conclusions were found to be equally valid with the other augmented

elements benchmarked in this study (i.e., the AT3, the AT3-T1P and the AQ4-TIP).

4.4. Computation of stress intensity factors (SIF's)

This final benchmark investigates the relative accuracy of the stress intensity factors (SIFs) computed with the
finite element method (FEM), the element deletion method (EDM) and the augmented finite element method (AFEM).
Accurate computations of SIFs is of prime importance in most of the crack growth analysis[34, 35], but, to the best
of the authors knowledge, the AFEM ability to assess SIFs has never been put to test. To evaluate the accuracy of
the benchmarked numerical methods, we make use of the same Mode I and Mode II load cases as those employed in
Section 4.3 (see also, Figure 15). Material parameters and boundary conditions are kept the same and plane strain
conditions are still assumed. The applied remote stress gives rise to the following SIFs: K; = 2802.5 and K;; = 2802.5
in pure Mode I and pure Mode II, respectively.

To numerically estimate the stress intensity factors (SIFs) we proceed as follows: the energy release rate, G, is

computed thanks to a domain integral method and Irwin’s relation[55] is employed to compute the SIFs in pure Mode

I and II, denoted as K, and Ko
5 GgxE .
Ki=\/;forz€{l,ll} (36)

The relative error in stress intensity factors (SIFs) is then computed as:

K, — K;
17:100%><‘7_|

3

for i e {I,II} (37)

Domain integral methods are commonly employed to assess energy release rates since they were shown to be coarse
mesh accurate and more precise than contour integral methods [56]. In our study, we made use of the domain integral

proposed by Needleman and co-workers [56] which reads:

_ O s ) 91
G- /A (o—” o Walj) oA (38)

where, d;; is the Kronecker delta function (such that §;; = 1 if ¢ = j and d;; = 0 if i # j), u,; is the ¢ component of the
displacement field, o;; is the (¢, j) component of the stress tensor, W is the strain energy density, {z1,z2} = {z,y}
are the 2D Cartesian coordinates (see Figure 15), A is an annular region around the crack tip delimited by contours
C1 and C2 and the crack lips, see Figure 24. and ¢; is a “sufficiently smooth”[56] scalar field defined over A, that is
unity on C'1 and vanishes on C2. In our computations, we chose C'l and C2 to be two crack tip-centered circles of

radius r; = 1.1 and ro = 1.4, respectively, and ¢; to be an axisymmetrical field such that:

== ifry <r <

1—T2

ard)=qal) =4 1 ifr <mrg (39)
0 if r>ry
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r2=14

Figure 24: Surface A enclosed by contour C1, contour C2 and the crack lips, and associated finite elements

where (1, 0) are the polar coordinates associated with a reference frame centered at the crack tip (see Figurel5). The
evolution of the error in the stress intensity factor K1, under Mode I loading of the crack, is plotted in Figure 25.
The SIF convergence rate is fairly independent from the employed numerical method (i.e., the FEM, the AFEM or
the EDM); Moes and co-workers also observed that SIFs converged with an error of O(h) when using the XFEM and
a similar domain integral method [16]. This convergence rate is in accordance with the theoretical estimates provided
by Destuynder and co-workers[57]. Despite the fact that SIFs computed with the FEM, the EDM and the AFEM

converge at approximately the same rate, the FEM is noticeably less accurate than the two other methods for a given

mesh size.
Mode | - Quadrilateral Elements Mode | - Triangular Elements
10 10
5 5
§ 1- § 1
~0.50- =0.
s o R=1. Q4 FEM < o R=1. T3FEM
= R=0.9 Q4 EDM 0.10 = R=1.1 T3 EDM |
-1 = ] + R=1.1 AT3
0.05- « R=0.9 AQ4 1 0.05
. -3 -2 -1 0 -3 -2 -1 0
Log(h) Log(h)

Figure 25: Mode I loading of a crack: error in the first stress intensity factor, 7, as a function of the mesh size, h, and associated convergence
rate, R, obtained with the finite element method (FEM), the element deletion method (EDM) and the augmented finite element method
(AFEM)

By contrast, the FEM generally outperforms both the EDM and the AFEM when Mode II loading is considered,
see Figure 26. One also notices that the AFEM is more accurate than the EDM in Mode II. The use of the AFEM
crack-tip treatment, introduced in Section 4.3, greatly improves the AFEM solutions with coarse meshes but also
degrades the SIF asymptotic convergence rate and even seems to be detrimental when fine meshes are employed. The
reasons for this decrease of convergence rate have yet to be elucidated. On the whole, the results of this benchmark
are similar to those related to the h-convergence in the energy norm, where the AFEM was shown to perform better
than the FEM in Mode I, while being less accurate in Mode II (see Section 4.3). Thus, the underlying cause is likely

to be the same: the transverse stresses at the vicinity of the crack lips, o, (2 € [0,2.5],y = 0), are poorly represented
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with the AFEM and makes it suboptimal, as demonstrated in Section 4.3.
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Figure 26: Mode II loading of a crack: error in the second stress intensity factor, n, as a function of the mesh size, h, and associated

convergence rate, R, obtained with the FEM, the EDM, the AFEM and the AFEM with a crack-tip treatment

5. CONCLUSION

The ability of the augmented finite element method (AFEM) to model traction-free cracks has been thoroughly
investigated in 2D. To make this investigation as complete as possible, triangular and quadrilateral elements were used,
the ratio of element sizes between the coarsest and the finest meshes was systematically greater than 10 and errors
in reaction forces, the energy norm and stress intensity factors were studied. The accuracy of the AFEM has been
compared with that of the element deletion method (EDM), the finite element method (FEM), the phantom node
method (PNM) and the embedded finite element method with enhanced strain modes (EFEM-SM).

The partial tension test performed in Section 4.1 allowed us to ensure that the AFEM was free from spurious
stress transfer across a fully separated discontinuity. It was also discovered that, although both the EFEM-SM and
the AFEM do pass the partial tension test, they give rise to noticeably different results. We demonstrated that the
reaction forces and the stresses computed with the AFEM were consistent with those obtained with the standard FEM
as well as with refined solutions.

The study of crack-induced stiffness loss made in Section 4.2 revealed that, under Mode I loading, the use of the
AFEM, the EDM and the EFEM-SM i) produces virtually identical results i) that outperform those obtained with
the FEM and the PNM for a wide range of mesh size. By contrast, under Mode II loading, the FEM and the PNM
surpass the other numerical methods. The above remarks also hold with other quantity of interests, such as the
error in the energy norm (see Section 4.3) and stress intensity factors (see Section 4.4). The AFEM can be used in
conjunction with a crack-tip treatment that was generally shown to improve its performance under Mode II loading.
To be more precise, the crack-tip treatment systematically decreased the AFEM energy error and improved its coarse
mesh accuracy when computing stress intensity factors. Despite these enhancements, the crack-tip treatment is not
enough to make the AFEM solutions as accurate as the FEM ones under Mode II loading of a crack. This Mode IT
underperformance was found to be caused by inter-element discontinuities that locally induce an overly soft behaviour,
which has a detrimental effect when crack lips are submitted to transverse stresses. A similar lack of stiffness had

already been observed when using the AFEM to model weak discontinuities [53].
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One goal of the current study was to determine wether the AFEM was accurate enough to be employed in analysis
involving cracks. Our results demonstrated the superior accuracy of the AFEM over well-accepted methods, such as
the FEM or the PNM, under Mode I loading of a crack. Yet, this is no longer the case if Mode II loading is consid-
ered. Hewever;:Carpinteri and co-workers performed a series of cracking experiments involving double-edge notched
specimens made of concrete and showed that, in this particular case, the energy dissipated through crack propaga-
tion was primarily ascribed to the Mode I fracture energy, even for mixed-mode crack propagation[58]. Moreover,

well-established criteria such as the principle of local symmetry[59] state that cracks propagate in the direction that

engenders a pure Mode I loading. Hence,

s the superior Mode I accuracy of the AFEM makes it a promising method to assess
structural failure scenarios. Yet, additional tests involving curved cracks or heterogeneous materials would be required
to definitely ensure that a traction-free AFEM delivers reliable results in these situations.

The findings of this study also suggest that the AFEM realizes an optimal compromise between accuracy, flexibility
and implementation complexity. Indeed, it performs noticeably better than the EDM in Mode II and, unlike the latter,
gives access to crack openings and allows to model contact and friction between the crack lips. The accuracy of the
FEM and the AFEM is on par, but the latter enjoys the same flexibility as the PNM (or the extended finite element
method) in modelling cracks independently of the mesh. Moreover, a great advantage of the AFEM over methods such
as the PNM is that it permits to represent an arbitrary number of cracks without increasing the number of degrees of
freedom per element, or the size of the assembled stiffness matrix. Finally, the AFEM formulation is straightforward
since it does not make use of enhanced strain modes, it is thus easier to implement than other EFEMs such as the
EFEM-SM.

Our study focused on traction-free cracks and, as a result, does not allow to rigorously estimate the performance of
the AFEM in situations where (frictional) contact between the crack lips or/and cohesive crack growth are modelled.
Although the AFEM has already been successfully employed in cohesive crack propagation[18, 19, 21], it is believed
that these aspects deserve further investigations geared towards assessing the convergence rate of the AFEM in such

situations.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit

sectors.

Appendix A. Closed-form expression of the stiffness of a bilinear quadrilateral finite element submitted

to partial tension

In this appendix, we derive a closed-form expression of the stiffness of the lower subdomain for the element partial
test described in Section 4.1. To do so, the lower subdomain, 27, is discretized with a bilinear quadrilateral element
(Q4) and one seeks the analytical expression of the horizontal reaction force at node 2, f22, as a function of the imposed
displacement, J, see Figure A.27. To obtain it, we first make use of the exact expressions of the Q4 stiffness matrix
provided by Hacker and Schreyer[60]. The sought reaction force is then derived thanks to the method of reduction[52].
Let [ K *] be the exact stiffness matrix of the aforesaid Q4, with the associated degrees of freedom, {¢*}, ordered the
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following way:

{q"} = {ul,u2,u3,ud, vl,v2,v3,v4} T (A1)

{K *] is split into four 4 x 4 submatrices:

K* K*
] = | (42
Ky Ky
y (mm)
100 + 4 3
0n-
0l 8t 25 fx2
i i x (mm)
0 200

Figure A.27: Displacement boundary conditions imposed on the Q4 that modelling the lower subdomain in the partial tension test

The introduced submatrices read:

B1 B2 -8 B3 B4 B5 -BY B6 B7 B8 -B7 -B8

. B2 B1 B3 -B . B5 B4 B6 -8B . -B8 —B7 B8 BT
Kaa: Bl Kbb: B4 ab =

-2 B3 Bl B2 -2 B6 B4 B -B7 -B8 B7 B8

B3 -2 B2 Bl B6 -2' B5 B4 B8 B7 -B8 -—B7

(A.3)

Under the assumption of a plane stress state, if the material is isotropic with a Young’s modulus, F, and a Poisson’s

ratio, v, the closed-form expressions of B1 to B8, for the Q4 represented in Figure A.27, are:

Bl= % B2 = % (A4)
B3 = % Bi= % (A.5)
B5 = —% B6 = % (A.6)
BT = PSV BS = % (A7)

To compute the sought reaction forces, the stiffness matrix [K *] is re-ordered and the resulting matrix, denoted as
{ K ], is partitioned into blocks related to known and unknown degrees of freedom. The unknown and known degrees

of freedom are denoted as {q1} and {¢2}, respectively. The associated known and unknow external forces vectors are
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denoted as {f1} and {f2}, respectively. For the test case represented in Figure A.27,
{q1} = {u3,v3,ud,v4} T
{q2} = {ul,v1,u2,v2} " = {-4,0,6,0} "
{1} = {f3, fy3, fo4, fy4} T = {0,0,0,0} 7
{f2} = {fa1, fyl, fa2, fy2} "

With the above notations, the discretized equilibrium equation of the Q4 reads:

S [K] al|  |Kun Kiz| gl
f2 q2 KE K22 q2
All the unknowns can be obtained in two steps, one first solves for {¢1}:

5(2—3v)v
u3 v(3012)—6
ov(3v—2)
—1 1}3 SEA\9F L)
{or == lmu] e {a} =4 = 400
ud (3—2v)v
v(3v+2)—6
0(3—2v)v
vd v(3v+2)—6

The unknown reaction forces, { f2}, are then readily computed:

{2 =[a] o} + [a] {2}

The sought reaction forces are:
SE(v(3v +2) —6)

AR A s DY oy

one has:

(A.13)

(A.14)

(A.15)

(A.16)

The material properties employed in the partial tension test of Section 4.1 are: E = 30GPa and v = 0. The stiffness

of the subdomain €~ in this case is:

fx2/6 = 16kN/mm
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¢ The convergence rate of the AFEM is numerically evaluated

¢ The singularity of AFEM stiffness matrices is dealt with

» The accuracy of the AFEM is thoroughly benchmarked against popular
numerical methods

» The AFEM outperforms the other evaluated methods under Mode |
loading of a crack
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