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This paper investigates the accuracy and the convergence properties of the augmented finite element method (AFEM).

The AFEM is here used to model strong discontinuities independently of the underlying mesh. One noticeable advantage of the AFEM over other partition of unity methods is that it does not introduce additional global unknowns to represent cracks. Numerical 2D experiments illustrate the performance of the method and draw comparisons with the element deletion method (EDM), the phantom node method (PNM), the finite element method (FEM) and the embedded finite element method (EFEM). The h-convergence in the energy norm of the AFEM is studied for the first time and it is shown to outperform the aforementioned numerical methods when cracks are loaded in Mode I.

INTRODUCTION

The finite element method (FEM) has become a classical tool to design and analyse engineering structures. To predict structural failure scenarios, the nucleation and propagation of cracks have to be explicitly considered. The use of standard finite elements can then become prohibitive since remeshing is needed as cracks grow. Moreover, the number of degrees of freedom (DOF) may drastically increase, especially in three-dimensional applications, and projecting the solution on the updated mesh is costly besides potentially degrading the quality of results [START_REF] Combescure | X-FEM a good candidate for energy conservation in 435 simulation of brittle dynamic crack propagation[END_REF]. Thus, it seems desirable to take another road for the modelling of multiple crack propagation in structures.

To ease analysis involving cracks, numerous variants of the FEM allowing embedded cracks within elements have been developed. These variants, usually gathered as "enriched finite element methods" [START_REF] Bordas | Enriched finite elements and level sets for damage tolerance assessment of complex structures[END_REF][START_REF] Wu | Unified analysis of enriched finite elements for modeling cohesive cracks[END_REF], encompass a wide variety of methods such as the extended finite element method (XFEM) [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF], the generalized finite element method (GFEM) [START_REF] Duarte | Generalized Finite Element Methods for Three Dimensional Structural Mechanics Problems[END_REF], the phantom node method (PNM) [START_REF] Hansbo | A finite element method for the simulation of strong and weak discontinuities in solid mechanics[END_REF], the cut finite element method (CutFEM) [START_REF] Burman | CutFEM: Discretizing geometry and partial differential equations: DISCRETIZING GEOMETRY AND PARTIAL DIFFERENTIAL EQUATIONS[END_REF] or the embedded finite element method (EFEM) [START_REF] Jirásek | Comparative study on finite elements with embedded discontinuities[END_REF], to name a few. These methods exhibit numerous differences, but, the most striking one is that EFEMs can model an arbitrary number of (possibly growing) cracks without increasing the number of DOF per element, or the size of the assembled stiffness matrix. Yet, this attractive property, not shared by any of the aforementioned methods, comes at a price: the interelement compatibility of the displacement field is lost (see Figure 1). Despite this drawback, some EFEMs have been reported to be more "coarse mesh accurate" than well-established methods such as the XFEM [START_REF] Oliver | A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM[END_REF][START_REF] Haghighat | On modeling of fractured media using an enhanced embedded discontinuity approach[END_REF]. Even though EFEMs possess numerous desirable properties, they are scarcely used compared to the other aforesaid methods. One reason probably stems from the numerous variants that have been published so far, moreover, they are still undergoing significant evolutions, see, e.g., [START_REF] Oliver | Crack-path field and strain-injection techniques in computational modeling of propagating material failure[END_REF][START_REF] Zhang | Strong discontinuity embedded approach with standard SOS formulation: Element formulation, energy-based crack-tracking strategy, and validations[END_REF][START_REF] Lloberas-Valls | Strain injection techniques in dynamic fracture modeling[END_REF]. The most recent EFEMs have never been compared and their performance and convergence rates are little known. Hence, although

EFEMs have proven to be valuable tools with a broad scope of application, key information is still missing to widen their acceptance and use, and it remains unclear how to decide which EFEM is best suited to solve a given problem, or how it compares with other EFEM variants.

The goal of this study is to narrow this knowledge gap. To do so, quantitative estimates of the convergence rates and accuracy of various EFEMs must be made available. Previous EFEMs studies mainly focused on the convergence of local quantities of interest, such as reaction forces, but, when a deeper understanding or assessment is sought, more advanced measures are also needed [START_REF] Hiller | Measuring convergence of mixed finite element discretizations: an application to shell structures[END_REF]. This is in sharp contrast with methods such as the XFEM, whose convergence has been proven [START_REF] Babuška | The Partition of Unity Method[END_REF], and convergence rates numerically checked [START_REF] Béchet | Improved implementation and robustness study of the X-FEM for stress analysis around cracks[END_REF][START_REF] Laborde | High-order extended finite element method for cracked domains[END_REF].

Our study will focus on the EFEM proposed by Yang and co-workers: the augmented finite element method [START_REF] Liu | An accurate and efficient augmented finite element method for arbitrary crack interactions[END_REF][START_REF] Liu | An efficient augmented finite element method for arbitrary cracking and crack interaction in solids: EFFICIENT A-FEM FOR ARBITRARY CRACKING AND CRACK IN-TERACTION IN SOLIDS[END_REF] (AFEM). These authors developed an EFEM whose formulation is straightforward and that departs from others EFEMs on several aspects: i) it allows to model weak discontinuities (i.e., material interfaces) and strong discontinuities (i.e., cracks) as well as the transition from the former to the latter, ii) it gives rise to symmetrical stiffness matrices, iii) it permits to embed multiple intersecting discontinuities within an element and iv) it does not require iterations at the element level, even if nonlinear cohesive cracks are employed [START_REF] Liu | A consistency-check based algorithm for element condensation in augmented finite element methods for fracture analysis[END_REF]. The relative simplicity of the AFEM formulation allowed the authors to rapidly extend it to thermomechanical applications [START_REF] Jung | Augmented finite-element method for arbitrary cracking and crack interaction in solids under thermo-mechanical loadings[END_REF], dynamic loadings [START_REF] Gu | An inertia-based stabilizing method for quasi-static simulation of unstable crack initiation and propagation[END_REF], three-dimensional studies of heterogeneous materials [START_REF] Naderi | Effect of interface properties on transverse tensile response of fiber-reinforced composites: Three-dimensional micromechanical modeling[END_REF] as well as large deformation of shells [START_REF] Wang | Nonlinear augmented finite element method for arbitrary cracking in large deformation plates and shells[END_REF]. The method has been implemented as a user element in Abaqus and is reported to be 50 times faster than the phantom node method (PNM) natively available in this software [START_REF] Liu | A consistency-check based algorithm for element condensation in augmented finite element methods for fracture analysis[END_REF].

In the present work, we restricted ourselves to the modelling of traction-free cracks, thus omitting the use of cohesive zones. From their very inception, EFEMs were designed to model the propagation of cohesive cracks that cancel stress singularities and circumvent pathological mesh-dependency [START_REF] Simo | An analysis of strong discontinuities induced by strain-softening in rateindependent inelastic solids[END_REF]. Nevertheless, much is to be gained from our "traction-free study" since we can rely on available analytical solutions and hence provide precise estimates of the accuracy and convergence properties of the AFEM in this situation. Such estimates would be notoriously more difficult to compute in the presence of cohesive cracks (see, e.g., [START_REF] Hiller | Measuring convergence of mixed finite element discretizations: an application to shell structures[END_REF]). Our assessment of the AFEM accuracy includes: i) the study of locking properties, ii) the investigation of crack-induced stiffness losses in structures, iii) the h-convergence in the energy norm and iv) the accuracy of the estimated stress-intensity factors. Quantitative comparisons with the standard finite element method (FEM), the phantom node method (PNM), the element deletion method (EDM) and another embedded finite element method (EFEM) will also be drawn. In Section 2, the methods that will be compared with the AFEM in this study are presented. In Section 3, the derivation of the AFEM for the modelling of traction-free cracks is detailed. In Section 4, we consider several numerical tests to evaluate the performances of the AFEM and compare it to the other aforementioned methods.

MODELLING OF TRACTION-FREE CRACKS WITH SOME FINITE ELEMENT BASED METH-

ODS

This section introduces the methods to be compared with the augmented finite element method (AFEM) throughout the paper: the element deletion method (EDM), the finite element method (FEM), the phantom node method (PNM) and the embedded finite element method (EFEM). The element deletion method (EDM), also called "kill element strategy", "element removal methodology" or "element erosion", is one of the earliest method employed to represent cracks with standard finite elements. Its application is straightforward since cracks are simply modelled by a set of deleted elements, see Figure 1. Although the method is called element deletion method, elements are not necessarily suppressed from the mesh, but their stresses are set to zero whatever the strain state. The EDM gives rise to cracked volumes, termed "blunt cracks" [START_REF] Cedolin | Effect of finite element choice in blunt crack band analysis[END_REF], instead of crack surfaces, denoted as "sharp cracks" or "discrete cracks" in the remainder of this work. One noteworthy application of the EDM is crash/impact simulations conducted with the so-called explicit finite element scheme (see, among others, [START_REF] Zukas | Introduction to hydrocodes[END_REF]). Explicit schemes are conditionally stable and the stable time step decreases as the mesh gets distorted, (see, e.g., chapter 4.5 [START_REF] Zukas | Introduction to hydrocodes[END_REF]). Thus, to get a solution in an acceptable amount of time, some authors erode the elements that reduce the stable time step below a user-defined value (see, e.g., chapter 4.3 [START_REF] Zukas | Introduction to hydrocodes[END_REF]).

Several fracture mechanics related theories also involve the use of the EDM, in conjunction with the standard FEM:

Eigenfracture [START_REF] Pandolfi | An eigenerosion approach to brittle fracture: AN EIGENEROSION APPROACH TO BRITTLE FRACTURE[END_REF], Continuum Damage Models [START_REF] Song | A method for dynamic crack and shear band propagation with phantom nodes[END_REF], or Finite Fracture Mechanics [START_REF] Li | A finite fracture model for the analysis of multi-cracking in woven ceramic matrix composites[END_REF] to name a few. To the best of the authors' knowledge, the accuracy at which sharp cracks can be modelled with the EDM has not been fully evaluated in the literature. The EDM was shown to give sufficiently accurate stress intensity factor to be considered for crack propagation analysis [START_REF] Cedolin | Effect of finite element choice in blunt crack band analysis[END_REF]. Yet, its convergence rate (e.g., in the energy norm) remains unknown. In this study, the elements intersected by a crack are not deleted but their stress state is set to zero. The meshes are made of standard finite elements: either constant strain triangles integrated with a 1-point integration scheme or bilinear quadrilateral integrated with a 2×2 Gauss integration scheme. The formulation of standard finite elements is not recalled here and we refer the interested reader to reference textbooks [START_REF] Hughes | The finite element method: linear static and dynamic finite element analysis[END_REF][START_REF] Zienkiewicz | Its basis and fundamentals[END_REF][START_REF] Bathe | Finite element procedures[END_REF].

The standard finite element method (FEM)

A straightforward manner to represent cracks, also called strong discontinuities [START_REF] Simo | An analysis of strong discontinuities induced by strain-softening in rateindependent inelastic solids[END_REF], is to mesh them explicitly with the standard FEM, as depicted in Figure 1. It is one of the most employed technique to model strong discontinuities [START_REF] Ingraffea | Computational Fracture Mechanics[END_REF], and, contrary to the element deletion method, it allows to represent cracks as surfaces. When the simulation of growing cracks is undertaken, adaptative remeshing must be employed so that the mesh conforms to the evolving crack geometry. Continuously updating the mesh and computing quantities of interest (e.g., stress intensity factors or energy release rate) is a tedious task and sophisticated algorithms need to be employed [START_REF] Branco | A review on 3D-FE adaptive remeshing techniques for crack growth modelling[END_REF]. Furthermore, the presence of cracks makes the stress field singular, which in turns degrades the convergence rate of the FEM. Indeed, problems comprising strong discontinuities converge with an error of O(h 0.5 ) in the energy norm, independently of the order of the finite elements [START_REF] Pin | On the convergence of the finite element method for problems with singularity[END_REF]. Moreover, special finite elements are often employed in the vicinity of the crack tip to accurately compute stress intensity factors see, e.g., [START_REF] Barsoum | On the use of isoparametric finite elements in linear fracture mechanics[END_REF]. The FE meshes used in this study are either composed of linear triangular elements with one integration point or bilinear quadrilateral elements integrated with a 2×2 Gauss scheme.

The phantom node method (PNM)

To overcome the remeshing difficulties, enriched variants of the standard FEM that allow embedding cracks within elements have been developed. The most popular extensions include the extended finite element method (XFEM) [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF],

the generalized finite element method (GFEM) [START_REF] Duarte | Generalized Finite Element Methods for Three Dimensional Structural Mechanics Problems[END_REF] and the phantom node method (PNM) [START_REF] Hansbo | A finite element method for the simulation of strong and weak discontinuities in solid mechanics[END_REF]. These approaches are special instances of the partition of unity method (PUM) [START_REF] Babuška | The Partition of Unity Method[END_REF] and are now recognised to be closely related [START_REF] Song | A method for dynamic crack and shear band propagation with phantom nodes[END_REF]. They are implemented in numerous commercial softwares (e.g., SAMCEF, ABAQUS, LS-DYNA or ANSYS) and are used to solve problems of industrial complexity [START_REF] Bordas | Enriched finite elements and level sets for damage tolerance assessment of complex structures[END_REF]. Their main drawback is that the discontinuities are modelled thanks to additional degrees of freedom located at the standard element nodes. Hence, as the cracks grow, the set of equations to be solved at the global level increases. The resulting dynamic allocation of degrees of freedom complicates the efficient implementation of these methods. The PNM, the GFEM, and the XFEM are closely related as the extrinsic enrichments used in these methods have the same structure. When employed to model traction-free cracks, they are of similar accuracy and share the same convergence rates [START_REF] Vu-Bac | A Phantom-Node Method with Edge-Based Strain Smoothing for Linear Elastic Fracture Mechanics[END_REF]. As with the FEM, the convergence rate of these methods when modelling traction-free cracks is suboptimal. Indeed, unless a special geometrical enrichment [START_REF] Béchet | Improved implementation and robustness study of the X-FEM for stress analysis around cracks[END_REF][START_REF] Laborde | High-order extended finite element method for cracked domains[END_REF] is used in the vicinity of the crack tip, these methods converge with an error of O(h 0.5 ) in the energy norm, whatever the order of the shape functions [START_REF] Laborde | High-order extended finite element method for cracked domains[END_REF]. In this paper, we make use of the phantom node method natively integrated in the software ABAQUS v6. [START_REF] Béchet | Improved implementation and robustness study of the X-FEM for stress analysis around cracks[END_REF]. A noteworthy attribute of the PNM is that it is easier to implement than other enriched formulation such as the XFEM since cracks are somewhat modelled thanks to overlapping elements [START_REF] Song | A method for dynamic crack and shear band propagation with phantom nodes[END_REF][START_REF] Vu-Bac | A Phantom-Node Method with Edge-Based Strain Smoothing for Linear Elastic Fracture Mechanics[END_REF]. The formulation of the phantom node method is not recalled here and we direct the interested reader to dedicated papers [START_REF] Hansbo | A finite element method for the simulation of strong and weak discontinuities in solid mechanics[END_REF].

Embedded finite element method (EFEM) with enhanced strain modes (SM)

The development of embedded finite element methods, also called finite element methods with embedded discontinuities (EFEMs) [START_REF] Jirásek | Comparative study on finite elements with embedded discontinuities[END_REF], started in the early 90's [START_REF] Dvorkin | Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions[END_REF]. They share the same purpose as the XFEM or the PNM: representing discontinuities independently of the mesh. To model cracks, EFEMs make use of element-supported enrichments, which strongly differs from the XFEM that employs node-supported enrichments [START_REF] Oliver | A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM[END_REF]. As a result, the degrees of freedom that represent the EFEMs enrichments can be condensed at the element-level. The condensation process leads to interelement discontinuities in the displacement field, see Figure 1, but the resulting problem is not larger than the original one, no matter the number of discontinuities, which is a striking advantage when compared with the XFEM, the PNM or the GFEM. Despite their noteworthy convenience, EFEMs have not been incorporated into commercial codes yet, possibly due to the limitations inherent to early formulations of EFEMs. In the late 90's, Jirásek compared and classified the EFEMs published at that time [START_REF] Jirásek | Comparative study on finite elements with embedded discontinuities[END_REF]. He concluded that only three classes of EFEMs existed, and that one was superior to the others: the so-called statically and kinematically optimal nonsymmetric formulation (SKON).

He then used it to solve typical concrete fracture problems [START_REF] Jirasek | Embedded crack model. Part II: Combination with smeared cracks[END_REF] and, although satisfactory results were obtained, some severe drawbacks were also noticed [START_REF] Jirásek | Computational resolution of strong discontinuities[END_REF]. In the aforementioned reference, the authors demonstrated that the strains on both part of an embedded finite element split up by a crack are not fully decoupled, even after complete failure, leading to stress locking, i.e., non-vanishing stress transfers across a fully opened discontinuity. They concluded that XFEM was preferable due its superior kinematic properties. Later EFEMs formulations aimed at overcoming these deficiencies. Their root causes lie in a poor kinematic description of the crack opening, as discovered in [START_REF] Ehrlich | Finite element methods for the analysis of softening plastic hinges in beams and frames[END_REF]. Indeed, a constant crack opening was usually adopted with early EFEMs and led to stress locking. The incorporation of non-uniform crack openings, also called hinge modes [START_REF] Ehrlich | Finite element methods for the analysis of softening plastic hinges in beams and frames[END_REF], non-uniform discontinuity modes [START_REF] Manzoli | A general technique to embed non-uniform discontinuities into standard solid finite elements[END_REF], strain modes [START_REF] Linder | Finite elements with embedded strong discontinuities for the modeling of failure in solids[END_REF] or separation modes [START_REF] Dujc | Stress-hybrid quadrilateral finite element with embedded strong discontinuity for failure analysis of plane stress solids: STRESS-HYBRID QUADRILATERAL WITH EMBED-DED DISCONTINUITY[END_REF], proved to be a successful way to suppress locking. It was for instance demonstrated in [START_REF] Wu | Unified analysis of enriched finite elements for modeling cohesive cracks[END_REF] that the use of the SKON, equipped with enhanced strain mode, produces similar results as the XFEM. Hence, the use of EFEMs with non-uniform crack openings is a promising way to model discrete cracks without introducing additional degrees of freedom. Nevertheless, the design of the aforesaid strain modes is involved and, to the authors best knowledge, has been seldom performed in 3D or with high-order elements [START_REF] Armero | Three-dimensional finite elements with embedded strong discontinuities to model material failure in the infinitesimal range: 3D FINITE ELEMENTS WITH EMBEDDED STRONG DISCONTINUITIES[END_REF][START_REF] Linder | A marching cubes based failure surface propagation concept for three-dimensional finite elements with non-planar embedded strong discontinuities of higher-order kinematics: A MARCHING CUBES-BASED FAILURE SURFACE PROPAGATION CONCEPT[END_REF]. In this paper, we will consider some of the results published by Linder and Armero, related to an EFEM equipped with enhanced strain modes [START_REF] Linder | Finite elements with embedded strong discontinuities for the modeling of failure in solids[END_REF]. Their EFEM will be denoted as "EFEM with Strain Modes" (EFEM-SM) in the remainder of this work. The formulation of this EFEM-SM is not presented here and we direct the interested reader to the aforesaid paper.

MODELLING OF TRACTION-FREE CRACKS WITH THE AUGMENTED FINITE ELEMENT METHOD (AFEM)

The augmented finite element method (AFEM), developed by Yang and co-workers [START_REF] Liu | An accurate and efficient augmented finite element method for arbitrary crack interactions[END_REF], belongs to the category of embedded finite element methods (EFEMs). It departs from other EFEMs since it does not make use of enhanced strain modes and, yet, it is free from stress locking. Another noteworthy attribute of the AFEM is that it allows to model weak discontinuities (i.e., material interfaces) and strong discontinuities, as well as the transition from the former to the latter. Moreover, it permits to embed multiple intersecting discontinuities within an element. The AFEM literature focuses on the modelling of cohesive cracks. In this document, we will however deal with traction-free cracks.

The "traction-free crack derivation" of the AFEM that we are about to present must not be considered as another AFEM, but as a subset of the original one. Indeed, as soon as a cohesive crack is fully damaged and opened, the original AFEM and the "traction-free crack AFEM" are identical. The traction-free crack derivation allowed us to discover some key aspects of the AFEM while keeping the number of equations to a minimum.

Strong form, weak form and condensed discretized equilibrium equation

The reference situation to be considered is schematised in Figure 2. Let Ω be the domain occupied by a solid.

A material point inside the domain is labelled as

x ∈ Ω. A strong discontinuity surface Γ c = Γ + c ∪ Γ - c
splits Ω into two subdomains Ω + and Ω -. The prescribed external tractions t + ext and t - ext are applied on boundary Γ t = Γ + t ∪ Γ - t whereas the displacements ū+ and ūare imposed on boundary Γ u = Γ + u ∪ Γ - u . The domains on both sides of the discontinuity are assumed to be elastic and homogeneous, yet Ω + and Ω -can be made of different materials. We further assume small strain and displacement conditions. In the absence of body forces the field equations governing 

∇σ + (x) = 0 x ∈ Ω + ∇σ -(x) = 0 x ∈ Ω - (1) 
σ + (x).n + (x) = t + ext (x) x ∈ Γ + t σ -(x).n -(x) = t - ext (x) x ∈ Γ - t (2) u + (x) = ū+ (x) x ∈ Γ + u u -(x) = ū-(x) x ∈ Γ - u (3) t + int (x) = σ + (x).n + (x) x ∈ Γ + c t - int (x) = σ -(x).n -(x) x ∈ Γ - c (4) 
σ + and σ -stand for the stress fields in Ω + and Ω -respectively, t + int and t - int are the tractions along the discontinuity surfaces Γ + c and Γ - c whereas n + and n -are the outward pointing normals of Ω + and Ω -respectively. The constitutive law and the strain-displacement equations for the two subdomains read

σ + (x) = C + : + (x) x ∈ Ω + + (x) = 1 2 (∇ T u + (x) + ∇u + (x)) x ∈ Ω + (5) σ -(x) = C -: -(x) x ∈ Ω - -(x) = 1 2 (∇ T u -(x) + ∇u -(x)) x ∈ Ω - (6) 
where C + and C -are the stiffness tensors of the subdomains Ω + and Ω -respectively. The displacement fields u + and u -are subsets of the kinematically admissible displacement field, U:

u + ∈ U = {v + ∈ H 1 : v + = 0 x ∈ Γ + u } u -∈ U = {v -∈ H 1 : v -= 0 x ∈ Γ - u } (7) 
where H 1 is the space of functions with square-integrable derivatives (i.e., the Sobolev space of degree 1). Equations ( 1)-( 7) can be converted into a weak form using the principle of virtual work. Its application to the two subdomains Ω + and Ω -leads to

Ω + σ + (x) : + (v + (x))dΩ = Γ + t t + ext (x).v + (x)dΓ + Γ + c t + int (x).v + (x)dΓ ∀v ∈ U (8) 
Ω - σ -(x) : -(v -(x))dΩ = Γ - t t - ext (x).v -(x)dΓ + Γ - c t - int (x).v -(x)dΓ ∀v ∈ U (9) 
The left-hand sides of equations ( 8) and ( 9) are the internal virtual work, the right-hand sides are the virtual work carried out by the external forces and the tractions along the strong discontinuity surface. The existence of a tractionfree strong discontinuity surface translates into the following condition:

t - int (x) = t + int (x) = 0 x ∈ Γ c (10) 
The subdomains Ω + and Ω -are now discretized with finite elements. Let {d + } and {d -} be the vectors of degrees of freedom of Ω + and Ω -respectively. The displacement field in each sub-domain is obtained thanks to standard FE shape function matrices [N + ] and [N -]:

u + (x) = [N + (x)]{d + } x ∈ Ω + u -(x) = [N -(x)]{d -} x ∈ Ω - (11) 
These shape functions are expressed as if the strong discontinuity surfaces were defined from the onset of the numerical calculation using a conforming mesh. Substitution of ( 11) into the weak forms ( 8) and ( 9) followed by the standard Bubnov-Galerkin approach leads to the discretized equilibrium equations

[L + ]{d + } =    f ext + f cohesive +    [L -]{d -} =    f ext - f cohesive -    (12) 
where [L + ] and [L -] are the stiffness matrices of the two subdomains, {f ext + } and {f ext -} are the external force vectors induced by the external tractions and {f cohesive + } and {f cohesive -} are the equivalent force vectors induced by the tractions on the strong discontinuity surface such that

[L + ] = Ω + [B + (x)] t [C + ][B + (x)]dΩ [L -] = Ω - [B -(x)] t [C -][B -(x)]dΩ ( 13 
)
{f ext + } = Γ + t [N + (x)]t + ext (x)dΓ {f ext -} = Γ - t [N -(x)]t - ext dΓ (14) 
{f cohesive + } = Γ + c [N + (x)]t + int (x)dΓ {f cohesive -} = Γ - c [N -(x)]t - int (x)dΓ (15) 
Equation ( 13) introduces the strain-displacement matrices, [B + ] and [B -], which contain the derivatives of the classical FE shape functions (see, e.g., [START_REF] Hughes | The finite element method: linear static and dynamic finite element analysis[END_REF] section 2.5). Substitution of ( 10) into (15) leads to:

{f cohesive + } = {f cohesive -} = {0} (16) 
The degrees of freedom vectors in [START_REF] Oliver | Crack-path field and strain-injection techniques in computational modeling of propagating material failure[END_REF] are further partitioned between those associated with the strong discontinuity surface (called {dint + } and {dint -}) and those associated with the bulk (called {dext + } and {dext -}).

{d

+ } =    dext + dint +    {d -} =    dext - dint -    ( 17 
)
This partition is used to rewrite [START_REF] Zhang | Strong discontinuity embedded approach with standard SOS formulation: Element formulation, energy-based crack-tracking strategy, and validations[END_REF] the following way:

  L 11 + L 12 + L 21 + L 22 +      dext + dint +    =    f ext + 0      L 11 -L 12 - L 21 -L 22 -      dext - dint -    =    f ext - 0    (18) 
Relations ( 18) allow to express the displacement at the discontinuity as a function of the external displacement:

{dint + } = -[L 22 + ] -1 [L 21 + ]{dext + } {dint -} = -[L 22 -] -1 [L 21 -]{dext -} (19) 
Substitution of ( 19) into (18) allows to eliminate {dint + } and {dint -} from the discretized equilibrium equations.

The resulting relation is called the condensed discretized equilibrium equation and reads

{f ext} =   L - 11 -L 12 -L -1 22 -L 21 - 0 0 L + 11 -L 12 + L -1 22 + L 21 +   {dext} (20) 
where

{dext} =    dext - dext +    {f ext} =    f ext - f ext +    (21) 
Equation ( 20) introduces the stiffness matrix of the augmented finite elements. These element matrices are assembled to form the global matrix of the system. Since {dint + } and {dint -} do not appear in the condensed discretized equilibrium equation [START_REF] Liu | A consistency-check based algorithm for element condensation in augmented finite element methods for fracture analysis[END_REF], the nodes associated with these DOF, called internal nodes (see Figure 3) do not contribute to the size of the global stiffness matrix. As highlighted by Equation ( 11), the AFEM and the classical FEM make use of the same shape functions to describe the displacement field on both sides of a strong discontinuity. The main difference between the FEM and the AFEM lies in the fact that the internal nodes (see Figure 3) are condensed at the element level with the AFEM. As a result, the DOF associated with these internal nodes are absent from the discretized equilibrium equation [START_REF] Liu | A consistency-check based algorithm for element condensation in augmented finite element methods for fracture analysis[END_REF]. Hence, the AFEM can model an arbitrary number of strong discontinuities without modifying the number of DOF per element or the size of the assembled stiffness matrix. This attractive property, not shared by the FEM or the XFEM, comes at a price: since the internal nodes are condensed at the element level, the interelement compatibility is lost.

Equation [START_REF] Liu | A consistency-check based algorithm for element condensation in augmented finite element methods for fracture analysis[END_REF] has been derived under the assumption of a traction-free crack. It thus differ from the condensed discretized equilibrium of the original AFEM which contains additional terms linked to the existence of cohesive stresses, see, e.g., Equation 19 in [START_REF] Liu | An efficient augmented finite element method for arbitrary cracking and crack interaction in solids: EFFICIENT A-FEM FOR ARBITRARY CRACKING AND CRACK IN-TERACTION IN SOLIDS[END_REF]. One can nevertheless check that the former equation reduces to [START_REF] Liu | A consistency-check based algorithm for element condensation in augmented finite element methods for fracture analysis[END_REF] when cohesive stresses are null. Hence, as stated in the introduction of the present section, the AFEM we just derived and the original AFEM are fully equivalent in the presence of traction-free cracks.

The compactness of the traction-free crack discretized equilibrium, [START_REF] Liu | A consistency-check based algorithm for element condensation in augmented finite element methods for fracture analysis[END_REF], greatly facilitates comparisons of the AFEM with other newly developed EFEMs. For instance, one can readily check that the AFEM, the so-called continuum decohesive finite element method [START_REF] Prabhakar | A novel continuum-decohesive finite element for modeling in-plane fracture in fiber reinforced composites[END_REF] and the extended cohesive damage model [START_REF] Li | The implementation of the extended cohesive damage model for multicrack evolution in laminated composites[END_REF] share the very same discretized condensed equilibrium equation (see, e.g., equation 12 in [START_REF] Li | The implementation of the extended cohesive damage model for multicrack evolution in laminated composites[END_REF]). The only difference between the AFEM and the two aforementioned methods lies in the technique employed to account for the cohesive stresses. Thus, the use of any of these methods will deliver identical results if traction-free cracks are modelled, which is the topic of this paper.

The compactness of the traction-free discretized equilibrium equation ( 20) also highlights some flaws of the AFEM (which equally affect the continuum decohesive finite element method and the extended cohesive damage model).

Indeed, the use of the former equation requires the invertibility of some stiffness submatrices. These submatrices invertibility is related to i) the parent element employed (i.e., constant strain triangular element, bilinear quadrilateral element, etc.) and to ii) the location of the crack within the element. As will be shown later, the use of constant strain triangular elements unavoidably induces the singularity of the aforesaid submatrices. To the authors best knowledge, this topic of prime importance has only been briefly discussed in [START_REF] Liu | An accurate and efficient augmented finite element method for arbitrary crack interactions[END_REF] without being satisfactorily resolved. The next chapter particularizes the above equations to 2D elements while dealing with this issue.

Application to the 2D elements of this study

The condensed discretized equilibrium equation ( 20) can be applied to parent elements of any dimension and order. Particularization to 2D elements with linear shape functions is considered next. The parent elements used in this study are the constant strain triangle, called hereafter T3, and the bilinear quadrilateral called Q4. A strong discontinuity splits a T3 into a triangular domain and a quadrangle, the resulting element is called an AT3. When a Q4 is augmented, two situations can occur depending on the location of the discontinuity i) it is split into two quadrangles and the resulting element is named AQ4-1 or ii) it is split into a triangle and a pentagon, the resulting element is called AQ4-2, see Figure 3. As stated in the introduction, the most salient feature of the AFEM is that augmented elements and their parent elements share the same degrees of freedom, see Table 1. In this study, the stiffness matrices of quadrilateral and triangular subdomains are computed thanks to a 2×2 points Gauss integration scheme and a 1-point integration scheme respectively. Pentagonal elements, called P5, are implemented using the 225 polygonal finite element method proposed by Sukumar and co-workers [START_REF] Sukumar | Conforming polygonal finite elements[END_REF]. A 6-point integration scheme has been used to evaluate the stiffness matrices of the P5 used in this study. 

Augmented Element {dext + } t {dext -} t {dint + } t (condensed DOF) {dint -} t (condensed DOF) AT3 {u 3 , v 3 } {u 1 , v 1 , u 2 , v 2 } {u 4 , v 4 , u 5 , v 5 } {u 7 , v 7 , u 6 , v 6 } AQ4-1 {u 3 , v 3 , u 4 , v 4 } {u 1 , v 1 , u 2 , v 2 } {u 5 , v 5 , u 6 , v 6 } {u 8 , v 8 , u 7 , v 7 } AQ4-2 {u 4 , v 4 } {u 1 , v 1 , u 2 , v 2 , u 3 , v 3 } {u 5 , v 5 , u 6 , v 6 } {u 8 , v 8 , u 7 , v 7 }
The condensed discretized equilibrium equation ( 20) makes use of the inverse of matrices L + 22 and L - 22 . As highlighted by Equation ( 18), [L ± 22 ] are submatrices of [L ± ]. A mechanical interpretation of the involved submatrices is now provided to ease the study of their invertibility. Submatrices [L ± 22 ] appear when one incorporates essential boundary conditions in the stiffness matrix by the method of reduction (see, e.g., [START_REF] Wu | A note on imposing displacement boundary conditions in finite element analysis[END_REF]). To illustrate this fact, suppose that one seeks to impose the essential boundary conditions {dext ± } = {0} in equation ( 12) thanks to the method of reduction. The discretized equilibrium equations in Ω + and Ω -would write:

  L 11 ± L 12 ± L 21 ± L 22 ±      dext ± dint ±    =   L 11 ± L 12 ± L 21 ± L 22 ±      0 dint ±    =    f ext ± f cohesive ±    ( 22 
)
To solve for the unconstrained degrees of freedom, {dint ± }, one needs to invert the stiffness submatrices [L 22 ± ]: (see, e.g., [START_REF] Hughes | The finite element method: linear static and dynamic finite element analysis[END_REF] chapter 2.8 for a proof). Hence, submatrices [L 22 + ] of elements AQ4-2 and AT3, are singular since the rotation of the associated subdomains is not prevented, see Figure 4. As a result, the condensed discretized equilibrium equation ( 20) is not applicable to these elements. To circumvent these singularities, the authors of the AFEM suggested to not fully relax the cohesive stresses, which stabilizes the elements [START_REF] Liu | An efficient augmented finite element method for arbitrary cracking and crack interaction in solids: EFFICIENT A-FEM FOR ARBITRARY CRACKING AND CRACK IN-TERACTION IN SOLIDS[END_REF]. Nevertheless, this approach prevents the modelling of truly traction-free cracks. Moreover, the amount of cohesive stresses needed to stabilize the elements is not discussed. Singular stiffness submatrices also arise in other EFEM formulations, see, e.g. [START_REF] Manzoli | A general technique to embed non-uniform discontinuities into standard solid finite elements[END_REF][START_REF] Linder | Finite elements with embedded strong discontinuities for the modeling of failure in solids[END_REF][START_REF] Dujc | Stress-hybrid quadrilateral finite element with embedded strong discontinuity for failure analysis of plane stress solids: STRESS-HYBRID QUADRILATERAL WITH EMBED-DED DISCONTINUITY[END_REF]. To suppress these singularities some authors impose kinematic constraints on the crack opening: a constant opening is often enforced.

dint ± = L 22 ± -1 f cohesive ± (23) 
This may induce stress-locking [START_REF] Manzoli | A general technique to embed non-uniform discontinuities into standard solid finite elements[END_REF][START_REF] Linder | Finite elements with embedded strong discontinuities for the modeling of failure in solids[END_REF] or involve the use of a problem-dependent stabilization parameter that needs to be calibrated [START_REF] Linder | Finite elements with embedded strong discontinuities for the modeling of failure in solids[END_REF][START_REF] Dujc | Stress-hybrid quadrilateral finite element with embedded strong discontinuity for failure analysis of plane stress solids: STRESS-HYBRID QUADRILATERAL WITH EMBED-DED DISCONTINUITY[END_REF]. In this paper we propose a parameter-free way to deal with the inversion of singular matrices:

we compute the Moore-Penrose inverse (also called pseudo-inverse) of the singular matrices. Some useful properties of pseudo-inverses are briefly recalled i) the pseudo-inverse of a matrix always exists and is unique, ii) if a matrix [M ] is invertible, its pseudo-inverse equals its inverse: M -1 = M † . As a result, the use of the pseudo-inverses does not affect the formulation of the AQ4-1 whose submatrices, [L 22 + ], are invertible. A great advantage of this "pseudo-inverse strategy" is that the modification with respect to the original derivation is minimal: equation ( 19) is rewritten

{dint + } = -[L 22 + ] † [L 21 + ]{dext + } {dint -} = -[L 22 -] † [L 21 -]{dext -} (24) 
and equation [START_REF] Liu | A consistency-check based algorithm for element condensation in augmented finite element methods for fracture analysis[END_REF] becomes

{f ext} =   L - 11 -L 12 -L † 22 -L 21 - 0 0 L + 11 -L 12 + L † 22 + L 21 +   {dext} (25) 

NUMERICAL BENCHMARKS

This section presents the results obtained in a series of numerical tests designed to evaluate the performance of the augmented finite element method (AFEM). The absence of stress locking in augmented finite elements is confirmed 230 thanks to the partial tension test performed in Section 4.1. Section 4.2 focuses on the stiffness loss induced by the presence of a crack in a structure, and compares the performances of the AFEM, the element deletion method (EDM), 

Partial tension test

The partial tension test is a numerical experiment designed by Linder and Armero to assess the level of stress locking of some embedded finite element methods (EFEMs) [START_REF] Linder | Finite elements with embedded strong discontinuities for the modeling of failure in solids[END_REF]. Slightly modified versions of this test can also be encountered in the literature [START_REF] Wu | Unified analysis of enriched finite elements for modeling cohesive cracks[END_REF][START_REF] Dujc | Stress-hybrid quadrilateral finite element with embedded strong discontinuity for failure analysis of plane stress solids: STRESS-HYBRID QUADRILATERAL WITH EMBED-DED DISCONTINUITY[END_REF]. Linder and Armero showed that classical EFEMs, i.e., with a constant crack opening, failed this test and that the use of embedded finite element methods with enhanced strain modes (EFEM-SM)

was compulsory to pass it [START_REF] Linder | Finite elements with embedded strong discontinuities for the modeling of failure in solids[END_REF]. The partial tension test consists in modelling a homogeneous square block, cut in half by a traction-free crack, see Figure 5 a. The block is discretized with a single augmented element: the AQ4-1 presented in Section 3.2, see Figure 5 b. We recall that, although the AQ4-1 embeds a crack, its stiffness matrix is only 8 × 8;

the choice of the PNM or the FEM to model the cracked block would result in the use of a 16 × 16 stiffness matrix.

Horizontal displacements of equal magnitudes δ, but opposite directions, are imposed on the bottom corner nodes of the cracked structure, leading to an axial stretching of the lower subdomain, denoted as Ω -, see Figure 5 c. The test is passed if the upper domain, Ω + , is stress-free and if no reaction forces are measured on the nodes located in Ω + . We made use of the same geometry, material properties and load steps as in [START_REF] Linder | Finite elements with embedded strong discontinuities for the modeling of failure in solids[END_REF]: a plane stress state is assumed, the block side length is L = 200mm, the Young's modulus is E = 30GP a, the Poisson's ratio is ν = 0, the total displacement is δ = 0.1mm and it is applied in 10 steps.

The reaction forces and the stresses at the four integration points located in Ω + are plotted in Figure 6. It can be seen that the test is passed: the subdomain Ω + is stress-free and the (the proof is provided in Appendix A). It is also instructive to inspect the stresses measured in the lower subdomain, Ω -, and to compare them with those obtained with the EFEM-SM of Linder and Armero [START_REF] Linder | Finite elements with embedded strong discontinuities for the modeling of failure in solids[END_REF]. As highlighted by Figure 7, the EFEM-SM predicts a constant uniaxial stress state in Ω -while a multiaxial and heterogeneous stress state is obtained with the AFEM. To get a better insight into the exact stress state in Ω -, we discretized the cracked block with a refined mesh comprising around 50000 quadrilateral elements and 100000 degrees of freedom, see corner. All these results were decently assessed with a single augmented element, as depicted in Figure 7.

Crack-induced stiffness loss

To further compare the AFEM and the EFEM-SM, we perform a numerical experiment, designed by Linder and Armero, that consists in measuring the stiffness of a cracked plate as the mesh is refined [START_REF] Linder | Finite elements with embedded strong discontinuities for the modeling of failure in solids[END_REF]. To enrich the comparison, we also benchmark the element deletion method (EDM), the finite element method (FEM) and the phantom node method (PNM). The geometry of interest is a cracked rectangular plate, with a height h = 20mm, a width w = 10mm and a crack length a = 5mm, see Figure 10. As in [START_REF] Linder | Finite elements with embedded strong discontinuities for the modeling of failure in solids[END_REF], plane strain conditions are assumed, the Young's modulus is E = 206.9GP a, the Poisson's ratio is ν = 0.29 and we only consider structured meshes made of quadrilateral elements.

A vertical displacement, δ = 1mm, is imposed on the upper edge of the plate and induces a Mode I loading of the crack, see Figure 10 a. The evolution of the associated reaction force is plotted in Figure 11. One can observe that all the benchmarked methods seem to converge toward the same reaction force as the mesh is refined. The EDM, the AFEM and the EFEM-SM produce virtually identical results and give rise to models that are softer than the actual structure as they systematically underestimate the reaction forces. This was also observed when using the AFEM to model weak discontinuities, and was proved to be caused by the presence of interelement discontinuities [START_REF] Essongue | Performance assessment of the augmented finite element method for the modeling of weak discontinuities[END_REF]. It strongly contrasts with the standard FEM and the PNM that are known to overestimate the stiffness [START_REF] Hughes | The finite element method: linear static and dynamic finite element analysis[END_REF][START_REF] Zienkiewicz | Its basis and fundamentals[END_REF][START_REF] Bathe | Finite element procedures[END_REF]. To get a better insight into the error levels of the benchmarked methods, we have computed the relative error in reaction force, defined as:

η = 100% × | f reaction -f reaction | f reaction ( 26 
)
where f reaction is the exact reaction force and f reaction is the reaction force computed with the numerical methods. In this study, the "exact" reaction force is estimated with the finest FEM mesh of Figure 11 which comprises around 1 million elements. The relative error in reaction force, along with the associated convergence rates, is plotted in Figure 12. It clearly highlights the different asymptotic convergence rates of the benchmarked methods: the EDM, the AFEM and the EFEM-SM converge with an error of O(h 0.7 ) while the FEM and the PNM converge at approximately O(h).
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Despite their faster convergence rate, the latter methods perform worse than the EDM, the AFEM and the EFEM-SM for element sizes ranging from 5mm to 50µm. Hence, unless a "highly refined" mesh is employed, a method as crude as the EDM outperforms advanced modelling techniques such as the PNM (in the authors' opinion, a mesh made of 50µm elements can already be considered as "highly refined" since the structure is 10mm wide). The EFEM-SM and the AFEM perform slightly better than the EDM but the differences are marginal, see Figure 12. where a horizontal displacement, δ = 1mm, is imposed on the upper edge of the plate. The evolution of the associated reaction force is plotted in Figure 13. The EFEM-SM is no longer part of the comparisons since no result could be found in the literature with these boundary conditions. As observed in Mode I, all the methods seem to converge toward the same value, the FEM and the PNM are stiffer than the actual structure and the EDM and the AFEM are systematically softer than the solid they are modelling. The PNM and the FEM provide notably different results with the coarsest meshes, which is surprising and contrasts with other observations [START_REF] Vu-Bac | A Phantom-Node Method with Edge-Based Strain Smoothing for Linear Elastic Fracture Mechanics[END_REF]. As mentioned in Section 2.3, we made use of the PNM implemented in Abaqus v6.16 and no indications regarding the integration scheme of the associated elements have been found in the documentation. It is likely that the PNM implemented in Abaqus make use of selective reduced integration schemes, which often outperforms full integration schemes as the one we employed with the Q4, (see, e.g., Chapter 9.9 [START_REF] Zienkiewicz | Its basis and fundamentals[END_REF]). The asymptotic convergence rates are nevertheless not affected by this feature. To get a better insight into the error levels of the benchmarked methods, the evolution of the relative error in reaction force with mesh refinement is plotted in Figure 14. It can be seen the asymptotic convergence rates of the numerical methods are the same as in Mode I. For the coarsest meshes the EDM and the AFEM exhibit a 305 non-monotonic behaviour as the error may increase as the mesh is refined. Nevertheless, in the present test case, the range of mesh sizes where this non-monotonic behaviour is observed coincides with the region where the AFEM outperforms both the FEM and the PNM (i.e, for mesh size ranging from 5mm to 0.9mm). Hence, despite the fact that the convergence rate of the AFEM is not monotonic in Mode II, the AFEM is more "coarse mesh accurate" than the FEM or the PNM. One also notices that the AFEM performs better than the EDM in Mode II: it is approximately 310 twice as accurate as the EDM for a given element size.

h-convergence in the energy norm

In this section we will focus on the error in the energy norm, rather than on the computation of some local quantities (e.g., the reaction forces). This error measure is at the core of some fundamental properties of the FEM, such as the Galerkin orthogonality (see, e.g., Chapter 4.3 [START_REF] Bathe | Finite element procedures[END_REF] and references therein), and is frequently employed to assess the convergence behaviour of the FEM and its variants. Since the use of the AFEM induces interelement discontinuities, its monotonic convergence toward the exact solution of a mathematical problem cannot be guaranteed (see, e.g., Chapter 4.4 [START_REF] Bathe | Finite element procedures[END_REF]). The goal of this section is to study the AFEM convergence behaviour, in the energy norm, through numerical experiments. Comparisons with the finite element method (FEM) and the element deletion method (EDM) will also be drawn and the performances of both triangular and quadrilateral elements will be investigated. Let us first introduce the error in the energy norm, as well as some related quantities, before presenting the tests performed in this section.

Let u be the exact solution of a mechanical problem and û an approximate solution, the error e is defined by:

e = u -û (27) 
Let Ω be the volume occupied by the structure of interest, the error in the energy norm reads:

||e|| Ω = Ω ( -ˆ ) : C : ( -ˆ ) dΩ 1 2 (28) 
where is the exact strain field, ˆ the approximate one and C the elasticity tensor. We will also make use of the energy error of a given finite element, defined as:

||e|| Ωi = Ωi ( -ˆ ) : C : ( -ˆ ) dΩ 1 2 (29) 
where the subscript i refers to individual elements such that i Ω i = Ω. We finally introduce the relative error in the energy error norm, ||η||:

||η|| = Ω ( -ˆ ) : C : ( -ˆ ) dΩ Ω : C : dΩ 1 2 (30) 
To investigate the AFEM convergence, we perform a test case often encountered in the XFEM literature [START_REF] Béchet | Improved implementation and robustness study of the X-FEM for stress analysis around cracks[END_REF][START_REF] Laborde | High-order extended finite element method for cracked domains[END_REF]: an infinite plate containing a horizontal crack is loaded by a remote stress field. We successively consider Mode I and Mode II loading of the crack. Plane strain is assumed and the material is homogeneous and isotropic with a Young's 

u I x = K I E r 2π (1 + ν)cos θ 2 (3 -4ν -cos(θ)) (31) 
u I y = K I E r 2π (1 + ν)sin θ 2 (3 -4ν -cos(θ)) (32) 
where K I is the Mode I stress intensity factor and (r, θ) are the polar coordinates associated with a reference frame centered at the crack tip, as depicted in Figure 15. The closed-form solution of the displacement field under Mode II loading, denoted as u II , is [START_REF] Westergaard | Bearing pressures and cracks[END_REF]:

u II x = K II E r 2π (1 + ν)sin θ 2 (5 -4ν + cos(θ)) (33) 
u II y = K II E r 2π (1 + ν)cos θ 2 (-1 + 4ν -cos(θ)) (34) 
In The benchmarked numerical methods provide noticeably different results when Mode II loading of the crack is considered. Indeed, as depicted in Figure 17, the FEM is more accurate and converge faster than the AFEM and the 325 EDM. Despite their similar converge rate, the AFEM is shown to be 25% more accurate than the EDM under Mode II loading. To gain further insights into these results, the spatial distribution of error is plotted in Figure 18. Conversely to the Mode I case, the energy error is no longer negligible along the crack lips when the EDM and the AFEM are employed. The inter-element incompability of the displacement field, induced by the use of the AFEM, is thought to be responsible for its underperformance under Mode II loading of the crack. A so far unmentioned treatment helps reducing the amount of inter-element incompabilities: in Reference [START_REF] Liu | An efficient augmented finite element method for arbitrary cracking and crack interaction in solids: EFFICIENT A-FEM FOR ARBITRARY CRACKING AND CRACK IN-TERACTION IN SOLIDS[END_REF] Yang and colleagues implemented a simple "crack-tip treatment" that guarantees the inter-element continuity of the displacement field along the edge that is shared by the crack-tip element and the element immediately ahead of it, which is a standard finite element. The displacement continuity at the crack-tip is enforced through simple multiple-point constraints involving the nodal displacements at the considered edge, as illustrated in Figure 19. With the notations introduced in the aforesaid Figure, the multiple-point constraints to enforce read:

   u 6 v 6    =    u 7 v 7    = 1 - l 72 l 23    u 2 v 2    + l 72 l 23    u 3 v 3    (35) 
where l 72 and l 23 are the lengths of segments 7-2 and 2-3, respectively. Whatever the mesh size, the stress field obtained with the AFEM is free from parasitic stresses and reproduces well the main characteristics of the exact stress field. A closer look at the transverse stress field, i.e. σ xx , reveals that the stresses are too low within the augmented elements. Thus, the error in transverse stresses is responsible for the energy error observed all along the crack lips in Mode II (see Figure 18). To get quantitative insights on this aspect, the transverse stress along the line of interest defined in Figure 22 is plotted in Figure 23. obtained with the AQ4 formulation, the above conclusions were found to be equally valid with the other augmented elements benchmarked in this study (i.e., the AT 3, the AT 3-T IP and the AQ4-T IP ).

Computation of stress intensity factors (SIFs)

This final benchmark investigates the relative accuracy of the stress intensity factors (SIFs) computed with the finite element method (FEM), the element deletion method (EDM) and the augmented finite element method (AFEM).

Accurate computations of SIFs is of prime importance in most of the crack growth analysis [START_REF] Ingraffea | Computational Fracture Mechanics[END_REF][START_REF] Branco | A review on 3D-FE adaptive remeshing techniques for crack growth modelling[END_REF], but, to the best of the authors knowledge, the AFEM ability to assess SIFs has never been put to test. To evaluate the accuracy of the benchmarked numerical methods, we make use of the same Mode I and Mode II load cases as those employed in Section 4.3 (see also, Figure 15). Material parameters and boundary conditions are kept the same and plane strain conditions are still assumed. The applied remote stress gives rise to the following SIFs: K I = 2802.5 and K II = 2802.5 in pure Mode I and pure Mode II, respectively.

To numerically estimate the stress intensity factors (SIFs) we proceed as follows: the energy release rate, G, is computed thanks to a domain integral method and Irwin's relation [START_REF] Irwin | Analysis of stresses and strains near the end of a crack traversing a plate[END_REF] is employed to compute the SIFs in pure Mode I and II, denoted as K1 and K2 :

Ki = G × E 1 -ν 2 for i ∈ {I, II} (36) 
The relative error in stress intensity factors (SIFs) is then computed as:

η = 100% × |K i -Ki | K i for i ∈ {I, II} (37) 
Domain integral methods are commonly employed to assess energy release rates since they were shown to be coarse mesh accurate and more precise than contour integral methods [START_REF] Li | A comparison of methods for calculating energy release rates[END_REF]. In our study, we made use of the domain integral proposed by Needleman and co-workers [START_REF] Li | A comparison of methods for calculating energy release rates[END_REF] which reads:

G = - A σ ij ∂u i ∂x 1 -W δ 1j ∂q 1 ∂x j dA (38) 
where, δ ij is the Kronecker delta function (such that δ ij = 1 if i = j and δ ij = 0 if i = j), u i is the i component of the displacement field, σ ij is the (i, j) component of the stress tensor, W is the strain energy density, {x 1 , x 2 } = {x, y} are the 2D Cartesian coordinates (see Figure 15), A is an annular region around the crack tip delimited by contours C1 and C2 and the crack lips, see Figure 24. and q 1 is a "sufficiently smooth" [START_REF] Li | A comparison of methods for calculating energy release rates[END_REF] scalar field defined over A, that is unity on C1 and vanishes on C2. In our computations, we chose C1 and C2 to be two crack tip-centered circles of radius r 1 = 1.1 and r 2 = 1.4, respectively, and q 1 to be an axisymmetrical field such that: The SIF convergence rate is fairly independent from the employed numerical method (i.e., the FEM, the AFEM or the EDM); Moes and co-workers also observed that SIFs converged with an error of O(h) when using the XFEM and a similar domain integral method [START_REF] Béchet | Improved implementation and robustness study of the X-FEM for stress analysis around cracks[END_REF]. This convergence rate is in accordance with the theoretical estimates provided by Destuynder and co-workers [START_REF] Destuynder | Some remarks on elastic fracture mechanics[END_REF]. Despite the fact that SIFs computed with the FEM, the EDM and the AFEM converge at approximately the same rate, the FEM is noticeably less accurate than the two other methods for a given mesh size. By contrast, the FEM generally outperforms both the EDM and the AFEM when Mode II loading is considered, see Figure 26. One also notices that the AFEM is more accurate than the EDM in Mode II. The use of the AFEM crack-tip treatment, introduced in Section 4.3, greatly improves the AFEM solutions with coarse meshes but also degrades the SIF asymptotic convergence rate and even seems to be detrimental when fine meshes are employed. The reasons for this decrease of convergence rate have yet to be elucidated. On the whole, the results of this benchmark are similar to those related to the h-convergence in the energy norm, where the AFEM was shown to perform better than the FEM in Mode I, while being less accurate in Mode II (see Section 4.3). Thus, the underlying cause is likely to be the same: the transverse stresses at the vicinity of the crack lips, σ xx (x ∈ [0, 2.5], y = 0), are poorly represented with the AFEM and makes it suboptimal, as demonstrated in Section 4.3. 

q 1 (r, θ) = q 1 (r) =          r-r2 r1-r2 if r 1 ≤ r ≤ r 2 1 if r < r 1 0 if r > r 2 (39) 

CONCLUSION

The ability of the augmented finite element method (AFEM) to model traction-free cracks has been thoroughly investigated in 2D. To make this investigation as complete as possible, triangular and quadrilateral elements were used, the ratio of element sizes between the coarsest and the finest meshes was systematically greater than 10 and errors in reaction forces, the energy norm and stress intensity factors were studied. The accuracy of the AFEM has been compared with that of the element deletion method (EDM), the finite element method (FEM), the phantom node method (PNM) and the embedded finite element method with enhanced strain modes (EFEM-SM).

The partial tension test performed in Section 4.1 allowed us to ensure that the AFEM was free from spurious stress transfer across a fully separated discontinuity. It was also discovered that, although both the EFEM-SM and the AFEM do pass the partial tension test, they give rise to noticeably different results. We demonstrated that the reaction forces and the stresses computed with the AFEM were consistent with those obtained with the standard FEM as well as with refined solutions.

The study of crack-induced stiffness loss made in Section 4.2 revealed that, under Mode I loading, the use of the AFEM, the EDM and the EFEM-SM i) produces virtually identical results ii) that outperform those obtained with the FEM and the PNM for a wide range of mesh size. By contrast, under Mode II loading, the FEM and the PNM surpass the other numerical methods. The above remarks also hold with other quantity of interests, such as the error in the energy norm (see Section 4.3) and stress intensity factors (see Section 4.4). The AFEM can be used in conjunction with a crack-tip treatment that was generally shown to improve its performance under Mode II loading.

To be more precise, the crack-tip treatment systematically decreased the AFEM energy error and improved its coarse mesh accuracy when computing stress intensity factors. Despite these enhancements, the crack-tip treatment is not enough to make the AFEM solutions as accurate as the FEM ones under Mode II loading of a crack. This Mode II underperformance was found to be caused by inter-element discontinuities that locally induce an overly soft behaviour, which has a detrimental effect when crack lips are submitted to transverse stresses. A similar lack of stiffness had already been observed when using the AFEM to model weak discontinuities [START_REF] Essongue | Performance assessment of the augmented finite element method for the modeling of weak discontinuities[END_REF]. The introduced submatrices read:

K * aa =         B1 B2 -B1 2 B3 B2 B1 B3 -B1 2 -B1 2 B3 B1 B2 B3 -B1 2 B2 B1         K * bb =         B4 B5 -B4 2 B6 B5 B4 B6 -B4 2 -B4 2 B6 B4 B5 B6 -B4 2 B5 B4         K * ab =         B7 B8 -B7 -B8
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 1 + ], [B -] Strain-displacement matrices of the upper and lower subdomains, respectively C + , C -Stiffness tensors of the upper and lower subdomains, respectively {d + }, {d -} Vectors of degrees of freedom of the upper and lower subdomains {dext + }, {dext -} Vectors of external nodal displacements of subdomains Ω + and Ω + {dint + }, {dint -} Vectors of nodal displacements related to surfaces Γ + c and Γ - {f cohesive + }, {f cohesive -} Vectors of nodal cohesive forces applied on Γ + c and Γ - c {f ext + }, {f ext -} Vectors of nodal external forces applied on the upper and lower subdomains G Energy release rate K 1 , K 2 Mode I and Mode II stress intensity factors [L + ], [L -] Stiffness matrices of the upper and lower subdomains [L + ij ], [L - ij ] Submatrices of [L + ] and [L -] n + , n -Outward pointing normals of Ω + and Ω - [N + ], [N -] Shape function matrices that interpolate the displacement field in Ω + and Ω - q Weight function t + ext , t - ext External tractions applied on the upper and lower subdomains t + int , t - int Tractions along the discontinuity surfaces Γ + c and Γ - c u + , u -Displacement field in the upper and lower subdomains ū+ , ū-Imposed displacement in the upper and lower subdomains W Strain energy density Γ c Domain occupied by the crack surface Γ + c , Γ - c Crack surfaces in the upper and lower subdomains δ ij Kronecker delta function + , -Strain field in the upper and lower subdomains η Relative error measure ν Poisson's ratio σ + , σ -Stress field in the upper and lower subdomains Ω Volume occupied by the cracked solid Ω + , Ω -Domains occupied by the upper and lower subdomains AFEM Augmented Finite Element Method AQ4-TIP, AQ4 4-node Augmented Quadrilateral element with and without crack-tip treatment AQ4-1 4-node Augmented Quadrilateral element made of two quadrilateral subdomains AQ4-2 4-node Augmented Quadrilateral element made of a triangular and a pentagonal subdomains AT3-TIP, AT3 3-node Augmented Triangular element with and without crack-tip treatment CutFEM Cut Finite Element Method DOF Degrees Of Freedom EDM Element Deletion Method EFEM Embedded Finite Element Method EFEM-SM Embedded Finite Element Method with enhanced Strain Modes

Figure 1 :

 1 Figure1: Modelling of a cracked solid with various numerical methods: the element deletion method (EDM), the finite element method (FEM), the phantom node method (PNM) and the embedded finite element method (EFEM)

Figure 2 :

 2 Figure 2: Solid body crossed by a strong discontinuity surface

Figure 3 :

 3 Figure 3: Node numbering of the augmented elements used in this study

Figure 4 :

 4 Figure 4: Graphical representation of the submatrices [L 22 ± ] of 2D elements Thus, [L 22 + ] (respectively [L 22 -]) is the stiffness matrix of the subdomain Ω + (respectively Ω -) with degrees of freedom {dext + } (respectively {dext -}) fully constrained. A graphical representation of these submatrices is proposed for the 2D augmented elements of this study in Figure 4. This graphical representation allows to readily assess the ranks of submatrices L 22 ± . If rigid body motions of the subdomains are allowed, the associated submatrices are singular

Figure 5 :Figure 6 :

 56 Figure 5: Element partial tension test: a) geometry definition, b) employed discretization, c) boundary conditions

Figure 7 :Figure 8 :Figure 9 :Figure 10 :

 78910 Figure 7: Comparisons of stresses in Ω -at given integration points (IP), obtained with the AFEM and the EFEM-SM[45] through the partial tension test

Figure 8 .

 8 The crack is once again modelled with augmented finite elements (AQ4-1 and AQ4-2) while the other elements are classical Q4. The boundary conditions represented in Figure5c are imposed with δ = 0.1mm. The resulting stress field is plotted in Figure9. It is heterogeneous and multiaxial, as predicted with a single augmented element. Cross-checking the results presented in Figure9and Figure7allows to thoroughly evaluate the predictions made with a single AQ4-1. The stress sate obtained with the refined mesh is σ xx -dominated, σ xx decreases as y increases, σ yy is approximately null at the location of the integration points 1 to 4 represented in Figure5b and σ xy is positive (respectively negative) in the bottom right (respectively left)

Figure 11 :

 11 Figure11: Mode I loading: reaction force as a function of the mesh size obtained with the FEM, the PNM, the EDM, the AFEM and the EFEM-SM of Linder and Armero[START_REF] Linder | Finite elements with embedded strong discontinuities for the modeling of failure in solids[END_REF] 
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Figure 12 :

 12 Figure12: Mode I loading: relative error in reaction force, η, as a function of the mesh size, h, and associated asymptotic convergence rate, R, obtained with the FEM, the PNM, the EDM, the AFEM and the EFEM-SM[START_REF] Linder | Finite elements with embedded strong discontinuities for the modeling of failure in solids[END_REF] 

Figure 13 :

 13 Figure 13: Mode II loading: reaction force as a function of the mesh size provided by the FEM, the PNM, the EDM and the AFEM

Figure 14 :

 14 Figure 14: Mode II loading: relative error in reaction force, η, as a function of the mesh size, h, and associated asymptotic convergence rate, R, obtained with the FEM, the PNM, the EDM and the AFEM

Figure 15 :

 15 Figure 15: Geometry, polar coordinate system and displacement boundary conditions imposed on the boundary of the plate in Mode I and Mode II loadings

  the numerical model we consider a square domain Ω = [0, 5] × [-2.5, 2.5] cut by a crack Γ c = [0, 2.5] × {0}. Young's modulus and Poisson's ratio are respectively E = 200000 and ν = 0.3, and the imposed stress intensity factors are K I = K II = 2802, 5. Following Laborde and co-workers[START_REF] Laborde | High-order extended finite element method for cracked domains[END_REF], we impose the closed-form displacement field on the 315 boundary of the plate, as depicted in Figure15. The evolution of the error in the energy norm with the mesh size, under Mode I loading of the crack, is plotted in Figure16. It is shown that the FEM, the EDM and the AFEM are of similar accuracy. When quadrilateral elements are considered, the AFEM slightly outperforms the aforesaid numerical methods, but the differences are marginal. The convergence rate of both the FEM, the AFEM and the EDM is subobtimal: O(h 0.5 ) in the energy norm. The FEM suboptimal convergence is due to the crack-induced singularity 320 of the stress field, as demonstrated by Pian and co-workers[START_REF] Pin | On the convergence of the finite element method for problems with singularity[END_REF]. This reasoning seems to hold with the EDM and the AFEM, indeed, the spatial distribution of error is fairly independent of the employed numerical method under Mode I loading, see Figure18MODE I.

Figure 16 :Figure 17 :

 1617 Figure 16: Mode I loading of a crack: error in the energy norm, ||η||, as a function of the mesh size, h, and associated convergence rate, R, obtained with the finite element method (FEM), the element deletion method (EDM) and the augmented finite element method (AFEM)

Figure 18 :

 18 Figure 18: Spatial distribution of energy error in the elements, ||e|| Ω i , under Mode I and Mode II loadings, with the FEM, the AFEM and the EDM (results obtained with a mesh size h ≈ 0.15)

Figure 19 :

 19 Figure 19: Crack-tip treatment allowing for a continuous displacement field along the edge shared by an augmented and a standard finite element

Figure 20 :

 20 Figure 20: Influence of the crack-tip treatment, indicated by the suffix "-TIP", under Mode II loading of a crack: error in the energy norm, ||η||, as a function of the mesh size, h, and associated convergence rate, R, with the FEM, the AFEM and the AFEM with a crack-tip treatment
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Figure 21 :Figure 22 :

 2122 Figure 21: Zones of interest defined to study the stress field provided by the AFEM under Mode II loading of the crack

Figure 23 :

 23 Figure 23: Comparisons of the exact transverse stress field, σxx, with those obtained with AQ4 elements, along the line of interest defined in Figure 21 and under Mode II loading of the crack

Figure 24 :

 24 Figure 24: Surface A enclosed by contour C1, contour C2 and the crack lips, and associated finite elements

Figure 25 :

 25 Figure 25: Mode I loading of a crack: error in the first stress intensity factor, η, as a function of the mesh size, h, and associated convergence rate, R, obtained with the finite element method (FEM), the element deletion method (EDM) and the augmented finite element method (AFEM)

Figure 26 :

 26 Figure 26: Mode II loading of a crack: error in the second stress intensity factor, η, as a function of the mesh size, h, and associated convergence rate, R, obtained with the FEM, the EDM, the AFEM and the AFEM with a crack-tip treatment

Figure A. 27 :

 27 Figure A.27: Displacement boundary conditions imposed on the Q4 that modelling the lower subdomain in the partial tension test

Table 1 :

 1 Degrees of freedom of the augmented elements used in this study

One goal of the current study was to determine wether the AFEM was accurate enough to be employed in analysis involving cracks. Our results demonstrated the superior accuracy of the AFEM over well-accepted methods, such as the FEM or the PNM, under Mode I loading of a crack. Yet, this is no longer the case if Mode II loading is considered. However,Carpinteri and co-workers performed a series of cracking experiments involving double-edge notched specimens made of concrete and showed that, in this particular case, the energy dissipated through crack propagation was primarily ascribed to the Mode I fracture energy, even for mixed-mode crack propagation [START_REF] Carpinteri | Is mode II fracture energy a real material property?[END_REF]. Moreover, well-established criteria such as the principle of local symmetry [START_REF] Gol'dstein | Brittle fracture of solids with arbitrary cracks[END_REF] state that cracks propagate in the direction that engenders a pure Mode I loading. Hence, our numerical experiments prove that the AFEM can be reliably employed to assess structural failure scenarios the superior Mode I accuracy of the AFEM makes it a promising method to assess structural failure scenarios. Yet, additional tests involving curved cracks or heterogeneous materials would be required to definitely ensure that a traction-free AFEM delivers reliable results in these situations.

The findings of this study also suggest that the AFEM realizes an optimal compromise between accuracy, flexibility and implementation complexity. Indeed, it performs noticeably better than the EDM in Mode II and, unlike the latter, gives access to crack openings and allows to model contact and friction between the crack lips. The accuracy of the FEM and the AFEM is on par, but the latter enjoys the same flexibility as the PNM (or the extended finite element method) in modelling cracks independently of the mesh. Moreover, a great advantage of the AFEM over methods such as the PNM is that it permits to represent an arbitrary number of cracks without increasing the number of degrees of freedom per element, or the size of the assembled stiffness matrix. Finally, the AFEM formulation is straightforward since it does not make use of enhanced strain modes, it is thus easier to implement than other EFEMs such as the EFEM-SM.

Our study focused on traction-free cracks and, as a result, does not allow to rigorously estimate the performance of the AFEM in situations where (frictional) contact between the crack lips or/and cohesive crack growth are modelled.

Although the AFEM has already been successfully employed in cohesive crack propagation [START_REF] Liu | An accurate and efficient augmented finite element method for arbitrary crack interactions[END_REF][START_REF] Liu | An efficient augmented finite element method for arbitrary cracking and crack interaction in solids: EFFICIENT A-FEM FOR ARBITRARY CRACKING AND CRACK IN-TERACTION IN SOLIDS[END_REF][START_REF] Jung | Augmented finite-element method for arbitrary cracking and crack interaction in solids under thermo-mechanical loadings[END_REF], it is believed that these aspects deserve further investigations geared towards assessing the convergence rate of the AFEM in such situations. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Appendix A. Closed-form expression of the stiffness of a bilinear quadrilateral finite element submitted to partial tension

In this appendix, we derive a closed-form expression of the stiffness of the lower subdomain for the element partial test described in Section 4.1. To do so, the lower subdomain, Ω -, is discretized with a bilinear quadrilateral element (Q4) and one seeks the analytical expression of the horizontal reaction force at node 2, f x2, as a function of the imposed displacement, δ, see Figure A.27. To obtain it, we first make use of the exact expressions of the Q4 stiffness matrix provided by Hacker and Schreyer [START_REF] Hacker | Eigenvalue analysis of compatible and incompatible rectangular four-node quadrilateral elements[END_REF]. The sought reaction force is then derived thanks to the method of reduction [START_REF] Wu | A note on imposing displacement boundary conditions in finite element analysis[END_REF].

Let K * be the exact stiffness matrix of the aforesaid Q4, with the associated degrees of freedom, {q * }, ordered the

Under the assumption of a plane stress state, if the material is isotropic with a Young's modulus, E, and a Poisson's ratio, ν, the closed-form expressions of B1 to B8, for the Q4 represented in Figure A.27, are:

To compute the sought reaction forces, the stiffness matrix K * is re-ordered and the resulting matrix, denoted as With the above notations, the discretized equilibrium equation of the Q4 reads:

All the unknowns can be obtained in two steps, one first solves for {q1}:

The unknown reaction forces, {f 2}, are then readily computed:

The sought reaction forces are:

The material properties employed in the partial tension test of Section 4.1 are: E = 30GP a and ν = 0. The stiffness of the subdomain Ω -in this case is:
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