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ABSTRACT

We present the first exoplanet atmosphere detection made as part of the SPIRou Legacy Survey, a

Large Observing Program of 300 nights exploiting the capabilities of SPIRou, the new near-infrared

high-resolution (R ∼ 70 000) spectro-polarimeter installed on the Canada-France-Hawaii Telescope

(CFHT; 3.6-m). We observed two transits of HD 189733 b, an extensively studied hot Jupiter that
is known to show prominent water vapor absorption in its transmission spectrum. When combin-

ing the two transits, we successfully detect the planet’s water vapor absorption at 5.9σ using a

cross-correlation t-test, or with a ∆BIC> 10 using a log-likelihood calculation. Using a Bayesian

retrieval framework assuming a parametrized T-P profile atmosphere models, we constrain the planet

atmosphere parameters, in the region probed by our transmission spectrum, to the following val-

ues: log10 VMR[H2O]= −4.4+0.4
−0.4, and Pcloud& 0.2 bar (grey clouds), both of which are consistent

with previous studies of this planet. Our retrieved water volume mixing ratio is slightly sub-solar

although, combining it with the previously retrieved super-solar CO abundances from other studies

would imply super-solar C/O ratio. We furthermore measure a net blue shift of the planet signal of

−4.62+0.46
−0.44 km s−1, which is somewhat larger than many previous measurements and unlikely to result

solely from winds in the planet’s atmosphere, although it could possibly be explained by a transit

signal dominated by the trailing limb of the planet. This large blue shift is observed in all the different

detection/retrieval methods that were performed and in each of the two transits independently.
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1. INTRODUCTION

The characterization of exoplanet atmospheres using

transmission or emission spectroscopy has grown con-

siderably since it was proposed by Seager & Sasselov

(2000). The spectra that such techniques yield can be

used to probe the state and composition of an exo-

planet’s atmosphere. This provides insight into physical

and chemical processes at play, which can then be inter-

preted through different formation pathways and evo-

lutionary histories of the planet, usually by measuring

the metallicity and the C/O ratio via their molecular

abundances (e.g., Öberg et al. (2011); Pelletier et al.

(2021)). The most successful observations to date have

typically been obtained from space (e.g., Madhusudhan

et al. 2014; Sing et al. 2016; Barstow et al. 2017; Pin-

has et al. 2019; Welbanks et al. 2019), with the frequent

use of the Hubble Space Telescope Wide Field Camera

3 (HST/WFC3) spectrometric and Spitzer Space Tele-

scope photometric capabilities. The exquisite image and

instrument stability enable the detection of subtle spec-

tral differences induced by the planet’s atmosphere dur-

ing its transit or eclipse and phase curve (which can be

on the order of only a few tens of parts-per-million, ppm,

e.g., Kreidberg et al. 2014). One caveat, however, is that

these instruments usually have a limited wavelength cov-

erage, which limits the simultaneous detection of water

and carbon-bearing molecules (which prevents the com-

putation of an accurate C/O ratio) and can sometimes

lead to mixed results, e.g. the unclear nature of the

strong spectral feature in the 4.5µm Spitzer band in

WASP-127 b atmosphere, which could come from CO

and/or CO2 (Spake et al. 2021). Ground-based high

dispersion spectroscopy (HDS) can achieve similar pre-

cision by resolving each line independently. The change

in orbital radial velocity of the planet can be exploited

to disentangle the signal of the planet from that of stel-

lar and telluric signals (e.g. Snellen et al. 2010). In

that case, the transit/emission spectrum is probed by

looking for a signal (from either atomic or molecular

species) that follows the planet radial velocity, which

can be orders of magnitudes smaller than that of its star.

Compared to low-resolution spectroscopy, HDS has the

added benefit of being able to disentangle absorption

by different molecules with overlapping bands (but non-

∗ Trottier Fellow
† Banting Fellow

overlapping lines, e.g. Giacobbe et al. 2021) and from

different origins (e.g., stellar, planetary, and telluric) be-

cause the individual lines are resolved. Moreover, wind

speeds and global dynamics of the planet’s atmosphere

can be measured (through the Doppler shift and broad-

ening of the planet’s absorption lines; e.g., Wyttenbach

et al. 2015; Louden & Wheatley 2015; Flowers et al.

2019).

The firsts successful atmospheric characterizations

from the ground were detections of sodium in the opti-

cal on HD 189733 b (Redfield et al. 2008; with the High

Resolution Spectrograph, R ∼ 60 000, on the Hobby-

Eberly Telescope) and HD 209458 b (Snellen et al. 2008;

with the High Dispersion Spectrograph, R ∼ 45 000, on

the Subaru Telescope; even though these results are in-

consistent with the more recent ones from Casasayas-

Barris et al. (2020)). The first near-infrared (NIR)

HDS study was presented by Snellen et al. (2010), with

the detection of carbon monoxide (CO) in the atmo-

sphere of HD 209458 b via transmission spectroscopy us-

ing CRIRES (R ∼ 100 000; Kaeufl et al. 2004) installed

at the VLT (8.2-m telescope). Many more such de-

tections followed: H2O and CO for several transiting

and non-transiting exoplanets (Brogi et al. 2012; Birkby

et al. 2013; Brogi et al. 2016; Birkby et al. 2017; Webb

et al. 2020), HCN for HD 209458 b (Hawker et al. 2018),

and the effects of global atmospheric dynamics, such as

day-to-night winds and/or eastward winds (jet streams)

on HD 209458 b and HD 189733 b (Snellen et al. 2010;

Brogi et al. 2016; Flowers et al. 2019; Beltz et al. 2021).

Multiple other high-resolution instruments have en-

abled additional interesting results again for transit-

ing and non-transiting targets. A lot of them came

from optical instruments (a non-exhaustive list includes

HARPS, e.g., sodium detection on WASP-76 b, Sei-

del et al. 2019; HARPS-North, e.g., neutral Fe and

Ti on the atmosphere of KELT-9 b, Hoeijmakers et al.

2018, ESPRESSO, e.g., the iron condensation on the

nightside of WASP-76 b, Ehrenreich et al. 2020, and

CARMENES VIS-channel, e.g., extended Hα envelope

detected on KELT-9 b Yan & Henning 2018), but the

following list highlights some of the near-infrared ones.

The NIRSPEC spectrograph (0.95–5.4µm, R ' 25 000;

McLean et al. 1998) on the Keck II telescope led to

the detection of several species, such as CO, H2O (e.g.,

Rodler et al. 2013; Lockwood et al. 2014; Piskorz et al.

2016, 2017, 2018; Buzard et al. 2020), and more re-

cently metastable helium (He, at 1083 nm; e.g., Kirk
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et al. 2020). CARMENES (NIR-channel, 0.96–1.71µm,

R = 80 400, Calar Alto Observatory, 3.5-m; Quirrenbach

et al. 2014) has also been very prolific in recent years.

He absorption was detected on multiple targets (Al-

lart et al. 2018, 2019; Salz et al. 2018; Alonso-Floriano

et al. 2019; Palle et al. 2020), as well as H2O absorption

in both HD 189733 b and HD 209458 b (Alonso-Floriano

et al. 2019; Sánchez-López et al. 2019, 2020). Also, GI-

ANO (0.95–2.45µm, R = 50 000, Telescopio Nazionale

Galileo, 3.6-m; Oliva et al. 2006) was able to confirm the

HD 189733 b detection of H2O (Brogi et al. 2018) and of

metastable He (Guilluy et al. 2020). Moreover, Guilluy

et al. (2019) also detected H2O absorption in the at-

mosphere of the non-transiting HD 102195 b planet, and

found evidence for the presence of methane (CH4) as

well.

The Spectro-Polarimètre InfraRouge (SPIRou; Donati

et al. 2020) is a new fiber-fed échelle spectro-polarimeter

operating in the NIR domain installed on the CFHT.

SPIRou was primarily designed to detect and character-

ize Earth-like planets in the habitable zone of low-mass

stars via precise radial velocity (RV), down to ∼1 m s−1,

and to study the stellar magnetic fields using its po-

larimetry capabilities (e.g., Martioli et al. 2020; Klein

et al. 2021). SPIRou saw its first light April 2018, and

is the first instrument to have both a high spectral res-

olution (R ∼ 70 000) as well as such a broad continuous

NIR spectral range (∼0.95–2.50 µm), which provides an

unparalleled richness of spectral information. Its wider

spectral range gives access to more individual absorption

features, thus making SPIRou well suited for exoplanet

atmospheric characterization via the cross-correlation

technique (see Deibert et al. 2021, Pelletier et al., 2021,

submitted). SPIRou also has a higher throughput than

many slit spectrographs and its design provides a more

stable line spread function.

In this paper we report the first results of the SPIRou

Legacy Survey (SLS) on exoplanet atmosphere charac-

terization for the planet HD 189733 b (Bouchy et al.

2005). Initiated at the start of SPIRou operations,

the SLS is a CFHT Large Program of 300 telescope

nights (PI: Jean-François Donati) whose main goals are

to search for planets around M dwarfs using precision RV

measurement, characterize the magnetic fields of young

low-mass stars and their impact on star and planet for-

mation, and probe the atmosphere of exoplanets using

HDS. The planet targeted here, HD 189733 b, is one of

the most studied hot Jupiters to date, and due to the

brightness of its active host star (K2V; H = 5.59 mag),

it offers great opportunities for in-depth analyses. The

study of the orbital motion, Rossiter-McLaughlin ef-

fect (RME; Rossiter 1924; McLaughlin 1924) and mag-

netic field made with these SPIRou SLS observations of

HD 189733 b are presented in Moutou et al. (2020).

Its atmosphere has been studied many times and its

transmission spectrum has revealed water (e.g., Brogi

et al. 2016, 2018; Alonso-Floriano et al. 2019), CO

(de Kok et al. 2013, and references therein), hydrogen

(Lecavelier des Etangs et al. 2012; Bourrier & Lecavelier

des Etangs 2013; Bourrier et al. 2020), metastable he-

lium (Salz et al. 2018; Guilluy et al. 2020), and sodium

(Redfield et al. 2008; Jensen et al. 2011; Huitson et al.

2012; Wyttenbach et al. 2015). The rotation of the

planet, consistent with being tidally locked, and evi-

dence of winds have also been detected (e.g., Wytten-

bach et al. 2015; Louden & Wheatley 2015; Brogi et al.

2016; Flowers et al. 2019). Furthermore, Barstow (2020)

studied the properties and location of clouds in its at-

mosphere, which have a substantial effect on retrieved

abundances. Their results pointed toward an heteroge-

neous atmosphere, with small-particle aerosols covering

at least 60% of the terminator region, reaching to low

pressures, but no grey cloud.

This paper is organized as follows. In Section 2, we

present the observational setup and describe the obser-

vational data along with the details of the reduction. In

Section 3 we explain the telluric and stellar signal re-

moval process, and also present the atmospheric models

that are used for the cross-correlation analysis. Section 4

details the methods that we used to extract the planet’s

atmosphere signal and present the associated results. In

Section 5 we discuss our findings, and summarize our

main results in Section 6.

2. OBSERVATIONS AND DATA REDUCTION

All data presented here were obtained with SPIRou

(Donati et al. 2020). The spectrograph covers the Y , J ,

H, and Ks bands (∼0.95–2.50µm) simultaneously at a

nominal resolving power of R = λ/∆λ ∼ 70 000 (with

a sampling precision of ∼ 2.3 km s−1 per pixel), over

50 spectral orders. The fiber-fed spectrograph is bench-

mounted in a vacuum tank to maximize its stability and

radial velocity precision. This further gives a much more

stable line-spread function, greatly reducing the level of

systematic errors (Artigau et al. 2014). SPIRou has a

4096× 4096-pixel H4RG detector, with 15µm-wide pix-

els. The overall throughput is around 4 to 8% in the Y

and J bands, while it increases to 10–12% in the H and

K bands. There are two science fibers that monitor the

object and one calibration fiber that can track a Fabry-

Pérot etalon for simultaneous wavelength calibration.

Two transits of HD 189733 b were observed as part of

the SLS. The first transit (hereafter Tr1) was observed

on UT September 22, 2018, as part of SPIRou commis-
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Table 1. SPIRou observations of HD 189733

Transit 1 Transit 2

UT Date 2018-09-22 2019-06-15

BJD (d) a 2458383.77 2458649.95

Texp (s) b 250 250

Seeing (”) c 0.79 0.85

SNR d 259 224

Number of exposures :

Before ingress 0 12

During transit 21 24

After egress 15 14

Total 36 50

Tot. observ. time (h) e 2.50 3.47

Note— a Barycentric Julian date at the start of the transit

sequence ; b Exposure time of a single exposure; c Mean

value of the seeing during the transit; d Mean SNR per pixel,

per exposure, at 1.7µm; e Total observing time in hours.

0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04
Orbital phase ( )

1.00

1.05

1.10

1.15

1.20

1.25

Ai
rm

as
s

Transit 1
Transit 2
Ingress/Egress
Total Transit

Figure 1. Airmass variation during the two SPIRou tran-
sit observations (light blue diamonds for Tr1 and dark blue
circles for Tr2; the shaded area shows the span of the transit
event).

sioning observations (later combined to SLS data), and

the second (hereafter Tr2) on UT June 15, 2019. Both

sets of observations were taken without moving the po-

larimeter optics (rhombs) to ensure the highest possible

instrument stability, with the Fabry-Pérot in the cal-

ibration channel, and both with an exposure time of

250 s per individual exposure. Table 1 lists the param-

eters of the observations. The first data set consists of

2.5 h, divided into 36 exposures, where the first 21 are

in-transit and the remaining 15 are out-of-transit. Tech-

nical operations during this night prevented the start of

the sequence early enough to observe the star before

ingress. The second data set consists of 50 exposures

in total, where 24 are in-transit, 12 before, and 14 after

transit, for a total of ∼ 3.5 h. Conditions were photo-
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Wavelength ( m)
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Figure 2. Temporal mean of the SNR per order (top panel;
the shaded area highlights the orders in the H-band) and
spectral mean of the SNR for H-band per exposure (bottom
panel; the shaded area shows the span of the transit event)
during SPIRou observations (light blue diamonds for Tr1 and
dark blue circles for Tr2).

metric for both transit sequences, with an average seeing

of around 0.82′′ as estimated from the guiding images.

The airmass remained under 1.3 for the total duration

of both observations (see Figure 1). The water column

density was more stable during the second night with a

range of 2.5–3.0 vs 2.6–3.6 mm H2O for the first night.

The signal-to-noise ratio (SNR) temporal mean per or-

der and the spectral mean (over the H-band only) per

exposure for both transits are shown in Figure 2. The
Tr2 SNR is much more variable, but has out-of-transit

observations on both sides.

The data were reduced using APERO (A PipelinE to

Reduce Observations; version 0.6.131; Cook et al., in

prep.), the SPIRou data reduction software.

The first step is to pre-process the raw data. This

removes certain detector effects (correcting for the top

and bottom reference pixels, median filtering against the

dark amplifiers and the 1/f noise; Artigau et al. 2018).

APERO then calibrates observations, correcting for the

dark, flagging bad pixels (from a bad pixel map created

from calibration flats and darks), removing background

scattered light (both locally and globally), and clean-

ing hot pixels (via interpolating over high-sigma outliers

compared to their immediate neighbors).

The order positions are found and fit with polynomi-

als and pixels are registered onto a common reference
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grid (using a master Fabry-Pérot, FP). In addition, the

order geometry and the geometry of the detector (slicer

shape, slicer tilt and other optics) are separated into

changes across-order, along-order and an affine transfor-

mation matrix (essentially being characterized by a shift

in dx, dy and an A-B-C-D matrix, which can describe a

translation, reflection, scale, rotation and or shear in the

detector). These geometric changes are applied, along

with the order polynomial fits in order to straighten the

image.

The straightened image is then optimally extracted

(Horne 1986) and cosmic ray correction is applied. This

produces an extracted 2D spectrum; E2DS of dimen-

sions 4088 (4096 minus 8 reference pixels) by 49 orders

(corresponding to physical orders of #79 in the blue to

#31 in the red). The E2DS are flat and blaze corrected

(the blaze is fitted with a simple sinc model) and a wave-

length solution is available for each night (the wave cal-

ibration is done using both a hollow-cathode UNe lamp

and the FP; Hobson et al. 2021). Thermal background

is corrected with a dark calibration, scaled in amplitude

to match the thermal background of the reddest orders.

As a final step, when the FP is used simultaneously in

the calibration fiber, the contamination from the simul-

taneous FP is corrected for (using a set of calibrations

with dark in the science fiber and the FP in the refer-

ence fiber to correct the contamination from the refer-

ence fiber into the science fiber). While the E2DS are

produced for the two science fibers (A and B) and for the

combined flux in the science fibers (AB), we only used

the AB extraction as this is the relevant data product

for non-polarimetric observations.

3. ANALYSIS

3.1. Telluric absorption correction

A large portion of the NIR domain that SPIRou cov-

ers is affected by absorption in the Earth’s atmosphere

(telluric absorption), which is resolved into thousands

of individual narrow molecular lines at SPIRou’s reso-

lution. This absorption is strongest and line densities

are highest in between the Y JHK photometric band-

passes, but many lines are nevertheless present with var-

ious strengths throughout the domain. It is crucial that

these telluric absorption lines be precisely corrected for

or masked out prior to seeking the subtle spectral sig-

nature of an exoplanet atmosphere seen in transit, espe-

cially as they arise from molecules also expected to be

present in exoplanet atmospheres.

The spectra are corrected for telluric line contamina-

tion within APERO in a two-step process. First, the blaze

normalized E2DS spectra are pre-cleaned by removing

the best-fitting TAPAS atmospheric transmission spec-

trum (Bertaux et al. 2014). This best-fit model is found

by minimizing the cross-correlation signal between the

TAPAS model and the telluric residuals, i.e. the data

from which this same model was removed. Second, the

telluric line residuals are corrected using the Principal

Component Analysis (PCA) approach developed by Ar-

tigau et al. (2014) and implemented in APERO (Artigau

et al., in prep.). The approach exploits the fact that

the absorbance spectrum of Earth’s atmosphere can be

expressed, in log-space, as a linear combination of ab-

sorbance spectra from different chemical species (chiefly

H2O, O2, CO2 with minor O3, CH4 and N2O features).

As part of SPIRou night time calibrations, rapidly ro-

tating A stars are observed and the derived telluric ab-

sorption from these observations is added to a library.

The telluric correction spectrum is constructed through

a linear combination (in log space) of the first 7 principal

components (PCs) of the library of telluric absorptions,

for each observed spectrum.

The most opaque regions in Earth’s atmosphere (satu-

rated lines, or lines with transmission smaller than 10%)

will let little to no light through, resulting in a poorly

constrained/unreliable correction. The APERO pipeline

performs the telluric absorption correction for lines with

a transmission down to ∼ 10%, and deeper lines are

masked out. The total reconstructed Earth transmis-

sion spectrum calculated by the pipeline (the product

of the best-fit TAPAS model and the PCA reconstruc-

tion of the residuals) is one of the data product, allow-

ing further masking if desired. An example of the tel-

luric absorption reconstruction and correction is shown

in Figure 3, panels A to C.

Sky emission lines are also removed by the APERO

pipeline as part of the telluric correction process. The

pipeline draws from a library of sky spectra taken at

various times through the life of SPIRou and constructs

a linear combination of the first 9 PCs of this library,

again for every exposure individually, to reconstruct and

subtract the sky emission lines in the observed spectrum.

The final telluric corrected spectra are re-multiplied by

the blaze to keep the level proportional to the photon

counts.

In our analysis below, we found that further mask-

ing of deep telluric lines (i.e. further masking parts

of the previously telluric corrected regions) improved

the results, possibly because low-level telluric absorption

residuals remain in the spectra. Using the reconstructed

telluric spectrum to define our mask, we masked all tel-

luric lines for which the transmission in the core is below

30% in Tr1 and 35% in Tr2, and for those lines, we also

mask the wings by extending the mask until the trans-

mission reaches 97% (Figure 3 E); these limits were em-
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Figure 3. Analysis steps that are applied to the observed spectral time series of the first transit. Here the full order
spanning 1.6797 to 1.7327 µm is shown. Panel A: The uncorrected (black), the telluric-corrected (green) observed spectra and
the reconstructed telluric transmission spectrum (blue) are shown with an offset to facilitate visibility. Panel B : Uncorrected
spectra (counts normalized by the blaze function). Panel C : Telluric-corrected spectra. The masked pixels are shown in red;
here the masking is done by APERO. Panel D : The high variance columns of the mean normalized spectra are masked, and then
the spectra are co-aligned (shifted) in the pseudo-stellar rest frame. Panel E : The regions with deep telluric lines are masked.
Every spectrum is normalized to the continuum level of the Master-Out spectrum. Panel F : Planetary transmission spectra,
where each spectrum was divided by the Master-Out spectrum. Panel G: Final planetary transmission spectra corrected for
the vertical residual structures using PCA. The blue line in panels B-G shows the egress position (mid-transit is at phase 0).
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Table 2. Adopted parameters for the system HD 189733

Parameter Symbol Value Unit Reference

Stellar mass M? 0.806± 0.048 M� T08, B19

Stellar radius R? 0.756± 0.018 R� T08

Planet mass Mp 1.123± 0.045 MJ T08

Planet radius Rp 1.138± 0.027 RJ T08

Semi-amplitude K 0.205± 0.006 km s−1 T08

Orbital semi-major axis a 0.03099+0.00060
−0.00063 AU T08

Orbital period Porb 2.218575123± 0.000000057 d B19

Orbital eccentricity e 0.0028± 0.0038 B19

Orbital inclination iP 85.712± 0.036 ◦ (deg) B19

Epoch of transit T0 2453968.837031± 0.000020 BJD B19

Transit duration T14 1.8012± 0.0016 h B19

Systemic velocity Tr1 vsys,Tr1 −2.59± 0.21 km s−1 This work

Systemic velocity Tr2 vsys,Tr2 −2.76± 0.21 km s−1 This work

Note—(T08) Torres et al. 2008 and (B19) Baluev et al. 2019.
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pirically determined, based on an injection-recovery test.

This step removes a total 8.6% and 10.6% of the spec-

tral domain in Tr1 and Tr2, respectively. This masking

is applied at step 3 in the following section.

3.2. Transmission spectrum construction

Starting from the telluric-corrected E2DS spectra, af-

ter division by the normalized blaze function to flat-

ten them, we applied the following operations to con-

struct the planet’s transmission spectra. These opera-

tions were applied on each order individually and sepa-

rately for each transit sequence.

1) To remove bad pixels, the spectra are first nor-

malized by dividing them by their median value (over

wavelengths). Then, spectral pixels with a time vari-

ance (over the different spectra) more than 4σ above the

mean variance are masked. In total, this removes 0.6%

and 0.5% of the pixels in Tr1 and Tr2, respectively.

2) All the spectra are Doppler shifted (via cubic spline

interpolation that handles masked arrays) from the ob-

server to a pseudo-stellar rest frame (SRF) by the op-

posite of the stellar radial velocity variation relative to

the middle of the sequence, ∆vS(t). The stellar radial

velocity vS(t) is itself defined as,

vS(t) = vbary(t) + vsys + vreflex(t) , (1)

where vbary is the barycentric velocity of the observer

(and in our case it is the barycentric Earth radial ve-

locity, BERV), vsys is the systemic radial velocity, and

vreflex(t) = K sin[2π(φ(t)+0.5)] is the radial component

of the reflex motion of the star induced by the planet

(Keplerian), where K is the stellar radial velocity semi-

amplitude (which we fixed; see Table 2), and φ is the

planet orbital phase (φ = 0 at mid-transit). We then

define ∆vS(t) as follows:

∆vS(t) = ∆vbary(t) + ∆vreflex(t) , (2)

where ∆vbary(t) = vbary(t) − vbary(tmid.exp.), the dif-

ference between the barycentric velocity during the se-

quence (vbary(t)) and its value at the middle of the se-

quence (vbary(tmid.exp.)), and equivalently for the reflex

motion term. This aligns the stellar lines across all spec-

tra (see Figure 3 D), even though they are not exactly

in the SRF, while minimizing the shifts applied to the

data, hence minimizing the associated interpolation er-

rors (the first half of the exposures are thus shifted by

roughly the same amount as the second half, but in the

opposite direction). In our case, the shifts applied are

at most ∼ 5% and ∼ 7% of a SPIRou spectral pixel,

for Tr1 and Tr2 respectively. Many of the HD 189733

system and orbital parameters are well known and the

values that were used here are listed in Table 2. We

measured vsys directly from our data by computing the

CCF of the telluric corrected spectra with a synthetic

spectrum from a PHOENIX atmosphere model (Husser

et al. 2013) with Teff = 5100 K, log g = 4.5, and Z = 0.

We computed this CCF for all orders across the H band,

measured the peak position, subtracted vbary(t) and

vreflex(t), then calculated the mean value by weighting

by the SNR of the orders, and finally computed the mean

over all spectra for each transit. We obtained values of

−2.22 ± 0.04 km s−1 for Tr1, and −2.39 ± 0.04 km s−1

for Tr2. Then to determine the heliocentric radial ve-

locity of the HD 189733 system from our observations,

we subtracted 0.67± 0.04 km s−1 to compensate for the

gravitational redshift and −0.3±0.2 km s−1 for the con-

vective blueshift of a K2 star (Leão et al. 2019). The

final vsys values are reported in Table 2.

3) The additional telluric masking mentioned above is

applied; this was not done earlier to limit interpolations

on masked pixels (Figure 3 D to E).

4) The stellar spectral features are removed following

the technique of Allart et al. (2017): (a) A “Master-

Out” spectrum is built by taking the mean of all the

out-of-transit spectra (full-disk stellar spectrum). (b)

All spectra are divided by a low-pass-filtered1 version

of their ratio with the Master-Out; this flattens out the

continuum and removes the modal noise, thus reducing

the correlation noise due to slopes in the spectra (Fig-

ure 3 E). (c) A second iteration of the Master-Out spec-

trum is calculated using the normalized out-of-transit

spectra. (d) The normalized spectra are divided by this

final Master-Out spectrum, which yields the planetary

transmission spectra (see Figure 3 F), and sigma clipped

at 6σ, to prevent outliers to be included in the next step.

5) At this stage, we can see residual vertical features in

the spectral time series 2D representation (Figure 3 F);
these seem to appear because of the Master-Out is built

with a subset of spectra and better represents the spec-

tra closest to it in time (the out-of-transit spectra, in this

case), and the residuals could be linked to systematic ef-

fects that vary with time. To remove these residual fea-

tures, we use a PCA approach. The PCs are built from

the logarithm of the flux in the time dimension using

each spectral pixel time series as a sample point (which

is the transpose equivalent to building the PCs basis in

the spectral space and having each exposure as a sample

point). Each sample (spectral pixel time series) is then

divided by the exponential of their reconstruction based

1 Median filter of width 51 pixels followed by convolution with a
Gaussian kernel of width 5 pixels.
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on the firsts n chosen PCs. To determine the number

of PCs to use, we performed an injection-recovery test

for both analysis methods presented below, the cross-

correlation function (CCF) and the log-likelihood. We

injected the model at -KP and the known vsys + vrad.

This test indicates that removing 2 and 3 PCs yields the

best detection significance of the injected signals for Tr1

and Tr2, respectively, and this is what we adopted for

all analyses. The higher telluric fraction to be masked

and the number of PCs to remove in the second transit

could be linked to its lower data quality compared to

Tr1.

6) Finally, any remaining outlier pixels are masked us-

ing sigma clipping (at 3σ) in the time dimension, and

the mean of each spectrum is subtracted out, to keep

a zero mean for the cross-correlation. This yields the

final spectral planetary transmission values fi (where

i indexes over both time and wavelength), shown in

Figure 3 G, that are used for the cross-correlation/log-

likelihood mapping in Section 4.

During the analysis of the Tr2 data set, it was found

that a significant change in systematic spectral noise oc-

curred around passage of the target through the merid-

ian, near airmass of 1. Similar noise patterns, always

occurring as the target passes near the zenith, were also

found in other SPIRou data sets (e.g. Pelletier et al.

2021). The cause of this is still being investigated, but

is thought to be related to the azimuth angle of the tele-

scope (TelAz). This effect is most important when the

variation (or gradient) of the TelAz is maximal. See

Pelletier et al. (2021) for a longer discussion of this ef-

fect. In our case, this effect had no impact on Tr1, as

all data were taken after meridian crossing. For Tr2, we

managed to work around this problem by splitting the

data set in two subsets: before (27 exposures) and after

(23 exposures) the meridian crossing. We applied all the

analysis steps above to both subsets independently, and

then we merged them back into a single sequence at the

end.

3.3. Atmospheric Model

Obtaining information about the molecular content

in the planet’s atmosphere requires the use of the

cross-correlation method/log-likelihood mapping with

high spectral resolution synthetic planetary transmis-

sion spectra. The models of HD 189733 b and associated

transmission spectra that were used here were generated

using the SCARLET framework (Self-Consistent Atmo-

spheric RetrievaL framework for ExoplaneTs; Benneke

& Seager 2012, 2013; Benneke 2015; Benneke et al.

2019). SCARLET generates transmission spectra for

a simulated planetary atmosphere in hydrostatic equi-

librium by considering the molecular opacities at each

pressure layer. Included in the opacities are contri-

butions from H2O, H2 broadening following Burrows

& Volobuyev (2003), and collision-induced broadening

from H2/H2 as well as H2/He collisions from Borysow

(2002). The models are generated at a resolving power

of R = 250 000 using line-by-line radiative transfer and

are later convolved to match the instrumental resolution

of SPIRou. The resulting output is the transit depth

as a function of wavelength, i.e. R2
p(λ)/R2

?, which cor-

responds to the observed transmission spectrum calcu-

lated above, pending normalization by the continuum

level.

The choice of the water lines list used in the models

is important, given the preponderance of this molecule

in the atmosphere and throughout the transmission

spectrum of HD 189733 b. In this work, we adopted

the POKAZATEL (Polyansky et al. 2018) water line

list from Exomol (Tennyson et al. 2016). Most pre-

vious analyses used the HITEMP 2010 line list, but

Gandhi et al. (2020) explicitly compared the two with

HD 189733 b CRIRES data from Birkby et al. (2013)

(thermal emission) and reported a strong agreement

between the two, with a slightly higher signal from

POKAZATEL. Similarly, Nugroho et al. (2021) ob-

served a better detection significance for H2O in WASP-

33 b when using the POKAZATEL line list than when

using HITEMP 2010, even though the signal is found

at the same location. Webb et al. (2020) also com-

pared these line lists in their study of the non-transiting

HD 179949 b’s atmosphere and found consistent results,

although their data favored HITEMP 2010 models.

In principle, any temperature-pressure (T-P) profile

can be used to generate the atmospheric models, but

here we adopted an analytical atmospheric T-P profile

from Guillot (2010). For simplicity, we fixed three of

the four parameters of the profile, namely κIR the at-

mospheric opacity in the IR wavelengths, γ the ratio

between the optical and IR opacity, and Tint the plan-

etary internal temperature, while keeping Teq, the at-

mospheric equilibrium temperature, as a free parame-

ter. We fixed the values to κIR = 10−1.5, γ = 10−0.85

and Tint = 100 so that the shape of the resulting pro-

file would roughly resemble those found in the litera-

ture for HD 189733 b, more specifically from Sing et al.

(2016); Brogi & Line (2019). Both hazes and a grey

cloud deck can be included in the models, but here we

neglected the hazes contribution given the NIR wave-

length range of SPIRou. We did, however, include a

grey cloud deck contribution, characterized by its cloud

top pressure Pcloud (bar), as this can have a large ef-

fect on the contrasts/depths of spectral lines. Rayleigh
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scattering is included by default even though its contri-

bution is not significant in the NIR.

The models considered in our study are thus described

by 3 free parameters: the water VMR, the temperature

TP (K) of the isothermal atmosphere profile, and the

cloud top pressure Pcloud (bar). Once a model is gener-

ated, we convolve it to the resolving power of SPIRou,

70 000, and bin it to match the observed data pixel sam-

pling.

4. ATMOSPHERIC SIGNAL EXTRACTION:

METHODS AND RESULTS

Even with a high SNR SPIRou spectrum, individual

planetary absorption lines are often weak and buried in

the noise. To maximize the signal and the detection

strength, we combine the signal from many lines via the

cross-correlation and log-likelihood mapping techniques.

This is why a maximum number of spectral lines is de-

sired, which then justifies the need for a wide spectral

range. In this work, we tested three specific approaches

for detecting HD 189733 b’s signal and constraining its

atmospheric parameters, but the models first need to be

processed to better represent the data. In this section,

we present how we process the models followed by the

three approaches, i.e. the cross-correlation (and t-test),

the log-likelihood mapping and MCMC retrieval.

4.1. Model processing

At this point in the analysis, the planetary atmosphere

signal was affected by all the processing steps that were

applied to the data. This mostly concerns the subtrac-

tion of the PCs, which are generally not orthogonal to

the planet transmission spectra. Their subtraction (step

5 from Section 3.2) may remove part of the actual planet

signal and introduce artefacts in the spectral time se-

ries, which can then bias the determination of the best

parameters (velocities, abundances, temperature, etc.).

We thus need to apply the same treatment to the model

before comparing it to the data to ensure a better rep-

resentation. So instead of using the models directly for

the cross-correlation, we use a processed model tran-

sit sequence. We proceed as follows: we generate full

synthetic transit sequences by injecting the model spec-

trum (described in Section 3.3) in a reconstruction of

the observed data. This reconstructed signal is built

by multiplying together (i) the spectral median of ev-

ery spectrum (for every order; same as step 1 from Sec-

tion 3.2), (ii) the master-out spectrum and (iii) the PCA

reconstructed version of the transmission spectrum, all

of which are (mostly) planet signal free. We inject the

model at vP(t), the total planet radial velocity,

vP(t) = vbary(t)+vsys+vreflex,P(t)−vreflex(t)+vrad , (3)

where vreflex,P(t) = KP sin[2π(φ(t))] is the radial part

of orbital velocity of the planet and KP is the planet’s

radial velocity semi-amplitude, and vrad is a constant

additional velocity term to account for potential shifts.

Since the spectra are in the pseudo-SRF (from step 2),

here vbary(t) = vbary(tmid.exp.). We can inject the models

at different combinations of KP and vrad. Then, the rel-

evant steps of the analysis are reapplied on the modeled

transit sequence, i.e. 1, 5 and 6; step 2 is ignored since

the reconstructed signal is already in the pseudo-SRF,

so no additional shifts are needed; step 3 is ignored since

the spectra are already masked (from the reconstructed

spectra) so no additional masks are applied (this also

excludes the sigma clipping parts in steps 1 and 6); and

step 4 is ignored since the spectra are already normal-

ized to the Master-Out continuum, and the Master-Out

stays the same. For step 5, we project the PCs obtained

with the real observations onto the synthetic transit se-

quence, and remove this reconstruction from the syn-

thetic sequence. The effect of this process is to replicate

in the model spectra, to the extent possible, the subtrac-

tion of the planet signal that occurs when subtracting

the PCs from the actual data. After this PCs subtrac-

tion, we then remove the mean light curve for each order,

as was done on the observed data. This synthetic, PCs-

and mean-subtracted time series (mi) is then used to

calculate the cross-correlation and log-likelihood.

4.2. Cross-Correlation

The transmission model of the planet’s atmosphere

can be cross-correlated with the observed planetary

transmission spectra. If the model is adequate and the

molecules in the model are present in the planet’s at-

mosphere, then there should be a peak in the cross-

correlation function (CCF) at the expected radial ve-

locity of the planet, and, in subsequent exposures that

peak should shift according to the orbital velocity of the

planet. From a sequence of several exposures in transit,

we can then isolate the signal from the planet by com-

bining the correlation signal that comes only from the

right radial velocity in each exposure.

4.2.1. Algorithm
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Based on the equations in Gibson et al. (2020) (and

also used in Nugroho et al. 2021), the CCF can be writ-

ten as,

CCF(θ) =

N∑
i=1

fi ·mi(θ)

σ2
i

, (4)

which is equivalent to a weighted CCF, where fi are

the observed values of the planetary transmission spec-

trum (described in Section 3.2) with associated uncer-

tainties σi, mi are the model values (described in Sec-

tions 3.3 and 4.1), and θ is the model parameter vec-

tor, which includes the atmospheric model parameters

and the applied orbital and systemic velocities (i.e. the

Doppler shift at velocity vP(t)). The index i repre-

sents both time and wavelength, and the summation is

done over N data points (number of unmasked pixels,

N = 4 564 944 for Tr1 and N = 6 656 359 for Tr2). In

practice, we first sum over wavelengths for each order,

then over all orders, then over time. When summing

over time, we apply a weighing to each spectrum ac-

cording to a transit model of HD 189733 b, which takes

into account that the planet’s signal is present only

during the transit, while also being weaker during the

ingress and egress. To build the transit model (transit

depth at a given time), we use the equations from Man-

del & Agol (2002), assuming a 4-parameters non-linear

limb-darkening law (Claret 2000) with theoretical coef-

ficients u1 = 0.9488, u2 = −0.5850, u3 = 0.3856, and

u4 = −0.1318, based on 3D models of HD 189733 taken

in Hayek et al. (2012) and valid for the H-band2. We

note that using a variable limb-darkening law for the

different parts of the spectrum would be more precise,

but refrain from doing so for simplicity. In fact, going

from a simple linear law to a non-linear one only had a

minimal impact on the results. We used the ephemeris

and system parameters listed in Table 2.

The uncertainties σi were determined by first calcu-

lating, for each spectral pixel, the standard deviation

over time of the fi values. However, to make sure we

do not underestimate the noise by removing too many

PCs, we take the standard deviation of fi after the re-

moval of only one PC, even though the final transmission

spectra are corrected from three. This provides an em-

pirical measure of the relative noise across the spectral

pixels that captures not only the variance due to pho-

ton noise but also due to such effects as the telluric and

background subtraction residuals, but it does not con-

vey how the noise inherent to one spectrum compares

2 It was computed with the BATMAN PYTHON package (Kreidberg
2015).
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Figure 4. Maximum SNR of the CCF of different mod-
els as a function of log10 VMR[H2O] and TP for Pcloud =
10−0.5 bar, KP = KP,0 and vrad = vpeak, using the combined
transits. The contour shows where the SNR drops by 1 and
2 from the maximum. A maximum SNR of 5.0 is found at
log10VMR[H2O]= −4.5, TP= 800 K, and Pcloud= 10−0.5 bar.

to that of another. To capture this latter effect and in-

clude it in the σi, the dispersion values calculated above

were multiplied, for each spectrum, by the ratio of the

median relative photon noise of that spectrum divided

by the median relative photon noise of all spectra. This

is computed prior to normalization : the SNR varia-

tions across the night and the different orders are thus

accounted for in this σi term, acting as a weight. The fi-

nal uncertainty values σi thus reflect both temporal and

spectral variability.

The CCF (equation 4) is calculated for every order of

every spectrum in the transit sequence (time series) for

an array of vrad of size nv. This gives a 86 × 49 × nv
matrix (when combining the transits3) for a given KP

value and for each model tested. We then take the sum

of the CCFs over all of the available SPIRou spectral

orders, which gives a 2D cross-correlation map (86×nv)

as a function of time and vrad.

We observed that a few spectra, which happened to be

those where the absolute value of the TelAz angle gradi-

ent was near its maximum value (at meridian passing),

had noisier CCFs than the others. We chose to exclude

the two spectra most affected by this, corresponding to

3 We combine the two transits by simply concatenating the two
CCF time series, order-per-order. There are 36 spectra in Tr1
and 50 in Tr2, for a total of 86.
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Figure 5. [Top panel] Color-coded SNR map of the co-
added cross-correlation signal from both transits and the
best-fit model (log10VMR[H2O]= −4.5, TP= 800 K, and
Pcloud= 10−0.5 bar) as a function of the zero-phase planet
radial velocity and the orbital radial velocity semi-amplitude
KP. [Bottom panel] Horizontal cut of SNR map at the known
KP of the planet. The peak is found at -4.5 km s−1 with a
SNR of 4.0.

exposures #26 and 27 of Tr2 (with TelAz angle gradi-

ent above 18◦-per-exposure; Tr1 is not affected by this

as the star did not cross the meridian). This exclusion

was also applied to the analysis in the following sections.

From the total CCF as a function of the vrad (again,

for a given KP and a given model), we compute the

SNR by dividing the total CCF by its standard devia-

tion, the latter being calculated by excluding the region
around the peak (±15 km s−1). We expect the correla-

tion peak to follow vrad= 0 km s−1 when KP = KP,0 =

151.35 km s−1, the expected value (from the values in

Table 2). A departure from 0 for vrad could be indica-

tive of high-altitude winds in the planet’s atmosphere

and other dynamic effects (such as planet rotation or a

asymmetry between the eastward and westward planet

limbs that are probed during the transit) that were not

included in the model itself, causing a net blue shift in

the observed planetary lines.

4.2.2. Results

We computed the cross-correlation of a grid of models

containing only H2O as their major constituent. In prin-

ciple, the molecular or atomic species that are present

in both the stellar and planetary atmospheres will intro-

duce signal contamination via the RME when trying to
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Figure 6. [Top panel] Same as Figure 5, but with the in-
jected negative best-fit model from the CCF grid, with the
same color scale. [Bottom panel] The original signal of the
combined transits (orange curve, same as Figure 5) is re-
duced considerably when the CCF best-fit model is injected
negatively in the data prior to the analysis (indigo curve).
When looking at the negative injection of the best-fit model
found in the retrieval with the lnL (see Section 4.4), we get
a cleaner signal removal (blue curve). In both cases, the
systematic noise structures away from the peak are nearly
identical as before.

isolate the planetary signal. However, we ignored this

effect as water is not expected to be present in the atmo-

sphere of a star like HD 189733. The explored parameter

values on the grid were the following: volume-mixing ra-

tios (VMRs) for water ranging from log10 VMR[H2O] =

-8 to -1.5 with steps of 0.5, equilibrium temperatures TP

(input to the Guillot T-P profile) ranging from 300 to

2000 K in steps of 100 K and grey cloud deck top pres-

sures of log10 Pcloud (bar) from -5 to 2, also in steps of

0.5. For this, the vrad range goes from −70 to 70 km s−1,

with 2 km s−1 steps (71 steps in total; roughly the size

of a SPIRou pixel, ' 2.3 km s−1), but KP is fixed at

KP,0. When combining the two transits, we obtain the

maximum CCF SNR grid shown in Figure 4. The best-

fit model has log10VMR[H2O]= −4.5, TP = 800 K and

Pcloud = 10−0.5 bar, at vrad= −4.5 km s−1.

To obtain a better estimation of the detection signifi-

cance of the best fit model, we repeated all calculations

for different combinations of vrad and KP (yielding dif-

ferent projected planet radial velocities during the tran-

sit sequence). We extended the vrad range from -150 to

150 km s−1 (still with 2 km s−1 steps) to get a broader
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view of the map, while the KP values range from 0 to

2KP,0 ' 303 km s−1, with ∼ 6 km s−1 steps (51 steps in

total). This gives us the total cross-correlation signal

map as a function of KP and vrad. Again, to produce

a SNR detection map, we divided the cross-correlation

map by the standard deviation of the full map computed

by excluding the region around the peak (±15 km s−1 in

vrad and ±70 km s−1 in KP). We did not include the

negative KP region, but verified and confirmed that no

spurious signal could be found at -KP,0.

The full CCF map of the best-fit model is shown in

Figure 5. We detect H2O with an SNR = 4.0 at vrad

= −4.5 km s−1 (at KP,0). We note that the position in

KP has large uncertainties (153+57
−37 km s−1), but these

are expected due to the small variation in orbital ve-

locity of the planet during the transit. It is nonethe-

less still consistent with KP,0. Moving forward, we as-

sume KP is well known and equal to KP,0. Also, the

peak is clearly blue-shifted from the planetary rest frame

(vrad = 0). This is discussed in more details in Sec-

tion 5.3. The CCFs of each individual spectrum using

the best-fit model are shown in Figure 7.

When considering only Tr1 or only Tr2, we get a

weaker detection: a peak SNR of ∼ 3.2 is observed at

vrad = −4.7 km s−1 for Tr1, while for Tr2, we get a peak

SNR of ∼ 3.1 at vrad = −4.3 km s−1. These results,

even though they are weaker detections on their own,

are consistent within the uncertainties with one another

and with the combined transits detection. This further

supports the idea that our detected peak is physical as

opposed to being a noise artefact. Again, the low SNR

from Tr2 could partly be explained by the high variation

in exposure SNR (see Figure 2).

To make sure that the atmospheric parameters that

were retrieved by the CCF SNR method are reliable, an

injection test was performed. By injecting a negative

version of the best-fit model in the data, the original

CCF peak should nicely disappear. We did such an in-

jection in the telluric-corrected data using the best-fit

model, applying vrad = −4.5 km s−1, and reapplied all

the analysis steps (from Section 3.2). We confirmed that

when doing so the CCF peak signal indeed disappears,

as can be seen on Figure 6. The same injection test was

also verified for the lnL approach of the next section

(not shown).

As a validation of our adopted approach of applying

the data processing steps to the model spectra before

calculating the CCF/lnL, we repeated our analysis, but
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Figure 7. [Left] CCF (normalized by the dispersion of the
region away from the peak) from of individual spectra as a
function of vrad for Tr2 (top panel) and Tr1 (middle panel), in
the planet rest frame. Red dashed lines show the position of
the BERV, while whites (left) and black (right) dotted lines
shows the ingress and egress positions. The vertical dotted
lines show the planet path for vrad = 0 km s−1 and vrad =
vpeak (only shown out-of-transit to increase visibility dur-
ing transit). The bottom panel shows the combined transits
CCF SNR curve. [Right] Mean CCF for a 3-pixel column bin
centered on vpeak (blue points) and the 3-exposures binned
signal (orange line). The red dots show where the BERV
crosses the peak position by less than 2.3 km s−1. We can
see that the detection is not significantly affected by these
points.

using “unprocessed” models4, and then performed the

same negative injection test. When the best-fit models

found by the “unprocessed models”5 analysis were neg-
atively injected in the data before carrying out the anal-

ysis with unprocessed models, the detection peak could

not be adequately removed (not shown here). This in-

dicates that applying the data processing to the models

yields best-fit parameters that are more representative

of what is initially present in the data, and thus that

this approach is to be preferred.

We looked at another statistical metric to differently

quantify the significance of our H2O detection. We

performed a Student’s t-test (Student 1908), similarly

to what was done in other studies before (e.g. Birkby

4 Only a median normalization was applied, but most importantly
no PCs were removed to the synthetic sequence.

5 The best-fit parameters differed by a factor 103 in VMR[H2O],
while having similar TP compared to those based on the “pro-
cessed models” analysis.
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Figure 8. Generalized t-test results : Distributions of cross-
correlation values, normalized by the dispersion of the out-
of-trail regions, away from (out-of-trail, blue), and near (in-
trail, green) the planet radial velocity (with KP,0 and vrad
= −4.5 km s−1), with their associated best-fit Gaussian dis-
tributions, each with their corresponding mean and variance
(blue and green lines, respectively). A detection of the trans-
mission signal of the planet is expected to shift the in-trail
distribution to higher correlation values, and this is what
we observe, with the two distributions differing at the 5.9σ
level.

et al. 2017; Brogi et al. 2018; Cabot et al. 2019; Alonso-

Floriano et al. 2019; Webb et al. 2020). The t-test veri-

fies the null hypothesis that two Gaussian distributions

have the same mean value. In our case, the two dis-

tributions to be compared are drawn from our correla-

tion map. On one hand, we have the in-trail distribu-

tion of CCF values, i.e. where the planet signal should

be, that we took to be correlation values from 3-pixels

wide columns centered at vrad = −4.5 km s−1(as done

in Birkby et al. 2017 and suggested in Cabot et al.

2019), and on the other hand, we have the out-of-trail

distribution, which includes the CCF values more than

10 km s−1 away from vP(t), where there should be no

planet signal. The t-test then evaluates the likelihood

that these two samples were drawn from the same dis-

tribution.

We computed this test using the in-transit CCFs from

Figure 5 with KP= KP,0 and vrad=vpeak= −4.5 km s−1.

The results are shown in Figure 8, for the combined tran-

sits, and indicate that the in-trail distribution is differ-

ent from the out-of-trail one at the level of 5.9σ, which

further supports our detection. As a sanity check, we

also compared the in- and out-of-trail distributions for

the out-of-transit CCFs. As expected, we found that

both distributions/samples had similar mean and vari-

ance (different at 0.4σ; not shown here). This Student

t-test is complementary to the CCF SNR method as it
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Figure 9. Same as Figure 4 but for the t-test value. The
contour shows where σ drops by 1 and 2 from the maximum.
A maximum 6.1σ is found for log10VMR[H2O]= −3.5, TP=
700 K, and Pcloud= 10−0.5 bar.

uses a different approach to assess uncertainties from the

underlying noise. The high t-test detection significance

gives good confidence in our detection despite the some-

what modest CCF SNR mentioned above. As a mean

of comparison, we also computed the t-test for the same

CCF grid described above and the results are show in

Figure 9. The t-test yields similar TP and Pcloud, but

seems to favor overall higher VMRs.

4.3. Log-Likelihood Mapping Method

In addition to the CCF and t-test calculations, we

also computed the log-likelihood values for the different

models. We used the approach from Gibson et al. (2020)

by introducing scaling factors α and β for the model

and noise, such that the model mi becomes αβmi
6, but

we fixed α = 1 as water is not expected to be present

in an extended atmosphere for HD 189733 b (see also

Brogi & Line 2019). By nulling the partial derivative

of the standard lnL with respect to β (i.e., removing

the dependency on β), the log-likelihood function can

be written as:

lnL = −N
2

ln

[
1

N

(∑ f2
i

σ2
i

+
∑ m2

i

σ2
i

− 2
∑ fimi

σ2
i

)]
,

(5)

6 α accounts for any scaling uncertainties of the model and β ac-
counts for potential scaling uncertainties of the white noise.
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Figure 10. Change in BIC value from the peak, ∆BIC
= 2 ∆ lnL, for the different models in the grid, for a cloud
deck top pressure of 1 bar, at KP,0 and vrad = vpeak. The
contours shown increase by 2, 6, and 10 from the minimum
value. For a increase in BIC of 2, 6, and 10, respectively,
the best-fit model is typically regarded as being positively,
strongly and very strongly favored compared to the other
models.

where the summation is implied over i (both spectral

pixels and time). By inspecting this equation, we can

see that the first term is a constant (for a given data

set, related to the variance of the data) and the last

term is related to the CCF from above (eq. 4). The

middle term is related to the variance of the model and

introduces the main difference compared to the previous

CCF approach. The effect of this term is to reduce the

likelihood value for models with higher variances; so for

comparable fits to the data, the lower variance (more
conservative) model should be preferred.

4.3.1. Results

For every model in our grid (same as above), we com-

puted the lnL for vrad going from −70 to +70 km s−1

and KP = KP,0. The highest lnL value occurs around

log10VMR[H2O] = −4.5, TP = 500 K, and Pcloud= 1 bar,

with vrad= −4.7 km s−1.

Then, to establish how the best-fit model fares com-

pared to the others, we looked at the Bayesian Infor-

mation Criterion (BIC).7 In this formalism, the model

with the lowest BIC is preferred (here, taken to be

7 BIC= k ln(n)−2∗ lnL; where k is the number of parameters, n is
the number of data points and lnL is our log-likelihood value for
our model for each combination of parameters. For fixed values
of k and n, the lowest BIC value is related to the highest lnL.

Table 3. MCMC Retrieval Parameter Priors and Results

Parameter Uniform Prior Results Unit

log10 H2O U(−8,−1.5) −4.4+0.4
−0.4

TP
a U(300, 2000) 532+46

−82 K

log10 Pcloud U(−5, 2) −0.4+1.8
−0.3 bar

KP U(100, 200) 151+10
−10 km s−1

vrad
b U(−20, 10) −4.62+0.41

−0.39 km s−1

Note— The marginalized parameters from the likelihood

analysis with ±1σ error. a The retrieved TP is the equilib-

rium temperature input to the Guillot T-P and represents a

temperature of 727+63
−111 K at 1 bar. b The uncertainty shown

in the last column results from the MCMC analysis only. The

uncertainty of ±0.21 km s−1 from vsys must be added to it in

quadrature to obtain the total uncertainty on vrad.

the best-fit model), and the evidence against certain

models (with higher BIC) is usually described as “very

strong” when ∆ BIC = 2 ∆lnL is greater than 10 (Kass

& Raftery 1995). Figure 10 shows this quantity for the

best-fit value of Pcloud = 1 bar, as a function of TP and

log10VMR[H2O]. Even though there is a degeneracy be-

tween the temperature and the VMR (as well as between

the VMR and the cloud deck top pressure, better seen

on Figure 11), we can still put some constraints on the

parameters.

4.4. Markov Chain Monte Carlo

It quickly becomes time consuming and computation-

ally expensive to compute the full log-likelihood maps

for bigger model grids (either in sampling or number

of parameters). Instead of computing the log-likelihood

for the full grid, we used a Markov Chain Monte Carlo

(MCMC) approach that allows us to compute a pos-

terior distribution of each atmospheric parameter and

obtain estimates of their uncertainties. The MCMC

sampling was done using the python library emcee

(Foreman-Mackey et al. 2013), which implements the

affine-invariant ensemble sampler by Goodman & Weare

(2010).

To save time on the generation of models, we applied

an N-d linear interpolation8 over our grid for the param-

eters VMR[H2O], TP (K) and Pcloud (bar) dimensions.

We are aware that these interpolated models are not as

8 Using SciPy interpolation module RegularGridInterpolator,
which only accepts regular grids, but may have uneven spacing.
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accurate,9 nor are they self-consistent, but they offer a

reasonable approximation to derive useful constraints on

the atmosphere parameters.

Using the combined transits sequences, we ran 50

walkers for 4500 steps and varied five parameters:

log10VMR[H2O], TP, log10 Pcloud, KP and vrad. We

chose to include KP in the retrieval even though this

value is well known, to see if it could be retrieved inde-

pendently and how it would affect vrad.

We are discarding the first 1000 steps of each chain

as burn-in10. The resulting posterior probability distri-

butions of the five parameters are shown in Figure 11.

The priors that were used and the resulting marginal-

ized values for each parameter are listed in Table 3. The

1σ uncertainties correspond to the range of parameters

containing 68% of the MCMC samples.

We find relatively good constraints on the parameters.

The favored TP and VMR values are close to previous

values in the literature (see Section 5.2), both from low-

and high-resolution data. The resulting T-P profile is

shown on Figure 12. The cloud top pressure is con-

sistent with relatively deep clouds (at pressures around

& 0.2 bar) (McCullough et al. 2014; Pinhas et al. 2019).

However, the apparent degeneracy between the water

abundance and cloud top pressure leads to probability at

slightly higher cloud altitudes. This is not a detailed ex-

ploration of cloud modeling as in Barstow (2020), since

we did not include the impact of having different cloud

fractions (a thorough cloud analysis is beyond the scope

of the paper), but our results seem to land somewhere in

between their results with and without cloud fractions.

Nonetheless, the CCF peak disappear when the best-

fit from this retrieval is injected negatively in the data,

as shown in Figure 6, meaning that it represents well the

planetary signal. The cleaner signal removal indicates

that this method is probably better at identifying the

best model.

5. DISCUSSION

Our results demonstrate that water is detected in each

of our two SPIRou transmission spectra of HD 189733 b

(although more marginally in Tr2). Combining both

data sets, the standard cross-correlation method yields

a detection with SNR = 4.0, based on the dispersion of

values in the full CCF KP vs vrad map, or 5.9σ accord-

ing to the Student’s t-test. The peak in the CCF map

9 As compared to models computed with exact parameters, worst-
case interpolated models show differences of at most 62 ppm for
the strongest lines, with the biggest errors coming from the cloud
top pressure interpolation.

10 This is where the chains were overall converged.

is located near the expected KP and vrad, adding confi-

dence to our detection. Similarly, the log-likelihood ap-

proach yields a significant detection, with a ∆BIC> 10

compared to water-less models. A comparison of the

results obtained from the model grid for all methods is

presented in Table 4.

While we obtain a convincing detection using all ap-

proaches – cross-correlation, t-test and log-likelihood –

and retrieve similar/consistent best-fit model parame-

ters, we observe some discrepancies for the “acceptable

range” of models from each method (see Figures 4, 9

and 10). The main discrepancy is that using the CCF

(or t-test, which is based on the CCF maps), models

with a combination of higher temperature and higher

log10 VMR[H2O] seem acceptable (upper-right region on

the grid of Figure 4), while they are strongly disfavored

in the log-likelihood analysis. The main difference be-

tween the two methods is that the log-likelihood takes

into account not only the variance of the observed spec-

trum, but also the variance of the model, effectively

penalizing models with a high variance, and thus pre-

venting higher variance in the model to compensate for

a weaker signal in the data. For that reason, we tend

to lend more credence to this approach when it comes

to constraining the atmosphere parameters. The CCF

and t-test remain important, however, for confirming a

detection of the planet atmosphere.

5.1. Effects of telluric residuals

As explained above, we masked spectral regions af-

fected by deep telluric lines before computing the CCF

and log-likelihood, where deep was defined here as lines

reaching below 30 to 35% transmission in their core. Ap-

plying this mask provided a gain in CCF peak SNR11,

even though the spectra were corrected for telluric ab-

sorption by APERO. This likely indicates that the telluric

correction is not perfect and that a low level of residuals

persists. Masking these residuals reduces the number of

data points that can be used, but doing so still improves

the significance of the detection. As an indication of the

magnitude of the effect, if we do not mask deep telluric

lines (beyond the masking of saturated lines done by

APERO), the peak CCF SNR is decreased by ∼ 2 when

removing a single PC in step 6 from Section 3.2 (but de-

creases by only ∼ 0.6 when removing three) as compared

to the value with additional masking. This implies that

there most likely is telluric residual contamination, but

11 We focus this discussion on the CCF since this is one of the most
common metric in the literature, but the same general behaviour
was observed for the two other metrics, i.e. t-test and lnL, in
what follows, except when specified.
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Figure 11. Posterior probability distributions for the parameters of the MCMC fit on the HD 189733 b data using an
atmosphere with H2O and a grey cloud deck as described in Section 3.3. The blue line shows the position of KP,0.

that removing three PCs is an effective way to subtract

them.

The presence of telluric residuals would also affect the

different orders to varying degrees, as the telluric lines

are not spread uniformly – in density and strengths –

across the orders. In our analysis above, we included all

spectral orders12 in our CCF and log-likelihood calcula-

tions, but in some previous studies, the spectral regions

most affected by tellurics have sometimes been omitted

from the calculations. We tested this to see the effect

12 Again, except those heavily filled with saturated telluric lines
that are automatically masked by APERO.
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Table 4. Overview of the results from the model grid for the different methods, using their respective
best-fit model.

Significance a Combined Best-fit Model Parameters

Method Tr1 Tr2 Combined vrad (km s−1) log10VMR[H2O] TP (K) log10Pcloud (bar)

CCF 4.4 3.0 5.0 -4.5 -4.5 800 -0.5

t-test 5.4 4.0 6.1 -4.3 -3.5 700 -0.5

lnL b 24 20 41 -4.7 -4.5 500 0

Note— a The metrics used are SNR for the CCF method, σ for the t-test, and ∆BIC for lnL. b The ∆BIC

value is computed between the best-fit model (i.e. with the largest lnL value) and a water-less unconstrained

model (i.e. with log10VMR[H2O] = −8).
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Figure 12. Retrieved Guillot T-P profile (blue) where
the shaded region represents the 1σ uncertainties, com-
pared to the limits of the prior (gray dashed lines). The
retrieved profile has a temperature of 727+63

−111 K at 1 bar.
Overplotted is the retrieved isothermal profile (orange), with
TP= 698+80

−172 K, that was obtained from a previous run of the
MCMC analysis, that yielded nearly identical values for the
other parameters.

on the peak CCF SNR, and indeed found that masking

some orders could lead to improvements. For instance,

when masking 18% of the orders13, the peak of the 2D

map can increase to 5.3 (from the value of 4.0 when in-

cluding all orders), while its position does not change

13 The orders centered at 1.48, from 1.75 to 1.97, plus 2.20 and
2.26µm, which correspond mostly orders between the H and K
bands and a few others.

much. However, this cut did not improve the t-test nor

lnL values and even led to smaller values. Also, for the

model grids, the order cut moves the favored models to

slightly higher temperatures.

Nonetheless, we did not adopt this approach for our

analysis above, to avoid the risk that the specific choice

of orders to omit would introduce a bias in the favored

atmosphere model. We preferred to use as much as pos-

sible of the spectral range provided by SPIRou, at the

cost of a somewhat lower detection SNR. Still, the re-

trieved SNR of 4.0 in CCF for the combined transits

is quite smaller than previous detections, e.g. the water

detection with an SNR of 6.6 from Alonso-Floriano et al.

(2019), coming from a single transit using CARMENES

data, with lower overall SNR, a smaller spectral range,

but a slightly better spectral resolution. Our smaller

SNR could be explained by multiple reasons. First,

it could be due to the subjective character of the de-

termination of the SNR with the map standard devia-

tion (Cabot et al. 2019). Variables such as the extent

on which the CCF map and its standard deviation are

computed, and the vrad and KP sampling, can greatly

change the results (our goes from ±150 km s−1 with

steps of 2 km s−1, while theirs goes from ±65 km s−1

with steps of 1.3 km s−1). Computing the SNR from

the 2D map or a 1D array can also change the results.

The t-test is also subject to arbitrarity through the RV

sampling that can increase the sample size of both the

in- and out-of-trail distributions (Cabot et al. 2019), but

is usually preferred to determine detection significance

(e.g., Birkby et al. 2017; Brogi et al. 2018). Second,

the lower SNR could also be due to our conservative

choice not to remove any spectral orders. Third, in our

approach the CCF is computed with an injected and

reprocessed modeled transit sequence; the reprocessing

thus applied to the model can diminish the overall line

contrast, which would decrease the CCF (but will also
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be more representative of the processed signal buried

in the observed data). Finally, the position of the tel-

lurics relative to the planet signal can affect the results.

If the tellurics are not properly corrected/removed, any

residuals crossing the planetary path could erroneously

increase the retrieved planet signal.

5.2. Retrieved Atmospheric Parameters

Our retrieval results indicate that the probed region

of the atmosphere has a temperature that is much

lower than the equilibrium temperature (TP = 531+47
−81 K,

equivalent to T = 727+63
−111 K at 1 bar, while Teq =

1200 K), a water abundance that is slightly sub-solar

(log10 VMR[H2O] = −4.4+0.4
−0.4, solar abundance would

be around −3 and −3.3 for TP. and > 1200 K, respec-

tively, Madhusudhan et al. 2014, see their Figure 3),

and a mostly clear atmosphere (cloud deck at pressure

& 0.2 bar). These results are in line with previous stud-

ies at both low and high spectral resolution. For in-

stance, values of log10 VMR[H2O] between −3.3 and -

5 for TP between 700–800 K, or fixed at the equilib-

rium value, have been reported (McCullough et al. 2014;

Madhusudhan et al. 2014; Welbanks et al. 2019; Pinhas

et al. 2019)14 at low-resolution; and between −3 and −5

for models with an atmosphere temperature of around

500 K (from parameterized, non-isothermal T-P profiles)

at high resolution (Birkby et al. 2013; Brogi et al. 2016,

2018; Alonso-Floriano et al. 2019; Brogi & Line 2019).

Our results are thus within the range of values found

previously, and consistent with sub-solar abundances.

In Madhusudhan (2012), they list two interpretations

for low inferred water abundances in hot Jupiters such as

HD 189733 b. 1) The water measurement could be rep-

resentative of the bulk oxygen abundance of the planet’s

atmosphere, which would indicate a sub-stellar oxygen
abundance, and thus, an overall low planetary atmo-

sphere metallicity. This would be potential evidence

for a water-poor formation scenario (with solar rela-

tive abundances of the elements, i.e. C/O ∼ 0.5). 2)

For planets with Teq & 1200 K, CO becomes a major

reservoir for atmospheric oxygen. Therefore, our re-

trieved sub-stellar water abundance could instead be due

to a super-stellar C/O ratio for HD 189733 b (in which

case more than half of the oxygen would be locked in

CO). This would potentially indicate a formation his-

tory dominated by high C/O gas beyond the ice-line, as

opposed to solid accretion of oxygen-rich material (Crid-

land et al. 2019). We note, though, that this work fo-

14 Most of those results were obtained using a retrieval with a 6-
parameter temperature-pressure (T-P) profile, as in Madhusud-
han & Seager (2009).

cuses solely on the detection of water which prevents us

from lifting the degeneracy between these two scenarios.

When looking at previous strong CO detections and

their tendency towards slightly super-solar abundance

(at around log10[CO] ' −3; de Kok et al. 2013; Brogi

et al. 2016; Cabot et al. 2019; Flowers et al. 2019; Brogi

& Line 2019), combined with our retrieved sub-solar

H2O abundance, this is consistent with high C/O ra-

tio (closer to 1 than solar). This seems to be on trend

with other hot Jupiters, such as HD 209458 b (Gandhi

et al. 2020) and τ Boo b (Pelletier et al. 2021, ; and

references therein).

Recent studies based on 3D atmosphere models have

shown that retrieval results based on 1D models, as have

been used here, may be biased (Flowers et al. 2019; Mac-

Donald et al. 2020; Beltz et al. 2021). For instance, Mac-

Donald et al. (2020) analytically showed that a composi-

tional difference between the morning and evening side

of the terminator could lead to retrieved 1D uniform

temperatures that are many hundreds of degrees colder

than the real average terminator temperature. This

could possibly explain why, similarly to the previously

mentioned results, we retrieved a low TP value. They

also show that species distributed uniformly around the

terminator (such as H2O) are biased towards higher

abundances. In addition, the omission from our mod-

els of CO and other molecules likely to be present in the

atmosphere of HD 189733 b could also bias the retrieved

abundance of water (Brogi & Line 2019; MacDonald

et al. 2020). The retrieved parameters in the present

work should thus be used with caution - although the

magnitude of the aforementioned effects is likely to be

small compared to our (relatively large) uncertainties in

TP and log10 VMR[H2O].

5.3. Radial velocity offset

In many previous studies of HD 189733 b, a net blue-

shift of the planet atmosphere absorption signal was ob-

served and usually attributed to the presence of large-

scale high-altitude day-to-night winds and the presence

of eastward jets. Such high-altitude day-to-night winds

can be partially accounted for by the vrad term in equa-

tion 3 (when they are not already included in the atmo-

sphere models used). Additionally, the planetary rota-

tion/eastward jets should increase the blue shift velocity,

due to the potential asymmetries between the morning

and evening sides of the terminator. The combination

of a hotter and more inflated blue-shifted evening termi-

nator and a colder and less inflated morning red-shifted

side would lead towards globally blue-shifted velocities

(Flowers et al. 2019). For HD 189733 b, an overall (limb

integrated) shift of around -1.5 to -2 km s−1 was ob-
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tained in several dynamical studies, with both low- and

high-resolution (Louden & Wheatley 2015; Brogi et al.

2016, 2018; Flowers et al. 2019). Larger shifts were

also observed with values around −4 km s−1 (Alonso-

Floriano et al. 2019; Brogi & Line 2019; Damiano et al.

2019) that are still in agreement with the other results,

considering their larger individual uncertainties (∼ 1 –

2 km s−1).

Here we measure a net blue-shift of −4.62+0.46
−0.44 km s−1,

which is somewhat larger than what was observed in

many previous studies, but still consistent with the re-

sults of Alonso-Floriano et al. and Damiano et al.

within the uncertainties. We observe a similar blue-shift

using both the CCF and log-likelihood approaches, and

in each individual transit, which suggests that it is a real

feature of our data. It was also present and at this value

regardless of the analysis parameters that were applied

(eg. telluric fraction masking, number of PCs, etc.).

Our -4.6 km s−1 measurement is compatible within 1–

2σ with the blueshift of −5.3+1.0
−1.4 km s−1 observed for

the trailing limb of the planet by Louden & Wheatley

(2015), which could imply that the signal we measure

is dominated by the trailing (evening) limb. To investi-

gate this, we checked if we could see a difference in the

value of vrad between the ingress and the egress in our

data, as was done in Louden & Wheatley (2015); Flow-

ers et al. (2019). We indeed saw a signal that was more

red shifted during ingress and more blue shifted dur-

ing egress, which would support the above explanation,

but the significance of this signal is too low to claim it

with confidence. In addition, an ingress-egress difference

could have biased our measured net vrad as the ingress of

both of our transits suffered in some way from technical

problems. A small part of the ingress from Tr1 is miss-

ing, due to a late start of the observation, while there

was a substantial drop in data SNR during the first half

of Tr2. This imbalance between the ingress and egress

coverage and data quality could have biased our net vrad

values toward a value more representative of the egress,

i.e. more blue-shifted.

Our larger net blue shift could, perhaps, be explained

by the different line list that we used to build our mod-

els. However, when computing the CCF or lnL with

the best-fit model built with the HITEMP 2010 water

line list (instead of Exomol), we get a virtually iden-

tical shift, but with a slightly smaller SNR. Also, the

cross-correlation between two models with identical pa-

rameters but using two different water line lists (i.e.

HITEMP and Exomol) shows a relative shift of only

∼ 0.023 km s−1.

Taken at face value, a net blue-shift as high as we have

measured, if coming from large-scale winds, would be

hard to explain by current GCMs, based on the mod-

eled CCF curves from Flowers et al. (2019) for differ-

ent rotation speed. Including the contribution of the

planet rotation can lead to higher values of net blue-

shift, but for a synchronous rotation (period of 2.2 days,

consistent with the results of Flowers et al. (2019)) this

effect would not be enough: a CCF peak value be-

tween -2 and -1 km s−1 would be expected (see their

Figure 12). A planet rotation period of . 1.30 days

(faster than the synchronous case, yielding an equato-

rial rotational velocity of & 4.85 km s−1 and a maximum

wind speed of 2.76 km s−1) could lead to a net blue-shift

closer to −5 km s−1 when considering the rotation and

winds together (last row from Figure 12 in Flowers et al.

2019). Such a fast rotation (faster than synchronous)

should lead to a significant rotational broadening. Us-

ing the CCF approach with models that were rotation-

ally broadened in a simple manner (Gaussian broaden-

ing), the narrowest profiles (no rotation) were always

favored, as expected and pointed out in Brogi et al.

(2016). On the other hand, using the log-likelihood ap-

proach with the same broadening yielded rotation speed

of vrot = 2.0+1.5
−2.0 km s−1which is broadly consistent with

synchronous rotation (equatorial vrot = 2.849 km s−1;

Flowers et al. 2019), but higher rotation speeds were not

excluded by the lnL. An overall smaller net blue shift is

observed and decreases with higher rotation speed, but

that is still too high to be explained from synchronous

rotation. Nonetheless, this seems to indicate that ro-

tational information is present in the data and could

partially explain the high blue shift.

Finally, errors in the absolute SPIRou wavelength

calibration are not expected to be larger than a few

0.1 km s−1 and are thereby not likely to be the cause

of the high blue shift that we report.

6. CONCLUDING REMARKS

We presented one of the first exoplanet atmo-

sphere characterization data sets obtained with the

SPIRou high-resolution near-infrared spectrograph re-

cently mounted on the 3.6 m CFHT within the frame

work of the Large Observing Program called the SPIRou

Legacy Survey totalling 300 CFHT nights, and demon-

strated that this instrument is capable of characterizing

exoplanet atmospheres via transmission spectroscopy.

Our analysis of the data revealed a detection of wa-

ter in the atmosphere of HD 189733 b at an SNR of 4.0

using the standard CCF method, and 5.9σ from a Stu-

dent’s t-test, and that a good atmosphere model selec-

tion can be achieved using the more recent log-likelihood

mapping methods from Brogi & Line (2019) and Gibson

et al. (2020). This allowed us to put constraints on the
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temperature, water volume mixing ratio, and grey cloud

deck level of the planet atmosphere. Our results favour

temperatures that are significantly lower than Teq (TP

' 532 K, equivalent to T = 727+63
−111 K at 1 bar), a sub-

solarlog10 VMR[H2O] ' −4.4, and a grey cloud deck at

pressures of > 0.2 bar - all within the ranges of values

found previously in the literature. Moreover, the absorp-

tion signal of the planetary atmosphere is detected with

a substantial blue-shift of −4.62+0.46
−0.44 km s−1- a value

0.6–3 km s−1 bluer than previous literature results. The

cause of this difference remains unclear, but it seems

unlikely that such a high blue-shift can arise only from

winds in the planet’s atmosphere. The planet’s rotation

and/or a signal dominated by the trailing limb of the

planet could be at play here.

This analysis focused mainly on the detection of wa-

ter, but much more remains to be done with these data.

Given the spectral coverage of SPIRou, which extends

to the end of the K band, it should be possible to probe

for the presence of carbon monoxide in the atmosphere

of HD 189733 b. This analysis will require an explicit

treatment of the Rossiter-McLaughlin effect, as CO is

also present in the stellar spectrum which will introduce

time-varying CO features during transit. The SPIRou

spectral range also covers the helium metastable triplet

at 1.083µm, which probes the extended atmosphere.

This absorption was previously detected for HD 189733 b

(Salz et al. 2018; Guilluy et al. 2020) using CARMENES

and GIARPS (GIANO + HARPS) data, respectively,

but is also seen in SPIRou (Donati et al. 2020) and it

will be interesting to further compare these results.

This work relied on 1D atmosphere models with an

isothermal temperature structure. In the future, it will

be interesting to analyze the data using more complex

models, in particular; 3D models that can capture vari-

ations in composition or conditions across the planet

limb, as well as global atmosphere dynamics. A free

spectral retrieval, rather than a retrieval constrained on

a model grid as done here, would also be beneficial.

Finally, we point out that the throughput of SPIRou

in the Y and J band was recently increased by a factor

of 2 and 1.6, respectively, following the replacement

of its set of rhomboid prisms (see Donati et al. 2020).

This should improve the overall quality of future data

compared with what was presented here, and should

consequently enable better characterization of plane-

tary atmospheres. In particular, the significant increase

in throughput in the blue should greatly aid probes of

the 1.083µm metastable helium line used to study the

extended atmosphere. As improvements in the data re-

duction software of SPIRou are continually being made,

including better correction of telluric absorption, the

overall capabilities of SPIRou for characterizing exo-

planet atmospheres are also expected to improve.
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Öberg, K. I., Murray-Clay, R., & Bergin, E. A. 2011, ApJ,

743, L16

Oliva, E., Origlia, L., Baffa, C., et al. 2006, in Society of

Photo-Optical Instrumentation Engineers (SPIE)

Conference Series, Vol. 6269, Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference Series, ed.

I. S. McLean & M. Iye, 626919

Palle, E., Nortmann, L., Casasayas-Barris, N., et al. 2020,

A&A, 638, A61

Pelletier, S., Benneke, B., Darveau-Bernier, A., et al. 2021,

AJ, 162, 73

Pinhas, A., Madhusudhan, N., Gandhi, S., & MacDonald,

R. 2019, Monthly Notices of the Royal Astronomical

Society, 482, 1485

Piskorz, D., Benneke, B., Crockett, N. R., et al. 2016, ApJ,

832, 131

—. 2017, AJ, 154, 78

Piskorz, D., Buzard, C., Line, M. R., et al. 2018, AJ, 156,

133

Polyansky, O. L., Kyuberis, A. A., Zobov, N. F., et al.

2018, MNRAS, 480, 2597

Quirrenbach, A., Amado, P. J., Caballero, J. A., et al. 2014,

in Society of Photo-Optical Instrumentation Engineers

(SPIE) Conference Series, Vol. 9147, Ground-based and

Airborne Instrumentation for Astronomy V, ed. S. K.

Ramsay, I. S. McLean, & H. Takami, 91471F

Redfield, S., Endl, M., Cochran, W. D., & Koesterke, L.

2008, ApJL, 673, L87

Rodler, F., Kürster, M., & Barnes, J. R. 2013, MNRAS,

432, 1980

Rossiter, R. A. 1924, ApJ, 60, 15

Salz, M., Czesla, S., Schneider, P. C., et al. 2018, A&A,

620, A97
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