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We study the pairing and superconducting properties of the attractive Hubbard model in two quasi-one-
dimensional topological lattices—the Creutz and sawtooth lattices—which share two peculiar properties: each
of their band structures exhibits a flat band with a nontrivial winding number. The difference, however, is that
only the Creutz lattice is genuinely topological, due to a chiral (sublattice) symmetry, resulting in a quantized
winding number and zero energy edge modes for open boundary conditions. We use a multiband mean field
and exact density matrix renormalization group in our work. Our three main results are as follows: (a) For both
lattice systems, the superconducting weight, Ds, is linear in the coupling strength, U , for low values of U . (b) For
small U , Ds is proportional to the quantum metric for the Creutz system but not for the sawtooth system because
its sublattices are not equivalent. We have therefore extended the approach to this more complex situation and
found an excellent agreement with the numerical results. (c) At moderate and large U , the conventional BCS
mean field is no longer appropriate for such systems with inequivalent sublattices. We show that, for a wide
range of densities and coupling strengths, these systems are very well described by a full multiband mean-field
method where the pairing parameters and the local particle densities on the inequivalent sublattices are variational
mean-field parameters.

DOI: 10.1103/PhysRevB.105.024502

I. INTRODUCTION

Systems with dispersionless (flat) bands have been the fo-
cus of much interest due to the wide range of exotic quantum
phases they can exhibit. In such models, even infinitesimal
interactions are much larger than the bandwidth, resulting in
strongly correlated physics. This was argued [1–3] to lead
to much higher critical temperatures for the transition to a
superconducting (SC) phase. Interest in such systems inten-
sified dramatically with the discovery of nonconventional SC
in bilayer graphene [4] twisted at a “magic” angle, which
causes a flat band to appear in the band structure of the
system. The energy of a particle in a flat band is indepen-
dent of its momentum, which results in very high degeneracy
and the localization of the particle on a few sites due to
destructive quantum interference [5–7]. For weak attractive
interaction (much smaller than the gap between the flat band
and other bands), it was argued, using BCS mean-field theory
(MF), that the SC weight is linearly dependent on the interac-
tion strength [8–11] and proportional to the quantum metric,
thereby linking the SC weight to the topological properties
of the noninteracting system [12–14]. This was confirmed for
the Creutz lattice with exact numerical calculations [15,16]
and for a two-dimensional model using determinant quantum
Monte Carlo [17]. The main assumption behind this predic-
tion is that the gap function, � (see below), is uniform, which

is the case for a class of flat-band systems such as the Creutz
lattice. However, there are other systems of theoretical and
experimental interest, such as the sawtooth lattice [18], where
this assumption is not valid as the gap function and site den-
sity are sublattice-dependent. It is thus important to identify
how these predictions of the dependence on the coupling and
quantum metric change. In fact, as we show below, the BCS
MF treatment itself needs to be reexamined and modified. In
Ref. [15] it was shown that in the large-U limit, the attractive
Hubbard model on the Creutz lattice is well represented by
an effective hard core boson model in a nonflat band and with
near-neighbor repulsive interaction [19,20]. With the low- and
high-U limits studied, an interesting question arises: Can one
calculate the properties of the system in the intermediate-
coupling regime where U is comparable to the gap between
the bands, and where, consequently, there is strong band mix-
ing?

Here, we address these issues by studying superconductiv-
ity in the attractive Hubbard model with balanced populations
in two quasi-one-dimensional lattices that exhibit a flat band
in their ground state: the Creutz [21] and sawtooth [22,23]
lattices. Our main results are as follows. Using both multi-
band BCS MF and exact density matrix renormalization group
(DMRG) calculations, we determine the SC weight and the
gap functions, and we show excellent agreement over a wide
range of particle densities and couplings. This is rather re-
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FIG. 1. The flat-band Creutz lattice is given by t1 = t∗
2 = it ,

t3 = t4 = t , and t5 = 0. The flat-band sawtooth lattice is given by
t1 = t4 = 0, t2 = t , t3 = t5 = √

2t . The normal ladder is given by
t1 = t2 = t5 = t and t3 = t4 = 0. The lower (upper) chain is the α =
B (α = A) leg; the (black) rectangle shows the unit cell with lattice
coordinate j.

markable because at very low interaction, the flat band (and
lattice topology) determines the physics; at intermediate cou-
pling, |U | of the order of the gap between the bands, strong
interband mixing determines the physics; and at very strong
coupling, the physics is determined by an effective model of
hard-core bosons with near-neighbor repulsive interaction in
a nonflat band [19,20]. In spite of the different mechanisms
dominant in these three regimes, the multiband mean field
reproduces the physics faithfully. Another main result is that
for the sawtooth lattice, where the two sublattices are not
equivalent, it is necessary to do a multiband MF in both the
sublattice-dependent densities and gap functions. We show
that the order parameter, i.e., the pair wave function, jumps
to a large finite value for any nonzero attraction in flat-band
systems. This is in stark contrast with dispersive bands where
the order parameter is exponentially small for weak attraction.

II. MODEL AND METHODS

We study the Hubbard model on a two-leg ladder governed
by the Hamiltonian

H =
∑

i, j,α,β,σ

(
ti jc

α†
iσ cβ

jσ + H.c.
) − U

∑
i,α

cα†
i↓ cα†

i↑ cα
i↑ cα

i↓

− μ
∑
i,α

nα
i , (1)

where ti j is the hopping parameter connecting lattice sites as
shown in Fig. 1, and cα

iσ (cβ †
iσ ) destroys (creates) a fermion of

spin σ on site i on the α = A, B (β = A, B) leg of the ladder.
The number operator is nα

i = nα
i↓ + nα

i↑, with nα
iσ = cα†

iσ cα
iσ , μ

is the chemical potential, and U > 0 is the (attractive) Hub-
bard interaction parameter. The density, ρ, is defined as the
total number of particles divided by the number of sites.

Taking t1 = it = t∗
2 , t3 = t4 = t , and t5 = 0 gives the

Creutz lattice with two flat bands at energies [21] ±2t and a
band gap of 4t ; taking t1 = t4 = 0, t2 = t , and t5 = t3 = √

2t
gives the sawtooth lattice [24] with one flat band at −2t and
one dispersive band ε(k) = 2t[1 + cos(k)], and a band gap
of 2t , with the lattice momentum k an integer multiple of
2π/L, where L is the number of unit cells. In what follows we
make these flat-band choices, our main goal being the study of
pairing and the resulting superconducting phases. Since in the
Hamiltonian, Eq. (1), the attractive interaction is of the contact
on-site form, we expect on-site S-wave pairing to emerge, i.e.,

the maximum of the pair wave function corresponds to both
↑ and ↓ fermions being on the same site. Furthermore, the
contact interaction implies that, in a mean-field approach, only
on-site pairing terms are nonvanishing. A hallmark of pairing
and pair transport is that the pair (single-particle) Green func-
tion decays as a power (exponentially) with distance. These
functions are given by

Gαβ
σ (r) = 〈

cα
j+rσ cβ†

jσ

〉
, (2)

Gαβ

pair(r) = 〈
cα

j+r↓cα
j+r↑cβ†

j↑cβ†
j↓

〉
. (3)

Another very important quantity characterizing the SC phase
is the SC weight, Ds, defined in one dimension by [25–29],

Ds ≡ πL
d2EGS(	)

d	2

∣∣∣∣
	=0

, (4)

where EGS(	) is the ground-state energy in the presence of a
phase twist 	 applied via the replacement cα

jσ → eiφ jcα
jσ with

φ = 	/L. Since only near-neighbor cells are connected, H
will depend on the phase gradient, φ, which appears only in
the hopping terms.

We use MF and the ALPS [30] implementation of DMRG
to calculate EGS(	) on a lattice with periodic boundary
conditions (PBCs), which then yields Ds. Our PBC DMRG
implementation is described in Ref. [15], and allows us to
reach up to L = 24 unit cells. Gαβ

σ (r) and Gαβ

pair(r) are cal-
culated with DMRG with open boundary conditions (OBCs),
where much larger sizes are achievable (up to L = 200). When
lattice sites are equivalent, the BCS MF starts with the usual
substitution, Uc†

i↓c†
i↑ci↑ci↓ → �∗ci↑ci↓ + c†

i↓c†
i↑� − |�|2/U .

Here, � ≡ U 〈cα
i↑cα

i↓〉, and 〈cα
i↑cα

i↓〉 is the site-independent
order parameter, i.e., the wave function describing pair con-
densation. In general, it is complex but can be taken real when
the lattice is uniform. However, when U = 0, the eigenstate of
H on the sawtooth lattice shows that the density on a B site is
twice that on an A site. This difference between A and B sites
is expected to persist for U 
= 0 and, therefore, it will also
be reflected in a difference between the order parameters on
the two sublattices. Consequently, the mean-field calculation
should allow for distinct, unequal �A, �B, and for the local
densities on A and B sites to be treated as variational parame-
ters. Using a general quadratic trial Hamiltonian and applying
the Gibbs-Bogoliubov inequality [31] (see Appendix A), we
obtain the MF Hamiltonian,

HBCS = LU

2
+ L

∑
α

[(|�α|2 + θ z2
α

)
/U

]

+
∑

i, j,α,β,σ

(
ti jc

α†
iσ cβ

jσ + H.c.
) −

∑
i,α

(
μ + U

2

)
nα

i

−
∑
i,α

θ z
α

(
nα

i↑ + nα
i↓ − 1

)

−
∑
i,α

(
�α∗cα

i↑cα
i↓ + �αcα†

i↓ cα†
i↑

)
, (5)

where θ z
α ≡ U 〈nα

↓ + nα
↑ − 1〉/2. Fourier transforming, and

defining the Nambu spinor �
†
k ≡ (cA†

k↑ , cB†
k↑ , cA

−k↓, cB
−k↓),
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FIG. 2. DMRG results for the sawtooth lattice: (a) Pair Green
function on the B sublattice (U = 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15,
ρ = 0.5) exhibiting power-law decay. The inset shows the exponen-
tial decay for the single-particle Green function for the same cases.
The thick (red) dashed line shows the analytically calculated U → 0
limit giving a correlation length of 0.759 lattice spacings (see the
text). (b) The exponents of the power law decay in (a) and also for
the case of ρ = 0.25.

yields

HBCS(	) =
∑

k

�
†
kMk (φ)�k

+ L

(
1

U

∑
α

(|�α|2 + θ z2
α

) − 2μ−U

2

)
, (6)

where Mk (φ) is a 4 × 4 Hermitian matrix (see Appendix A)
and where we now display explicitly the phase twist 	 and its
gradient φ. It is clear that θ z

α is real but, in general, �α is com-
plex. However, for lattices that are invariant under the A ↔ B
exchange, e.g., ladder and Creutz lattices, � is uniform and
can be taken real for all 	. For a time-reversal symmetric
Hamiltonian, �α can also be taken real, and this is the case
for the sawtooth lattice but only at 	 = 0. Finally, for lattices
that are invariant under the A ↔ B exchange, the mean-field
parameters θ z

α also become homogeneous, i.e., independent of
α, such that they can be absorbed in the chemical potential μ

leading back to the usual simpler MF Hamiltonian.
Diagonalizing Mk (φ) yields the ground-state energy,

EGS(	), and allows us to solve the MF self-consistency equa-
tions giving �α and θ z

α and then obtain Ds. Apart from the
additional MF parameters θα , our MF approach is the same as
the one used to describe the usual BCS-BEC crossover, be it
in lattices or in the bulk. However, the flat band dramatically
changes the behavior and nature of the pairing at low interac-
tion strength.

III. RESULTS AND DISCUSSION

The power and exponential decays of the pair and single-
particle Green functions on the Creutz and normal ladder
lattices were presented in Ref. [15]. Here, we begin by
establishing that the same behavior occurs in the saw-
tooth lattice. Figure 2(a) shows the pair Green functions
along the B sublattice of the sawtooth lattice for U =

1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15 and ρ = 0.5 exhibiting clear
power-law decay. The corresponding exponents, and also the
exponents for the ρ = 0.25 case, are shown in Fig. 2(b). It is
seen that the exponents behave similar to those for the Creutz
lattice [15], where they take smaller values for smaller U ,
opposite to the behavior of the exponents on the normal ladder
[15]. The inset of Fig. 2(a) shows the single-particle Green
functions for the same cases as in the main panel and exhibits
exponential decay over many decades, even for small U . This
establishes that, as in the usual BCS theory, the only trans-
port in this system is via paired up and down fermions [32].
However, for a flat band system, and in sharp contrast with
the standard BCS situation, the lengthscale associated with
the exponential decay of the single-particle Green functions
does not diverge (exponentially) as the interaction strength
U → 0. Instead it saturates to a finite value closely related
to the exponential decay of the Wannier function of the flat
band, which is very fast. In addition, one can show that the
pair wave function (not to be confused with the pair Green
function) is also exponentially localized with a lengthscale of
the same order as that of the single-particle Green function.
For instance, at ρ = 0.5, one can show that both lengthscales
have exactly the same value 0.759 lattice spacings, in perfect
agreement with the results in the inset of Fig. 2(a). In other
words, on conventional lattices, the spatial extent of the pair
is exponentially large for small U and decreases as U in-
creases, eventually becoming on-site pairing. In the flat band
systems considered here, the pairing is essentially on-site for
any value of U , even infinitesimal. Therefore, the physics
of this system is different from that of the conventional
BCS-BEC crossover.

In Ref. [15], DMRG was used to calculate the SC weight,
Ds, for the Creutz lattice and shown to be linear for small
U , as predicted [8–10]. Using our multiband MF, Eq.(6), we
calculate EGS(	) (see Appendix A) and then Ds, Eq. (4), for
the same parameters in Ref. [15]. We compare the MF and
DMRG results in Fig. 3. Figure 3(a) shows clearly that the
MF results are remarkably accurate for a very wide range of
U values at the two densities studied. The dashed lines in
Fig. 3(a) are given by Ds = πUρ(1 − ρ) derived from the re-
sults of Ref. [9], where it was assumed that U is much smaller
than the gap between the bands. Consequently, at these small
values of U , the physics is dominated by the flat band, and the
states can be projected on it (see Appendix B). This means
that the upper band does not contribute to the physics in
this limit. With the added assumption that � is uniform and
independent of the applied phase twist, it was shown [9] that
for such very small values of the coupling, Ds is linear in
U and is proportional to the quantum metric [8], Eq. (B26).
It should be emphasized that these approximations are valid
only for U much smaller than the gap between the bands,
and therefore the physics at very low U is dominated by the
flat band [9] and the topological properties of the lattice. The
physics at intermediate U (of the order of the interband gap)
is dominated by very strong mixing between the two bands,
with both bands contributing significantly to the properties of
the system, such as Ds. At very strong U , the physics is that
of hard core bosons governed by a dispersive Hamiltonian
with near-neighbor repulsion [19,20]. It is remarkable that
our multiband MF calculation agrees with DMRG over such
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FIG. 3. Creutz lattice: (a) SC weight, Ds, vs U/t comparing BCS
MF with DMRG [15]. Very good agreement is seen over a wide range
of values. Dashed lines are the linear predictions [9] for very small
U (see the text). (b) BCS MF agrees very well with DMRG over
a wider range of ρ for low U . For large U , the agreement is good
at low densities. DMRG calculations were done on a L = 16 lattice
with PBC.

a wide range of parameters despite the marked difference in
mechanism.

It is evident that the agreement between our MF and
DMRG is better for the lower density, ρ = 0.25. Figure 3(b)
emphasizes the dependence of the MF accuracy on the inter-
play of U and ρ. For U = t , MF gives a very good description
for all fillings up to half-filling, ρ = 1. For U = 8t , MF is ac-
curate only up to around ρ = 0.5. In particular, at half-filling,
ρ = 1, the system should be a band insulator (the lower band
is full), but MF at U = 8t yields a finite Ds.

With this agreement between MF and DMRG for the
Creutz lattice, we now study Ds on the sawtooth lattice. We
perform exact DMRG calculations for the sawtooth lattice
with PBC and sizes up to L = 24 to calculate Ds and compare
with our extended BCS MF. Figure 4 shows Ds versus U/t
for two densities, ρ = 0.5, 0.25. Similar to the Creutz lattice,
Ds also increases linearly at first, reaches a maximum, and
then decreases slowly. Figure 4 also shows that our multiband
MF values agree very well with DMRG over the entire range
of U values we explored. We emphasize that without the
additional MF parameters θ z

α , agreement between MF and
DMRG would be quite poor for Ds already at values of U ≈ 5t
(see Appendix A). We note that the values of Ds for sawtooth
are more than a factor of 2 smaller than the corresponding
values for Creutz. The Creutz lattice offers a higher superfluid
density for the same particle density. Furthermore, the low
U behavior of Ds is linear in U , and the dashed lines in
Fig. 4 are fits to the low U linear parts of the curves; the
slope for ρ = 0.5 (0.25) is 0.401 (0.303). Using the results of
Ref. [9], which predict a slope proportional to the quantum
metric, Q = 2

3
√

3
, we find slopes of 0.6 and 0.45 for ρ = 0.5

and 0.25, respectively, which do not agree with the exact
numerical values like they did for the Creutz lattice. This dis-

0 5 10 15 20 25 30

U/t
0

0.5

1

1.5

D
s

ρ=0.5, MFT
ρ=0.25, MFT
ρ=0.5, DMRG
ρ=0.25, DMRG

0 0.02 0.04 0.06
1/L

0

0.5

1

1.5

D
s

U=1t, DMRG
U=5t, DMRG
U=6t, DMRG

FIG. 4. SC weight, Ds, for the sawtooth lattice comparing MF
with DMRG (L = 16) showing excellent agreement. Dashed lines
are linear fits at low U where Ds is predicted to be linear in U . See
the text for a discussion of the slopes. The inset shows Ds vs L−1

at U = 1, 2, 3 for ρ = 0.5 and illustrates that finite-size effects are
very small.

agreement is due to the fact that the A and B sublattices are not
equivalent in the sawtooth case: �A 
= �B and ρA 
= ρB, and,
consequently, the assumptions in Refs. [8,9] which led to Ds

being proportional to the quantum metric are no longer valid.
In fact, the derivation in Ref. [8] not only assumes that, for
all values of the phase gradient φ, � is the same for all sites,
but also that it has a vanishing first derivative with respect
to φ, at φ = 0. It turns out that the latter assumption is, in
general, not valid as soon as � becomes sublattice-dependent,
since the U (1) symmetry only allows one to fix the global
phase of the mean-field parameters, leaving the possibility
of a φ-dependent relative phase between the �α . We found
that when φ 
= 0, the phase difference between �A and �B

for the sawtooth lattice is exactly equal to the phase gradient
φ. Nonetheless, by projecting carefully on the flat band with-
out making the above-mentioned simplifying assumptions,
we generalized the mean-field computation of the slope of
the superfluid weight, see Appendix B, as a function of the
total density ρ. The results are displayed in Fig. 5, where
we compare our analytical results for the slope at small U
with our full band computation and also to what one obtains
by using the results of Ref. [8]. In addition we show the
results from our DMRG calculation. As can be seen clearly,
the agreement between all our approaches is excellent, but not
with the results predicted in Ref. [8], which only include the
quantum metric. In particular, our projection method gives the
slope of Ds at ρ = 0.5 (ρ = 0.25) to be 0.407 (0.311), which
compares very well with the DMRG results 0.401 (0.303).

We elucidate further the agreement between our MF
and exact DMRG results by comparing the order parameter
�α/U given by the two methods. With MF, we calculate
directly �α/U = 〈cα

i↑cα
i↓〉; with DMRG, we use �α∗�α =

〈cα†
i↓ cα†

i↑ cα
i↑ cα

i↓ 〉 − 〈nα
i↑〉〈nα

i↓〉. We show in Fig. 6 the MF and
DMRG values for the Creutz system and MF values for the
normal ladder where for these systems �A = �B = �. Note
that for the normal ladder �/U vanishes exponentially as
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FIG. 5. Sawtooth lattice: SC weight Ds/U extrapolated to U = 0
as a function of the total density ρ from the projection onto the
flat band (black continuous line), compared with the full band com-
putations (green circles) and with the results of Ref. [8], which
only include the quantum metric term (red dashed line). The yellow
squares are the exact results obtained with DMRG.

U → 0, making an accurate DMRG determination not fea-
sible because it requires exponentially large systems. On the
other hand, for the Creutz system �(U → 0)/U is finite even
though �(U = 0) = 0: Here, even for infinitesimal attraction,
the pairing parameter �/U acquires a large finite value. We
see in Fig. 6 excellent agreement between the MF and DMRG
values of �/U for a very wide range of U values. The dif-
ference in behavior of �/U between a normal ladder and
Creutz lattices can be understood as follows: For a dispersive
band, it is well known that in the small-U/t limit, pairing only
occurs at the Fermi level and involves an (exponentially) small
fraction of the free fermions. Consequently, the pair density
itself becomes (exponentially) small. Furthermore, for small
U , the correlation between the paired electrons (the pair size)
extends over a very large distance. In contrast, there is no
Fermi surface for a flat band, and fermions at all momenta
can form pairs leading to a sizeable contribution to the pair
density and yielding a finite value even for arbitrarily small U .

FIG. 6. The MF pairing parameter, �/U , as a function of U/t for
the Creutz and normal ladder lattices. Agreement between DMRG
and MF is excellent.
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FIG. 7. Sawtooth lattice: (a) The MF pairing parameter, �α/U ,
as a function of U/t ; (b) ρα vs U/t .

Additionally, even for infinitesimal U , the system is strongly
correlated because U is much larger than the width of the
flat band. In this case, the pair size is essentially on-site even
for very small U . We emphasize that, even though the order
parameter does not vanish at small U , the superfluid weight,
Ds, and the charge gap (both controlled by �α) do vanish
(linearly) with U . The sawtooth lattice MF and DMRG results
are shown in Fig. 7. Figure 7(a) shows �α/U as a function
of U/t for two densities, ρ = 0.5 and 0.25. We see that the
behavior as U → 0 is qualitatively similar to that of the Creutz
lattice. However, here we observe the imperative difference
that, for the whole range of U , �A 
= �B, and that our MF
results are in excellent agreement with DMRG. Furthermore,
we see a similar pattern between ρA and ρB in Fig. 7(b): for
all U , their values remain clearly different. These striking
differences between the A and B sublattices cannot be ob-
tained accurately with a simple BCS MF calculation, which, at
large U , inevitably leads to �A = �B and thereby in ρA = ρB

(see Appendix A). To obtain correct behavior, we stress the
importance of treating the local densities as variational MF
parameters.

IV. CONCLUSIONS

Using mean-field and exact DMRG calculations, we stud-
ied the pairing and superconducting properties of the attractive
fermionic Hubbard model in two flat-band lattices with non-
trivial winding numbers, namely the Creutz and sawtooth
lattices. The difference, however, is that only the Creutz lattice
is genuinely topological due to a chiral (sublattice) symmetry,
resulting in a quantized winding number and zero-energy edge
modes for open boundary conditions. On the contrary, the
lack of sublattice symmetry for the sawtooth lattice not only
results in a nonquantized winding number, but it also causes
the densities and pairing parameters on the two sublattices to
be different and necessitates the use of a mean-field method
where the local densities and pairing parameters are all MF
parameters, as we showed here. While mean-field calcula-
tions may be expected to give reasonably accurate results for
weak coupling and low densities, we show that our mean
field describes the system remarkably well for a very wide
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range of coupling values and densities. It only fails when both
the density and coupling attain high values; see Fig. 3(b).
We emphasize one of our main results: since �A 
= �B for
sawtooth, the superconducting weight, Ds, is no longer simply
proportional to the quantum metric for low U values, but it
is still linear in U . We calculated here the correct and more
general linear behavior (Appendix B). This is expected to hold
for any topological lattice where sublattices are not equivalent.
Finally, beyond static properties, our results emphasize that
for lattices with inequivalent sites, it is crucial to use the
extended mean-field approach for time-dependent situations,
such as ac or dc Josephson effects [18].
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APPENDIX A: MULTIBAND MEAN-FIELD METHOD

The DMRG method that we used for the exact calculation
of Ds and the implementation of the periodic boundary condi-
tion are discussed in Ref. [15]. Here we discuss in some more
detail the multiband MF method we use in this work.

We start with a general quadratic trial Hamiltonian,

Htrial =
∑

i, j,α,β,σ

(
ti jc

α†
iσ cβ

jσ + H.c.
) − μ

∑
i,α

nα
i

−
∑
i,α

(
θα
↓ nα

i↑ + θα
↑ nα

i↓
)

−
∑
i,α

(
�α∗cα

i↑cα
i↓ + �αcα†

i↓ cα†
i↑

)
, (A1)

where θα
σ and �α are the variational MF parameters to be

determined. The Gibbs-Bogoliubov inequality [31] gives an
upper bound on the true free energy, F , of the model governed
by the Hamiltonian Eq. (1),

F � Tr[HWtrial] + 1

β
Tr[WtriallnWtrial], (A2)

where the trial Boltzmann weight is given by

Wtrial = 1

Ztrial
e−βHtrial , (A3)

and Ztrial = Tr e−βHtrial = e−βFtrial . Substituting Wtrial in
Eq. (A2) and using Wick’s theorem, we obtain

F � −U
∑
i,α

(〈
nα

i↑
〉〈

nα
i↓

〉 + 〈
cα†

i↓ cα†
i↑

〉〈
cα

i↑ cα
i↓

〉)

+
∑
i,α

(
θα
↓
〈
nα

i↑
〉 + θα

↑
〈
nα

i↓
〉)

+
∑
i,α

(
�α∗〈cα

i↑cα
i↓

〉 + �α
〈
cα†

i↓ cα†
i↑

〉) + Ftrial. (A4)

We minimize the right-hand side with respect to the varia-
tional parameters and obtain

θα
↑ = U 〈nα

i↑〉, θα
↓ = U 〈nα

i↓〉, �α = U 〈cα
i↑cα

i↓〉. (A5)

We substitute these expressions in Eq. (A2) to obtain the
optimized free energy,

F � 1

U

∑
i,α

(θα
↓ θα

↑ + |�α|2) − 1

β
ln Tr e−βHtrial

� − 1

β
ln Tr e−β( 1

U

∑
i,α (θα

↓ θα
↑ +|�α |2 )+Htrial )

≡ − 1

β
ln Tr e−βHBCS , (A6)

which defines HBCS. Since we are dealing with systems with
balanced up and down populations, θα

↑ = θα
↓ , we can instead

define θ z
α ≡ (θα

↑ + θα
↓ − U )/2. This allows us to rewrite

HBCS = LU

2
+ L

∑
α

[(|�α|2 + θ z2
α

)
/U

]

+
∑

i, j,α,β,σ

(
ti jc

α†
iσ cβ

jσ + H.c.
) −

∑
i,α

(
μ + U

2

)
nα

i

−
∑
i,α

(
θ z
α

(
nα

i↑ + nα
i↓ − 1

))

−
∑
i,α

(
�α∗cα

i↑cα
i↓ + �αcα†

i↓ cα†
i↑

)
, (A7)

which is Eq. (5). This can now be put in momentum space via
the Fourier transform,

χrσ = 1√
L

∑
k

eirkχ̃kσ , (A8)

where k = 2πn/L (n = −L/2 + 1, . . . , 0, 1, . . . , L/2) and
χ†

rσ ≡ (cA†
rσ cB†

rσ ). Defining the four-component Nambu spinor
�

†
k ≡ (cA†

k↑ , cB†
k↑ , cA

−k↓, cB
−k↓), and with the phase gradient

given by φ = 	/L, we obtain

HBCS(	) =
∑

k

�
†
kMk (φ)�k

+ L

(
1

U

∑
α

(|�α|2 + θ z 2
α

) − 2μ − U

2

)
, (A9)

which is Eq. (6). For the general chain depicted in Fig. 1, the
matrix Mk (φ) is

Mk (φ) =
(
K(φ + k) D

D∗ −KT (φ − k)

)
, (A10)

where

K(φ + k) =
(
K11 − μ̄A K21

K12 K22 − μ̄B

)
, (A11)

with μ̄α = μ + U/2 + θ z
α , K11 = t1ei(φ+k) + t∗

1 e−i(φ+k),
K22 = t2ei(φ+k) + t∗

2 e−i(φ+k), and K12 = K∗
21 = t5 +

t3ei(φ+k) + t4e−i(φ+k). The matrix D is given by

D =
(

�A 0
0 �B

)
. (A12)
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The three models we address here are obtained by appropriate
choices of the hopping parameters. The normal ladder is given
by t3 = t4 = 0, t1 = t2 = t5 = t ; the flat-band Creutz model
is given by t1 = t∗

2 = it , t3 = t4 = t , t5 = 0; and the sawtooth
model is given by t1 = t4 = 0, t2 = t , t5 = t3 = √

2t .
Mk (φ) can be diagonalized giving the ground-state energy,

EGS(	),

EGS(φ) = L

(
1

U

∑
α

(|�α|2 + θ z 2
α

) − 2μ − U

2

)

+
∑

k

[λ1(k, φ) + λ2(k, φ)], (A13)

where λ1,2 are the negative eigenvalues. The mean-field pa-
rameters are obtained by minimizing EGS(φ) with respect to
those parameters or, equivalently, by solving the self consis-
tency equations,

�α = U
〈
cα

i↑cα
i↓

〉
, θ z

α = U
(〈

nα
i

〉 − 1
)
/2, (A14)

with nα
i = cα†

i↑ cα
i↑ + cα†

i↓ cα
i↓ .

For the normal ladder and Creutz models, �A = �B and
ρA = ρB, so that we can use the simple BCS MF with a single
variational parameter, �, which is uniform on all sites. The
eigenvalues of Mk (φ) can then be obtained in closed form.
In these cases, the results of the simple BCS MF and the
more extended MF we use here are identical. However, for
the sawtooth lattice with its unequal A and B sites, the two
mean-field methods are not equivalent, and only the extended
method we presented here gives correct results, especially at
strong coupling.

If instead of using the extended MF method we use
the simple BCS mean field where only the �α are
MF variational parameters, Ucα†

i↓ cα†
i↑ cα

i↑ cα
i↓ → �α∗cα

i↑ cα
i↓ +

cα†
i↓ cα†

i↑ �α − |�α|2/U , we obtain reasonable results only for
low U but quantitatively incorrect results as U increases. The
top panel of Fig. 8 shows the sawtooth lattice Ds versus U/t
using the simple BCS MF calculation. We see that at low
U , agreement with DMRG is still excellent, but for medium
and large values of U the agreement is not as good. Compare
with Fig. 3 in the main text. The bottom panel shows, for the
same system, the pairing parameters �A/U and �B/U versus
U/t , and, again, they exhibit good agreement with DMRG
for low values of U . However, as U increases, the behavior
of �α becomes qualitatively and quantitatively incorrect: The
simple MF shows that, at large U , �A = �B, which the exact
DMRG results show never happens [compare with Fig. 7(a)].
The same behavior is observed for ρA and ρB (not shown). It
is therefore crucial to use the correct mean-field decoupling
in order to obtain qualitatively correct (and quantitatively
accurate) results.

APPENDIX B: SUPERFLUID WEIGHT FOR A FLAT-BAND
SYSTEM WITH INEQUIVALENT SITES

1. General situation

In a mean-field approach, the superfluid weight reads

Ds = π
d2εGS(�α (φ),�α∗(φ), φ)

d2φ

∣∣∣∣
φ=0

, (B1)

0 5 10 15 20 25 30

U/t
0

0.5

1

1.5

D
s

ρ=0.5, MFT
ρ=0.25, MFT
ρ=0.5, DMRG
ρ=0.25, DMRG

0 10 20 30

U/t
0

0.1

0.2

0.3

0.4

0.5

Δα /U

ΔA
, ρ=0.5 MF

ΔB
, ρ=0.5 MF

ΔA
, ρ=0.25 MF

ΔB
, ρ=0.25 MF

 Dashed lines: DMRG

FIG. 8. Sawtooth lattice. Top panel: Ds vs U/t using the simple
BCS MF substitution. We find a quite good agreement with DMRG
for small U , but a relatively poor one at large U . Bottom panel: the
pairing parameter, �α , vs U/t . Excellent agreement with DMRG for
small U . As U increases, the simple MF results become quantita-
tively incorrect: �A → �B, which is not what exact DMRG results
show. DMRG shows that �A and �B remain unequal.

where φ is the phase gradient, and εGS = EGS/L is the ground-
state energy per unit cell [see Eq. (A13)],

εGS(�α,�α∗, φ) = 1

U

∑
α

|�α|2 + 1

L

∑
k,n

λn(k,�α,�α∗, φ),

(B2)
where we have made explicit the dependence on �α . For sim-
plification, we have omitted (i) the θα terms which do not play
an important role at low U , and (ii) the explicit dependence on
the chemical potential μ since, even for inequivalent sites, it
does not give any additional contribution to Ds.

Differentiating εGS twice with respect to φ, and using the
fact that we have ∂εGS

∂�α = ∂εGS
∂�α∗ = 0 along the mean-field solu-

tion, �α = �α
mf(φ), one obtains

Ds

π
= 1

L

∑
k,n

(
∂2λn

∂φ2
+

∑
α

∂2λn

∂�α∂φ

d�α
mf

dφ

+
∑

α

∂2λn

∂�α∗∂φ

d�α∗
mf

dφ

)
, (B3)
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where all derivatives are computed at φ = 0 and �α =
�α

mf(φ = 0). For systems that are invariant under the time-
reversal symmetry, and with equivalent sites, the U (1)

symmetry allows us to have all �α∗ to be real, so that
d�α∗

m f

dφ
=

0 at φ = 0. In this situation, the only contribution to Ds is
the first term, which, in the U → 0 limit, can be shown to be
proportional to the quantum metric [8].

Generally, in the U → 0 limit and projecting on the flat
band, one can approximate the chemical potential by μ ≈
εFB + aU , and the mean-field parameters by �α ≈ U �̃α ,
thereby allowing us to factor out the U dependence of the
ground-state energy:

εGS(�̃α, �̃α∗, φ) = −U

L

∑
k

dk (�̃α, �̃α∗, φ) (B4)

with

dk (�̃α, �̃α∗, φ) =
√

a2 + |b̃k (�̃α, φ)|2, (B5)

b̃k (�̃α, φ) =
∑

α

P∗
α (−k + φ)�̃αP∗

α (k + φ), (B6)

where Pα (k) are the site components of the Bloch vector of the
flat band, i.e., the eigenvector of the matrix K(k). The mean-
field parameters and a fulfill the following self-consistent
equations:

ρ = 1

2
+ a

2L

∑
k

1

dk (�̃α, �̃α∗, φ)
, (B7)

�̃α = 1

2L

∑
k

Pα (−k + φ)Pα (k + φ)b̃k (�̃α, φ)

dk (�̃α, �̃α∗, φ)
, (B8)

and the superfluid weight reads

Ds = −Uπ

(
1

L

∑
k

∂2dk

∂φ2

∣∣∣∣
�̃α

m f (0),φ=0

+ 1

L

∑
k

∑
α

∂2dk

∂φ∂�̃α

∣∣∣∣
�̃α

m f (0),φ=0

d�̃α
m f

dφ

∣∣∣∣∣
φ=0

+ 1

L

∑
k

∑
α

∂2dk

∂φ∂�̃α∗

∣∣∣∣
�̃α

m f (0),φ=0

d�̃α∗
m f

dφ

∣∣∣∣∣
φ=0

)
. (B9)

Differentiating the self-consistent equation (B8) with respect
to φ allows us to find a set of coupled linear equations fulfilled

by all d�̃α
mf

dφ
|φ=0. For a time-reversal invariant system, we can

show that all these quantities are purely imaginary, and the set
of linear equations reads formally Oαα′Xα′ = Yα , with Xα =
d�̃α

mf
dφ

|φ=0 and

Oαα′ = δαα′ − 1

2L

∑
k

Pα (k)P∗
α (k)Pα′ (k)P∗

α′ (k)

dk
, (B10)

Yα = 1

2L

∑
k

bk

dk
[P∗

α (k)∂kPα (k) − ∂kP∗
α (k)Pα (k)]

+ 1

2L

∑
k

Pα (k)P∗
α (k)

dk
∂φbk . (B11)

Note that the matrix O is singular. Indeed, one can see that
for Xα = �̃α

mf at φ = 0, the self-consistent equations lead to

∑
α′ Oαα′�̃α

mf = 0, which is just the U (1) symmetry: if one
adds a global phase to all MF parameters, it does not change
the GS, i.e., the self-consistent equations are still fulfilled.

2. Two-band lattices

In the specific case of a two-band system, like the sawtooth
lattice, the 2 × 2 matrix K(k) can be written formally as
follows:

K(k) = e0(k)1 + �e(k) · �σ ,

�e(k) = |e(k)|(sin ϑk cos ϕk, sin ϑk sin ϕk, cos ϑk ), (B12)

where �σ are the Pauli matrices. Assuming that the flat band
corresponds to the lower band, the Bloch eigenvector reads

PA(k) = − sin
ϑk

2
e−iϕk/2, PB(k) = cos

ϑk

2
eiϕk/2. (B13)

Let us introduce the notations

�̃A = �̃(1 − δ) and �̃B = �̃(1 + δ), (B14)

and, using Eqs. (B5) and (B6), we find at φ = 0

b̃k = �̃(1 + δ cos ϑk ), (B15)

dk =
√

a2 + �̃2(1 + δ cos ϑk )2, (B16)

fulfilling the following equations:

ρ − 1

2
= a

2L

∑
k

1

dk
, (B17)

1 = 1

4L

∑
k

1 + δ cos ϑk

dk
, (B18)

δ = 1

4L

∑
k

cos ϑk (1 + δ cos ϑk )

dk
. (B19)

After some straightforward computations, one can show
that the superfluid weight reads

Ds = U �̃2

(
2π

L

∑
k

Bk

dk

+ δ
2π

L

∑
k

[
sin ϑk∂

2
k ϑk + cos ϑk (∂kϑk )2

]
2dk

+ δ2 2π

L

∑
k

[
sin ϑk cos ϑk∂

2
k ϑk − sin2 ϑk (∂kϕk )2

]
2dk

+ γ (1 − δ2)
2π

L

∑
k

(1 − cos2 ϑk )∂kϕk

2dk

)
, (B20)

where

Bk = 2
∑

α

∂kP∗
α ∂kPα − 2

∣∣∣∣∣
∑

α

∂kP∗
α Pα

∣∣∣∣∣
2

= 1

2

(
(∂kϑk )2 + sin2 ϑk (∂kϕk )2

)
(B21)
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is the quantum geometric tensor [9] in 1D. For systems where
the sublattices are equivalent, i.e., δ = 0, one can show that
dk = 1/4, such that

EGS

L
= −U

4
, (B22)

μ = εFB + U

2

(
ρ − 1

2

)
, (B23)

�̃ = 1

2

√
ρ(1 − ρ), (B24)

Ds = 2πU
ρ(1 − ρ)

4
4

1

L

∑
k

Bk = 2πUρ(1 − ρ)Q, (B25)

where

Q = 1

2π

∫
BZ

Bk (B26)

is the quantum metric. This recovers the results of Ref. [9].
The last term in Eq. (B20) is the contribution from the first

derivative of the mean-field parameters, with

γ = −i
1

�̃A
mf(φ = 0)

d�̃A
mf

dφ

∣∣∣∣
φ=0

= i
1

�̃B
mf(φ = 0)

d�̃B
mf

dφ

∣∣∣∣
φ=0

= −
1
L

∑
k

∂kϕk (1−cos2 ϑk )
dk

1
L

∑
k

1−cos2 ϑk
dk

. (B27)

For the specific case of the sawtooth lattice, one has

�e(k) = (
√

2t (1 + cos k),−
√

2t sin k,−t cos k), (B28)

such that

cos ϑk = − cos k

2 + cos k
and ϕk = −k

2
. (B29)

This allows us to compute all quantities a, δ, and �̃ as func-
tions of the total density ρ. It turns out that

a ≈ 1

2

(
ρ − 1

2

)
, (B30)

�̃ ≈ 1

2

√
ρ(1 − ρ), (B31)

δ ≈ δ0 + 1

8

(
ρ − 1

2

)2

, (B32)

where δ0 = 0.154 701 is the exact value of δ at ρ = 1
2 . The

approximate solution gives

�̃A = 1

2

√
ρ(1 − ρ)

(
1 −

[
δ0 + 1

8

(
ρ − 1

2

)2])
, (B33)

�̃B = 1

2

√
ρ(1 − ρ)

(
1 +

[
δ0 + 1

8

(
ρ − 1

2

)2])
, (B34)

FIG. 9. Mean-field parameters �α/U and densities ρα vs the
total density ρ, extrapolated to U = 0. Lines: our projection on the
flat band; symbols: full multiband mean field.

and the sublattice densities

ρα = ρ ∓ 1

4π

∫
BZ

dk cos ϑk

( a

dk
+ 1

)
, (B35)

where ∓ corresponds to A (B). All results are displayed in
Fig. 9. As one can see, the agreement between the full multi-
band MF and the flat-band projected mean field (in the U → 0
limit) is excellent for all values of the total density ρ.

Along the same lines, one can compute the single-particle
Green functions:

Gαα
σ (r) = − 1

8π

∫
BZ

dk(1 ∓ cos ϑk )
( a

dk
+ 1

)
eikr, (B36)

and the two-point correlation function

〈
cα†

j+r↑cα†
j↓

〉 = �̃

8π

∫
BZ

dk(1 ∓ cos ϑk )
1 + δ cos ϑk

dk
eikr .

(B37)
In the large distance limit, one can show that 〈cα†

j+r↑cα†
j↓〉 de-

cays exponentially over a length scale that is associated with
the size of the BCS pairs. It turns out that for ρ = 0.5, one has
a = 0 and dk = |1 + δ cos ϑk|, such that the single-particle
Green function and the two-point correlation function are
given by the same expression (up to a sign):

1

8π

∫
BZ

dk(1 ∓ cos ϑk )eikr, (B38)

leading to an exponential decay at large distance Gαα
σ (r) ∝

exp −r/ξ , with ξ ≈ 0.759.
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