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SUMMARY: Single-phase white phosphors for solid-state lighting 

are commonly designed using different dopants responsible of 

emissions in different spectral regions. However, phenomena of 

energy transfers and concentration quenching often prevent any 

clear prediction of the accurate experimental conditions to be 

selected, leading to a time-consuming trial-and-error discovery 

process. In this research article, a high-throughput (HT) 

experimental approach equipped with machine learning (ML) 

enabling an efficient identification of the experimental conditions 

for designing a white phosphor is demonstrated. Li2BaSiO4:Eu,Ce 

was selected to illustrate this strategy. 88 samples were prepared 

from the initial synthesis of eight compounds with different 

amounts of Eu and Ce dopants followed by a post-treatment 

under a gradient of temperature. The decision tree model, based 

on the experimental data of 88 samples, identified the 

experimental conditions to design a white emission, i.e., the 

material should be prepared under a reducing atmosphere with a 

ratio of dopants [Eu]/([Ce]+[Eu]) between 0.17 and 0.83 followed 

by an oxidation under air at a temperature between 628 °C and 

673 °C. The analysis of the experimental conditions to obtain 

other colors of emission (i.e. bluish purple, pink, orange, green or 

yellow/green), which were also identified by ML, enabled to 

rationalize the different mechanisms of energy transfers between 

dopants. 

INTRODUCTION  

   As a new generation of lighting source, white light emitting 

diodes (wLEDs) are focusing the researchers’ and industrials’ 

attentions due to high energy savings and a fast growing 

market.[1–4] One of the most common methods to produce wLEDs 

is to combine a blue-emitting LED chip with a yellow phosphor 

such as Y3Al5O12:Ce3+ (YAG:Ce).[5,6] However, the color rendering 

index (CRI) of such wLEDs is poor due to the lack of a red 

component which limits the application in higher-end products.[7,8] 

Adding a red phosphor or combining UV chips with three primary 

phosphors (red, green and blue phosphors) have been reported 

to improve the color rendering, while preserving performances.[9–

11] However, the reabsorption between different phosphors, the 

different particle sizes or nonuniformity of luminescence 

properties when used in wLEDs remain important issues.[9,10,12] 

For these reasons, single-phase white emitting phosphors have 

attracted increasing attention in the past years.[13,14] 

The most common approach to design a single-phase white 

emitting phosphor is to dope a host with multiple dopants.[15–17] 

For some compounds, the combination of two dopants can lead 

to a white emission.[18] However, in order to cover all the visible 

region (380 nm ~740 nm) and obtain a good color rendering of 

the white emission, more than two dopants, which exhibit different 

emission wavelengths, are commonly necessary.[10,15] In this case, 

phenomena such as energy transfers (ET) between these 

dopants are difficult to predict, and make the balance of the 

emissions and the generation of a white light challenging. [17,19] In 

this research article, we demonstrate how machine learning (ML) 

can be used to predict the emission color of a host with multiple 

dopants and to identify the appropriate experimental conditions 

for synthesizing single-phase white phosphors. As representative 

datasets (i.e. both positive and negative outcomes) are needed 

for ML techniques,[20–22] a high-throughput (HT) experimental 

approach has been developed to synthesize large amounts of 

materials with different concentrations of dopants. This HT 

approach uses the ability of several dopants such as Mn or Eu to 

exhibit different emissions according to their oxidation states.[19,23–

26] The strategy consists in firstly synthesizing a few materials 

codoped with different amounts of two dopants. Then, an 

oxidation step under a gradient of temperature is carried out to 

tune the oxidation states of dopants and the resulting emissions. 

Thus, a relatively large library of compounds with different 

concentrations of dopants and different oxidation states ratio of 

these dopants can be obtained and analyzed using ML models. 

 

RESULTS AND DISCUSSION 

Li2BaSiO4 (LBSO) doped with Eu and Ce was selected to 

illustrate the proposed approach. In LBSO, the two oxidation 

states of Europium (Eu2+ and Eu3+) commonly lead to different 

emissions in the same host.[27–30] Eu2+ presents a green emission 

(Figure S1). This emission, which originates from the 4f-5d 

transitions, strongly depends on the ions environment (symmetry, 

covalence, coordination, bond length, and crystal-field 

strength).[31,32] Eu3+ emission is always in the red / orange region. 

The emission associated with Eu3+, originating from 4f-4f 

transitions, is scarcely affected by the structure / crystal field 

because 4f-orbital electrons are well shielded by the outer orbital 

electrons.[28,33] The Ce3+ dopant exhibits a bluish purple emission 

in LBSO (Figure S1), which originates from 4f-5d transitions.[33,34] 

On the other hand, the Ce4+ dopant exhibits no emission in 

LBSO (Figure S1). In this case, an appropriate ratio of Eu2+, Eu3+, 

and Ce3+ can be expected to produce a white emission. 

    In the first step of the HT synthesis of phosphors, eight samples 

of LBSO doped with different amounts (molar ratio) of Eu and Ce 

(0.5%Ce; 0.5%Eu; 0.25%Eu and 0.25%Ce; 0.25%Eu and 

0.5%Ce; 0.5%Eu and 0.25%Ce; 0.5%Eu and 0.5%Ce; 0.5%Eu 

and 0.75%Ce; 0.75%Eu and 0.5%Ce) were synthesized in Ar / H2 

(Experimental details in the section “Experimental procedures”).   

XRD patterns (Figure 1(a)) confirmed that the doped samples 

were pure (COD-2017068). The diffuse reflection spectra of 

single-doped LBSO with different activators oxidation state (Eu2+, 

Eu3+, Ce3+, and Ce4+) showed different characteristic bands for 



each single-doped compound, confirming that the doping was 

successful (Figure 1(b)).  

    In the second step, 88 samples were prepared from the eight 

synthesized samples by oxidation of the dopants under a gradient 

of temperature (Table S1, Figure 2(a), Figure S2; Detailed 

synthetic process in the section “Experimental procedures”). 

During the oxidation of x Eu2+ into x Eu3+ and y Ce3+ into y Ce4+, 

x+y lithium vacancies are produced to respect the charge 

balance.[33] PL spectra of LBSO:Ce3+,Eu2+ (Figure S3-S10) were 

recorded in a HT manner using a home-made XY robotic platform 

setup (see details in the section “Experimental procedures” and 

the supporting information). The CIE coordinates determined from 

the emission spectra of all 88 samples were shown in Figure 2(b). 

These coordinates covered bluish purple, green, yellow / green, 

orange, pink and white regions according to the KS A 0012 (2013) 

standard (Figure S11).[35] Among these samples, only few 

exhibited white emission showing that identifying the optimal 

conditions to isolate white phosphors was challenging. In addition, 

the identification and sorting of important experimental conditions 

as well as the statistic assessment of boundaries between 

emission colors (Figure 2(b) and Figures S3-S10) require the use 

of ML models. 

    In order to predict the emission color and better understand the 

underlying mechanism, ML was used to analyze the experimental 

data (SI, Figure S12-S13). Specifically, three experimental 

parameters considered as important by the chemists, i.e. (i) the 

total concentration of dopants [Eu] + [Ce], (ii) the ratio of the two 

dopants, x = [Eu] / ([Eu] + [Ce]), and (iii) the temperature of 

oxidation, were used to build the model to predict the emission 

color. The results of the decision tree model can be seen in Figure 

2(c), which shows only a small number of samples can show white 

emissions. 

The results of the decision tree model can be summarized in 

the Figure 3(a). The ratio and the temperature of oxidation were 

the two experimental parameters selected by the decision tree 

model to predict the emission colors as the total amount of 

dopants do not have significant influence on the outcome. For this 

reason, the total amount of dopants does not appear in the 

decision tree (Figure 2(c)). Three regions of ratio x (x < 0.17, 0.17 

< x < 0.83, and x > 0.83) could be further analyzed to rationalize 

the mechanisms of luminescence as a function of the temperature 

of oxidation.  

    When x < 0.17 (Figure 3(a)), only bluish-purple emission 

originating from Ce3+ was obtained irrespective of the 

temperatures of oxidation. The single doped LBSO:Ce is 

representative of this region. Figure S4 shows the PL spectra of 

this compound for different temperatures of oxidation. The 

emission of Ce3+ decreases with temperature due to the oxidation 

of Ce3+ into Ce4+. However, no other emission is observed 

because Ce4+ is not an emission center in LBSO. Thus, the 

emission color (bluish purple) is scarcely affected by the 

temperature of oxidation. Interestingly, when the concentration of 

Eu increases (i.e. x > 0.17), the bluish-purple emission color is not 

observed due to an efficient ET between Ce and Eu (Figure 3(b)).  

    When x > 0.83 (Figure 3(a)), Ce3+ plays an insignificant role on 

emission colors. Thus, the emission color changes from green to 

orange with the temperature of treatment under air due to the 

progressive oxidation of Eu2+ (green) into Eu3+ (orange) (Figure 

S4). 

When 0.17 < x < 0.83 (Figure 3(a)), yellow green, white, pink, 

and orange luminescence could be obtained according to the 

temperature of oxidation. In this range of ratio x, the emission 

color is affected by (i) the oxidation of Eu2+ and Ce3+ activators 

and (ii) the ET from Ce3+ to Eu2+ / Eu3+. The oxidation of Eu2+ and 

Ce3+ activators can be assessed by investigating the evolution of 

the emission intensities with the temperature for single doped 

LBSO:Eu and LBSO:Ce materials (i.e. the compounds without 

ET; Figure S3, Figure S4, Figure 3(c)). The oxidations of Ce3+ into 

Ce4+, and Eu2+ into Eu3+ occur from 605 °C to 800 °C and from 

500 °C to 750 °C, respectively. On the other hand, the ET from 

Ce3+ to Eu can be investigated through the analysis of spectral 

overlap (Figures 3(b) and Figure S14). Thus, a significant overlap 

can be observed between the emission spectrum of LBSO:Ce and 

the excitation spectra of LBSO:Eu2+ / LBSO:Eu3+ suggesting an 

efficient ET between Ce and Eu. In addition, the metal-to-metal 

charge transfer (MMCT) between Ce3+ and Eu3+ should be 

considered. The distance between dopants in our compounds is 

above 24.8 Å which is longer than the maximum distances 

between Ce3+ and Eu3+ for MMCT (typically 14 Å in oxide hosts) 

and ET (see equation in supporting Information),[36] [37] Thus, the 

MMCT and ET between Ce3+ and Eu3+ can be neglected. In this 

case, only the ET from Ce3+ to Eu2+ should be considered. To 

rationalize how the oxidation of dopants and the ET influence the 

emission colors in the range 0.17 < x < 0.83, the co-doped 

LBSO:0.5%Eu,0.5%Ce (x = 0.5) was considered for in-depth 

analysis. For this compound, four colors of emission 

corresponding to the combination of several contributions could 

be obtained according to the temperatures of oxidation, i.e., 

Yellow green from 385 °C to 628 °C (Figure 3(a)- Zone 1), White 

from 628 °C to 673 °C (Figure 3(a)- Zone 2), Pink from 673 °C to 

783 °C (Figure 3(a)- Zone 3), and Orange above 783 °C (Figure 

3(a)- Zone 4). To explain the origin of these colors of emissions, 

the intensity of the emission bands associated with Ce3+, Eu2+ and 

Eu3+ ions can be followed (Figures 3(d) and Figure S8). In Zone 

1 (T < 628 °C; Figures 3(a) and Figure 3(d)), the oxidation of Eu2+ 

into Eu3+ occurs while Ce3+ is not oxidized (Figure 3(d)). The 

intensity of Ce3+ remains very low due to an efficient ET from Ce3+ 

to Eu2+. A yellow green color of the emission can be observed 

originating mainly from Eu2+ (green) with small contributions of 

Eu3+ (orange) without Ce3+ (bluish purple). In Zone 2 (628 °C < T 

< 673 °C; Figures 1d and Figure 3(d)), Eu2+ is strongly oxidized 

into Eu3+ while Ce3+ is slightly oxidized into Ce4+ (Figure 3(c)). The 

ET from Ce3+ to Eu2+ decreases with the oxidation of Eu2+ into 

Eu3+. Such phenomenon results in the increase of the intensity of 

emission associated with Ce3+. Thus, the white color of the 

emission results from the contributions of Eu2+ (green), Ce3+ 

(bluish purple) and Eu3+ (orange). In Zone 3 (673 °C < T < 783 °C; 

Figures 3(a) and Figure 3(d)), Eu2+ and Ce3+ are oxidized into Eu3+ 

and Ce4+, respectively. 

The oxidation of Eu2+ into Eu3+ leads to a decrease of ET from 

Ce3+ to Eu2+ which should result in the increase of the bluish-

purple emission from Ce3+. However, this increase of emission is 

compensated by the oxidation of Ce3+ into Ce4+. For this reason, 

the intensity of emission associated with Ce3+ shows no change 

when compared with Zone 2. Thus, a pink color of the emission 

can be observed due to the presence of Eu3+ (orange) and Ce3+ 

(bluish purple) and the absence of Eu2+ (green). In Zone 4 (T > 

783 °C; Figures 3(a) and Figure 3(d)), Eu2+ and Ce3+ ions are fully 

oxidized into Eu3+ and Ce4+. Thus, the orange color of the 

emission originates from only Eu3+ (orange).  

 

CONCLUSION 

A HT experimental approach combined with ML was reported 

to discover single-phase white phosphors and predict the 



emission color for inorganic materials with multiple activators. 

This strategy was demonstrated with the investigation of 

LBSO:Eu,Ce system. The key experimental parameters enabling 

white emission were identified and the energy transfers between 

activators could be rationalized. We believe such a ML based 

approach could also be of interest for other physical properties 

such as magnetism, photocatalysis, or conductivity for which the 

control of dopants oxidation states can greatly influence the 

functionalities. More generally, adopting ML tools to appropriately 

sort the experimental data and better select the experimental 

conditions could become a very efficient strategy to accelerate the 

discovery of new materials. The generalization of some 

standardized experimental files for the synthesis of materials (e.g. 

on the model of Crystallographic Information Files for the crystal 

structures), would be of great importance for this adoption of ML 

tools which requires well organized and representative datasets. 

 

EXPERIMENTAL PROCEDURES 

Samples preparation: BaCO3 (VWR, 99%), SiO2 (Alfa Aesar, 

99.99%), Li2CO3 (Alfa Aesar, 99.99%), CeO2 (Alfa Aesar, 

99.99%) and Eu2O3 (Alfa Aesar, 99.99%) were used as starting 

materials. Li2BaSiO4:Eux,Cey (LBSO:Eu,Ce) (with x and y varying 

from 0.25 to 0.75mol% /nominal ratios) powder samples were 

prepared via a solid-state reaction process. A 5mol% excess of 

the Li2CO3 was used due to its high vaporization during heating, 

while other raw materials were weighted based on their 

stoichiometric ratio. The powders were mixed and then 

transferred to an alumina crucible. The mixture was heated at 

550˚C with a temperature increase rate of 100˚C/h. After 1 h at 

550°C, the temperature was increased up to 810˚C at the same 

rate. The samples were kept at this temperature for 6 h and then 

cooled to room temperature with a rate of 150˚C/h. For LBSO 

doped with Ce3+ and/or Eu2+, the mixture should be heated in a 

reducing atmosphere (95% Ar, 5% H2) with a flow rate of 30 

cc/min, while LBSO doped with Ce4+ and/or Eu3+ were 

synthesized in air.  

Controlled oxidation of dopants: A series of samples 

LBSO:Ce3+, Eu2+ with different concentrations of the Eu ions and 

the Ce ions (0.5mol%Ce; 0.5mol%Eu; 0.25mol%Eu and 

0.25mol%Ce; 0.25mol%Eu and 0.5mol%Ce; 0.5mol%Eu and 

0.25mol%Ce; 0.5mol%Eu and 0.5mol%Ce; 0.5mol%Eu and 

0.75mol%Ce; 0.75mol%Eu and 0.5mol%Ce) were synthesized in 

Ar/H2 and then placed in a sample holder machined in Stumatite 

ceramic. The samples with 8 different concentrations of dopants 

were placed in different rows, each row corresponds to the same 

concentration (11 boxes for each row). Then the sample holders 

were placed under a gradient of temperature in air for 2h (STEP 

1 in Schematic S1). The temperature treatment was in the range 

from 385 °C to 795 °C (the temperature of each position is 

reported in Table S1). Finally, the emission color could be 

observed under UV lamp (λ = 254 nm) (STEP 2 in Schematic S1). 

The controlled synthesis temperature can be performed simply 

using a tube furnace available in all solid-state chemistry 

laboratory (such tube furnace exhibits a gradient of temperature 

between the center and the extremities). 

Data collection: The photoluminescence (PL) spectra of 

Li2BaSiO4:Ce3+,Eu2+ after HT approach, were recorded in a high-

throughput manner using a home-made XY robotic platform setup 

(Schematic S2). The sample holder was placed on the XY table, 

which can move along two axes controlled by computer. Thus, 

each sample will be characterized by simply moving step by step 

the XY axes of the platform in order to automatically change the 

analyzed sample. 

Machine-learning: The decision tree model was performed in 

this study due to its intuitive, interpretable, and easy to visualize 

nature. The model was developed using the data obtained by the 

HT approach. The raw data contained 88 samples (dataset in SI 

– the eight initial samples are represented in different colors in 

this dataset). The main idea was to explore a “general” 

mechanism that can inform the color of the materials obtained 

from experiments. We retained 20% random samples of the raw 

data for external validation purpose, assuming those data would 

be from future new experiments. The random sampling was 

carried out using the function createdatapartition in R package 

{caret} (R version 3.6.2; R codes are attached in a separate file, 

named as DecisionTree_clean.Rmd), with an attempt of 

balancing the color class distributions within the splits. Thus, this 

random sampling was realized within each color group, rather 

than sampling over all the data. The tree model was established 

on the remaining 80% of the raw data, using the function rpart in 

R package {rpart}. The cross validation has been used inside rpart 

to obtain the best tree that could sufficiently describe the data with 

the minimal model complexity. The overall accuracy (calculated 

as (number of correct prediction) / (total number of samples in the 

dataset) was 88.9% on the modeling data-cut (i.e., the 80% of the 

raw data) and 87.5% on the validation data-cut (i.e., 20% of the 

raw data). The accuracy per color is summarized in the table S2. 

In order to qualify the built tree, asserting the level of precision 

one can expect from it, we performed the 5-fold cross-validation. 

Specifically, the raw data was split into 5 folds, using the 

createFolds function in R package {caret} and balancing the color 

class distributions between folds. The tree model was built on any 

4 folds (using the same rpart function as in the original model) and 

tested on the 5th fold. Thus, 5 models were obtained after 

performing once 5-fold cross-validation. By repeating the 5-fold 

cross-validation process for 100 times, we obtained in total 500 

decision tree models. And we confirmed that the decision tree 

performed quite well with the 5-fold average accuracy as 83.2% 

on the test fold and 89.9% on the training folds. The results from 

cross-validation showed that the size of the raw data was 

sufficient for this study. The accuracy of each of the 100 5-fold 

cross-validation exercises is shown in a separate file (named as 

accuracy_5-fold-cross-validation.xlsx). 

Usually, larger data size can assist in refining the model when 

exploring the underlying mechanism. As a sensitivity analysis, we 

built a tree model using all the 88 samples (i.e., without random 

split of the raw data) using the same rpart function. The overall 

accuracy was 89.8% which is very similar to the original approach. 

The obtained tree was shown in Figure S12 and summarized in 

Figure S13. 

Characterization: Phase identification was performed using 

an X-ray diffractometer (D8 Bruker) with Cu Kα radiation. Diffuse 

reflection spectra were acquired using a Perkin lambda 1050 

equipped with a 150 mm integrating sphere. The 

photoluminescence (PL) and photoluminescence excitation (PLE) 

spectra were carried out using a spectrofluorometer Fluorolog-3 

from Horiba equipped with a 450 W Xe light source.  
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Figure 1 (a) Powder X-ray diffraction (PXRD) patterns of LBSO, LBSO:Eu2+, LBSO:Eu3+, LBSO:Ce3+, and LBSO:Ce4+; (b) Diffuse reflection spectra of LBSO (black), 
LBSO:Eu2+ (red – the band centered at 405 nm originates from 4f7→4f65d1 transition), LBSO:Eu3+ (blue – the band centered at 240 nm belongs to the charge-
transfer band (CTB) of Eu3+-O, peaks from 390 nm to 550 nm belong to 7F0→5D1, 7F0→5D2,7F0→5L6), LBSO:Ce3+ (green – the peaks centered at 237 nm, 272 nm, 
and 360 nm correspond to the 4f1→4f05d1 transitions, LBSO:Ce4+ (pink – the band centered at 325 nm belongs to the CTB of Ce4+-O). 



 

Figure 2 (a) 88 samples prepared from the eight synthesized samples by oxidation of the dopants under a gradient of temperature (the colors were simulated 

using the CIE coordinates calculated from the emission spectra of each sample); (b) The CIE of all 88 samples; (c) Decision tree classification of emission colors 

(T: oxidation temperature; BP: bluish-purple; YG: yellow green; G: green; Pk: pink; O: orange); the percentages of training samples associated to each leave are 

provided (more details can be found in the SI: DecisionTree_clean.Rmd). 



 
Figure 3 (a) Results of decision tree model based on the 88 samples (x = [Eu]/([Ce]+[Eu])). The black dots correspond to the experimental conditions of the samples 
set LBSO:0.5%Eu,0.5%Ce (x = 0.5). For this sample, four zones of emission colour (Zone 1: Yellow green, Zone 2: White, Zone 3: Pink, Zone 4: Orange) are 
obtained according to the temperature of oxidation (black dot); (b) PL and PLE spectra of the LBSO:Eu2+, LBSO:Eu3+ and LBSO:Ce3+ samples; (c) Evolution of the 
emission intensity of Eu2+ (λem = 510 nm) and Ce3+ (λem = 400 nm) in LBSO:Eu and LBSO:Ce with the oxidation temperature; (d) Evolution of the emission intensities 
associated with Ce3+ (λem = 400 nm, blue line), Eu2+ (λem = 510 nm, green line), and Eu3+ (λem = 704 nm, red line) vs. the temperature of oxidation for LBSO:0.5%Eu, 
0.5%Ce. All the intensities of the emissions are normalized to the maximum intensity (Eu2+ emission of the sample oxidized at 520 °C). 

 


