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Introduction 

The dimerization of conjugated radical-cations constitutes an 

appealing interaction of the supramolecular tool-box, which has 

known a strong recent interest.1-4 Interestingly, the latter can 

be controlled through a redox stimulation, as demonstrated 

with the prototypal electroactive cases of tetrathiafulvalene 

(TTF) or bipyridinium derivatives. Oxidation in solution of TTF 

derivatives5, 6 into the corresponding -dimer species (TTF●+)2 

has been characterized in very specific cases, i.e. highly 

concentrated solutions at low temperature,7, 8 redox-active 

units confined in a molecular cavity,9-12 covalently preorganized 

poly-TTF systems,13-22 or stabilization of TTF units in interlocked 

structures.1, 23  

To get a better control over the experimental parameters 

driving the radical-pairing interaction, there is a need to develop 

new molecular models. In this context, designing bis(TTF) 

architectures with two preorganized facing TTF units, prone to 

stack, is of interest notably if the intramolecular inter-TTF 

distance can be tuned. A similar approach was recently 

developed with success in the case of flexible viologen 

cyclophanes, through controlling the linker length between 

both redox units.24-26 

To the best of our knowledge, only one organic macrocycle27 

featuring two facing TTF moieties has been described so far.28 

This electron-rich bis(TTF)derivative, prepared in several steps 

through covalent synthesis, was designed to afford a distance 

of ca. 7A between both TTF plans in order to bind planar 

electron-poor guests in a sandwich-like manner.  

On the other hand, macrocyclic metalla-rings can be prepared 

in one step and in excellent yields through the coordination-

driven self-assembly strategy between polytypic ligands and 

specific metal complexes.29-51 For instance, this approach has 

allowed to target electro-active assemblies.52-58 We have 

contributed to this field by synthesizing a large number of 

redox-active supramolecular cavities incorporating electron-

rich dithiolylidene units, such as with extended-TTF 

derivatives59-64 or very recently, S-rich fluorene derivatives.65-67 

Despite well-defined redox properties, only two examples of 

discrete metalla-assemblies based on the parent TTF framework 

have been described so far.68, 69 They were obtained upon self-

assembling a tetratopic TTF-based ligand bearing four pyridyl 

units (TTF(Pyr)4), with either a cis-blocked M(II) complex (M = 

Pd or Pt),69 or a bis-Ruthenium one RuOx68 (Scheme 1). In the 

latter case, a М8L2 assembly was obtained in good yields, for 

which two TTF units are facing each other. On the contrary, a 

М4L metalla-plate (i.e. one ligand aassociated to two bis-

Ruthenium complexes) was obtained upon mixing TTF(Pyr)4 

with the longer bis-Ruthenium complex RuBenz (Scheme 1).68 

Such a difference is due to the respective Ru-Ru distance in both 

complexes (i.e. 5.5Å in RuOx and 7.9Å in RuBenz). The latter 

value well matches for the coordination of two adjacent pyridyl 

units in TTF(Pyr)4 (Npyr‧‧‧Npyr = 6.7Å), favoring the M4L discrete 

structure (Scheme 1 and Figure 1). Driving the self-assembly to 

a new М8L2 TTF-box for which two TTF units are forced to face 

each other, needs therefore a mismatch between both 

Npyr‧‧‧Npyr and Ru‧‧‧Ru distances. This can be achieved through 

changing the ligand size (i.e. the distance between two Npyr 

atoms) or the bis-Ruthenium complex (i.e. the distance 

between two Ru atoms).  

We present hereafter the coordination-driven assembling of a 

new М8L2 TTF-box using the new enlarged TTF-based ligand 

TTF(PhPyr)4 and the bis-Ruthenium70 complex RuNaph (Scheme 

1). The interaction between both facing redox units in this 

system is investigated in solution. This study shows that both 

TTF units dimerize intramolecularly when oxidized to the 

radical-cation state, thanks to the rigidity of the assembly.  

 



  

 

  

 
Scheme 1. Synthesis of the previously described complex M8L2 and M4L (top),68 and of TTF-box from the current work. 

Results and discussion 

We designed the tetratopic ligand TTF(PhPyr)4 which differs 

from TTF(Pyr)4 by the presence of a paraphenylene spacer 

between the redox and coordinating units. Importantly, this 

design results in a much longer separation between adjacent 

Npyr atoms, prone to change drastically the reaction with a bis-

Ruthenium complex of a given length (M8L2 vs M4L self-

assemblies). The new ligand TTF(PhPyr)4 was synthesized in 

86% yield using a Palladium-catalyzed C-H activated 

tetraarylation,71 starting from the commercially available TTF 

and (4-bromophenyl)pyridine.72 This yield is remarkable given 

the formation a four new C-C bonds along this process. Single 

crystals of ligand TTF(PhPyr)4, suitable for a X-ray diffraction 

study, were obtained by slow evaporation of a 

dichloromethane/methanol mixture. X-ray data show a 

significant disorder of the phenyl units through rotation around 

the TTF-Pyr axis (Figure 1). The molecule is contained in a 12.8 

x 19.3Å rectangle, as defined by the four Npyr atoms. These 

values can be compared with those observed for TTF(Pyr)4 (6.7 

x 13.1Å).69 In particular the distance between adjacent NPyr 

atoms in TTF(PhPyr)4 appears significantly higher than in 

TTF(Pyr)4 (12.8Å vs 6.7Å) as well as when compared to the Ru-

Ru distances for all the bis-Ruthenium complexes studied 

(Scheme 1). Such mismatching of the distances between the 

NPyr coordinating units on one hand, and both metals of the 

bis-Ruthenium complex on the other hand, is prone to favor the 

formation of the desired М8L2 self-assemblies. Reaction of 

TTF(PhPyr)4 with the bis-Ruthenium complex RuNaph (dRu-Ru =  

 
Fig. 1. X-ray crystal structures of a) TTF(Pyr)4 and b) TTF(PhPyr)4 ligands. 

8.4 Å) in acetone was followed by 1H NMR spectroscopy. After 

one night, the resulting spectrum shows well defined signals, 

suggesting the formation of a discrete self-assembled system 

(Figure 2). The α pyridyl protons signals as well as those of the 

paraphenylene spacer are upfield shifted upon coordination to 



the metal center. Occurrence of a single discrete structure is 

confirmed by a 1H DOSY NMR experiment, for which a single set 

of aligned signals is observed. The corresponding diffusion 

coefficient (D = 4.75 x 10-10 m².s-1) allows to estimate a 

hydrodynamic radius of rH = 15 Å calculated from the Stokes- 

 
Fig. 2. (a) 1H NMR (aromatic region) of ligand TTF(PhPyr)4 in CDCl3, (b) TTF-box in 
Acetone-d6 and (c) 1H DOSY NMR corresponding to (b). 

Einstein equation,73 a value which is in agreement with the 

expected M8L2 species. 

An FTCIR-MS analysis was carried out and confirms the 

formation of the M8L2 TTF-box, as shown by the characteristic 

ions [(TTF(PhPyr)4)2(RuNaph)4, 5TfO-]3+ (m/z = 1671.4093) and 

[(TTF(PhPyr)4)2(RuNaph)4, 4TfO-]4+ (m/z = 1216.3185) (Figure 

S7).  

Single-crystals were obtained by diffusion of methyl-tert-butyl 

ether into a solution of TTF-box in methanol (Figure 3) and the 

X-ray diffraction structure of the TTF dimeric structure could be 

solved. Two independent molecules are present in the crystal. 

From these data, a length of ca. 37 Å 

 

Fig. 3. X-ray structure of TTF-box, lateral view (a), top view (b). Hydrogens, anions 
and solvent molecules are omitted for clarity.  

was found for the largest diagonal of TTF-box, a value which 

satisfactorily correlates with the calculation extracted from the 

DOSY 1H NMR study. The most striking feature of this structure 

relies on the close distance between both facing TTF units 

within the dimeric structure. A short distance of 3.48 Å is 

observed between both central C=C bonds of two opposite TTF 

units, and S…S distances as low as 3.83 Å for the smallest. These 

values are significantly smaller than the Ru-Ru distance in each 

of the four lateral pillars (8.38 Å), meaning that the TTF dimeric 

structure is collapsed and fills the space between both TTF units. 

This observation means that a certain degree of conformational 

flexibility exists in the TTF framework, though there is no sp3 C 

atom in the entire system. In particular, one of the TTF units 

undergoes a bending of 20° around the S…S axis of one 1,3-

dithiol ring. Though the design and size of this metallacage 

suggests the possibility to intercalate one planar electron-poor 

guest in a sandwich mode, all attempts failed, probably because 

of the close contacts occurring between both TTF panels. This 

observation is consistent with the study of J. Becher et al.28 

The electrochemical properties of TTF(PhPyr)4 were studied 

(Figure 4a). and compared to those of TTF(Pyr)4
69 and the 

tetrakis(methylpyridinium) derivative of TTF(PhPyr)4, i.e. 

compound TTF(PhPyrMe)4 (see SI). The latter can be considered 

as a model compound, reminiscent of ligand TTF(PhPyr)4 when  



 

Fig. 4. Cyclic voltammetry in CH3CN/CH2Cl2 1/1 (C = 1 mM, nBu4NPF6 (0,1 M)), 100 
mV.s-1, glassy carbon, vs Fc/Fc+) of TTF(PhPyr)4,

* TTF(PhPyMe)4, and TTF(Pyr)4 (a) 
and of TTF-box, compared to the starting ligand TTF(PhPyr)4 and the bis-
Ruthenium complex RuNaph (b). * For solubility reasons TTF(PhPy)4 was recorded 
in CH2Cl2. 

the latter is engaged in a coordination bond as it is the case in 

TTF-box. The pyridyl groups quaternization was carried out 

upon treating TTF(PhPyr)4 with methyl iodide in DMF, followed 

by an anion exchange with KPF6. The ligand TTF(PhPyr)4 shows 

two reversible oxidation waves (E1
ox = 0.08 V and E2

ox = 0.48 V 

vs Fc/Fc+) corresponding to two successive one-electron 

oxidations to the radical-cation and dication states, as usually 

observed for TTF derivatives. It is worth noting that these 

oxidations occur at significantly lower potentials compared to 

TTF(Pyr)4 ones (E1
ox = 0.22 V and E2

ox = 0.58 V vs Fc/Fc+). This 

difference can be explained by the presence of the phenyl 

spacer which isolates the pyridyl groups from the redox-active 

TTF core, thereby attenuating the withdrawing inductive effect 

of Npyr atoms. On this basis, compound TTF(PhPyr)4 exhibits a 

high -donating ability and appears appropriate for generating 

electron-rich discrete assemblies. The corresponding 

tetrapyridinium salt TTF(PhPyrMe) shows redox waves (E1
ox = 

0.14 V and E2
ox = 0.51 V vs Fc/Fc) which are anodically shifted 

when compared to TTF(PhPyr)4, as expected from the positively 

charges nitrogen atoms.  

Interestingly, under the same conditions, TTF-box exhibits a 

splitting of the first oxidation process into two reversible waves  

(E1
ox = 0.04 V and E2

ox = 0.24 V vs Fc/Fc+, Figure 4b).74 This 

observation is assigned to the successive formation of the 

mixed-valence dimer ((TTF)2)●+ and of the corresponding π-

dimer (TTF●+)2.
14, 16, 18 Such phenomenon is explained by the 

very close distance between both facing TTF subunits in TTF-

box, prone to strongly interact upon oxidation. A third 

reversible oxidation process, located at E3
ox = 0.60 V vs Fc/Fc+ 

and anodically shifted compared to TTF(PhPyrMe) because of 

coulombic repulsions, is assigned to the formation of the 

dication state for each TTF unit. The last reversible oxidation 

process is observed at E4
ox = 0.83 V vs Fc/Fc+ and is ascribed to 

one Ru(II)→Ru(III) oxidation per bimetallic pillar, as shown from 

comparison with RuNaph (Figure 4b). Finally, an additional 

irreversible process attributed to the oxidation of the second 

metal cation on each RuNaph pillar is located at E5
ox = 1.21 V vs 

Fc/Fc+ (Figure S8).75 On this basis, it is important to highlight 

that: i) the charge on TTF-box can be monitored in a fully 

reversible manner from 8+ (E = -0.2 V) to 16+ (E = +1.0 V), ii) a 

remarkably high charge state of 20+ is reached at E = 1.2 V and 

iii) the self-assembled TTF-box remains stable upon repeated 

cycles within this window of potentials. Intercalation of 

polyaromatic guests (i.e. pyrene or perylene) could not be 

detected along those electrochemical experiments (no variation 

of redox potentials). This may be explained by the presence of 

competitive counter anions that may obstruct the cavity when 

TTF-box is oxidized.60 

Spectroelectrochemistry experiments were led to get a better insight 

on the electronic interactions occurring between both TTF moieties 

in the self-assembly. They were carried out on TTF-box as well as on 

RuNaph and the corresponding tetracationic salt TTF(PhPyrMe)4.  

The UV-vis spectra of the three compounds are shown in Figure 

5a. The tetrakis(pyridinium) salt TTF(PhPyrMe)4 exhibits two 

strong absorption bands at λ = 325 nm (ε = 41 100 l.mol-1.cm-1) 

and λ = 460 nm (ε = 4 200 l.mol-1.cm-1), assigned to π–π*  



  

 

  

 

Fig. 5. UV-vis absorption spectra of TTF(PhPyrMe)4, RuNaph and TTF-box in CH3CN/CH2Cl2 1/1 (C = 5 x 10-5 M) (a). Absorption spectroelectrochemistry experiment in 
thin layer conditions (~50 μm) during a cyclic voltammetry experiment in CH3CN/CH2Cl2 1/1 (C = 1 mM, n-Bu4NPF6 (0,1 M)), 20 mV.s-1, 20°C) of TTF(PhPyrMe)4 (b), 
RuNaph (c) and TTF-box in the -0.20 – 1.00 V range (d), oxidation and reduction scan limited to TTF radical cation, i.e. in the -0.20 – 0.40 V range (e) and finally oxidation 

and reduction scan limited to TTF dication, i.e. -0.25 – 0.75 V range (f) ; z axis = variation of absorbance Δ(Abs), MV = mixed valence. 

 

transitions and intra-ligand charge transfer respectively. The 

RuNaph complex exhibits main absorptions at λ = 320 nm (ε = 

12 600 l.mol-1.cm-1) and λ = 430 nm (ε = 9100 l.mol-1.cm-1), which 

correspond to the intra-ligand charge transfer in naphthalene 

and cymene, and minor absorptions at λ = 630 nm (ε = 3 300 

l.mol-1.cm-1) and λ = 682 nm (ε = 4 200 l.mol-1.cm-1), that 

correspond to the metal-ligand charge transfer due to the 

coordination with naphthalene and cymene.76 Finally, 

thespectrum of TTF-box essentially corresponds to the sum of 

the above respective contributions of TTF(PhPyrMe)4 and 

RuNaph (λ = 305 nm (ε = 96 200 l.mol-1.cm-1), 435 nm (ε = 26 

200 l.mol-1.cm-1), 645 nm (ε = 7 900 l.mol-1.cm-1) and 695 nm (ε 

= 7500 l.mol-1.cm-1)) which is typical for such systems.77 

The spectroelectrochemistry experiments were carried out 

upon monitoring the variation in absorbance, Δ(Abs), recorded 

in the UV−VIS−NIR region, while performing a cyclic 

voltammetry of a millimolar solution of the compound under 

study (0.1 M nBu4NPF6/CH3CN-CH2Cl2 1/1) in thin layer 

conditions (TLCV experiment - thickness around 50µm) (Figure 

5b-f). The TTF(PhPyrMe)4 pyridinium voltabsorptogram shows  

an increase of absorption upon formation of TTF●+ (λ = 460 and 

695 nm) and TTF2+ (λ = 520 nm) at respectively E1
ox ≃ 0.20 V and 

E2
ox = 0.65 V vs Fc/Fc+ (Figure 5b).78,79 The oxidation of NaphRu 

(RuII→RuIII) is characterized by the increase of distinctive bands 

around 375 nm, 525 nm (weak) and 900 nm (Figure 5c). The 

spectroelectrochemical spectrum of TTF-box recorded from E = 

-0.20 to 1.00 V (Figure 5d), exhibits some differences compared 

to the superimposition of TTF(PhPyrMe)4 and RuNaph 

contributions, as expected from the interaction occurring 

between both TTF units. A main difference concerns the region 

related to the first TTF oxidation step (-0.05 V < E < 0.40 V), for 

which additional absorption bands are detected (Figure 5e). At 

the very beginning of TTF-box first oxidation, spectral 

signatures are observed at λ = 465 and 725 nm,  which are 

assigned to the radical-cation state (TTF-box●+) by analogy with 

above observations from TTF(PhPyrMe)4.80 As in CV 

experiments (Figure 4b), a second close one-electron transfer 

occurs at Eox ≃ 0.30 V. The latter is assigned to the formation of 

the π-dimer state (TTF-box(●+)2), with characteristic absorptions 

at λ = 440 and 665 nm and 920 nm.81 On the other hand, a 

characteristic signature of TTF2+, without any confinement-

dependent behavior, is observed at Eox ≃ 0.70 V (i.e. TTF-box4+) 

(Figure 5f). This observation suggests a strong repulsion 

between TTF2+ moieties. Finally, at higher voltage, the spectral 

signature of the oxidized Ruthenium side panels is observed 

(Figure 5d) with a red shifting of about 100nm compared to 

RuNaph precursor (Figure 5c). This set of 

spectroelectrochemical data demonstrates that TTF-box 

constitutes an original example of a bis-TTF derivative for which 

interactions occuring at oxidized states (mixed valence and π-



dimer) can be characterized at room temperature, a feature 

which is allowed by the spatial proximity of both TTF units in the 

coordination self-assembly.  

Conclusion 

We have designed a tetratopic ligand TTF(PhPyr)4 in order to 

favor the formation of a M8L2 cage upon self-assembling with a 

bis-Ruthenium complex, providing a control over the inter-TTF 

distance. Whereas the Ru-Ru distance is 8.3Å within the four 

pillars of the box, short interplanar C…C and S…S distances of 

respectively 3.48 Å and 3.83 Å are observed between both TTF 

units in TTF-box. This short distance results from a severe 

bending of the facing ligands, which collapse towards the center 

of the cavity. Electrochemical experiments including 

spectroelectrochemical measurements clearly show that the 

two facing TTF units interact upon oxidation, giving rise to an 

oxidized TTF dimer (TTF-box(●+)2). This observation is imputable 

to the unique geometry of this M8L2 assembly, for which the two 

TTF units are forced to stack together. TTF-box does not 

disassemble upon oxidation which attests to its robustness, and 

allows to reversibly generate up to eight positive charges upon 

oxidation. Given the strong interest in the recent literature for 

redox-controlled supramolecular interactions,2 and considering 

the unique molecular design of TTF-box for which both redox 

units are forced to face, extension of this coordination-driven 

approach to the design of new related redox-active boxes is 

under study using alternative ligands and bis-metallic 

complexes. 
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