
HAL Id: hal-03432967
https://hal.science/hal-03432967v1

Submitted on 17 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Long-time diffusion and energy transfer in polydisperse
mixtures of particles with different temperatures

Efe Ilker, Michele Castellana, J.-F. Joanny

To cite this version:
Efe Ilker, Michele Castellana, J.-F. Joanny. Long-time diffusion and energy transfer in polydisperse
mixtures of particles with different temperatures. Physical Review Research, 2021, 3 (2), pp.2394-2399.
�10.1103/physrevresearch.3.023207�. �hal-03432967�

https://hal.science/hal-03432967v1
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW RESEARCH 3, 023207 (2021)

Long-time diffusion and energy transfer in polydisperse mixtures of particles
with different temperatures

Efe Ilker ,1,2,3 Michele Castellana,1,2 and Jean-François Joanny1,2,4

1Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS UMR 168, 75005 Paris, France
2Sorbonne Universités, UPMC Univ. Paris 06, 75005 Paris, France

3Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
4Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France

(Received 18 March 2021; accepted 19 May 2021; published 14 June 2021)

Evidence suggests that the transport rate of a passive particle at long time scales is enhanced due to
interactions with the surrounding active ones in a size- and composition-dependent manner. Using a system
of particles with different temperatures, we probe these effects in dilute solutions and derive long-time friction
and self-diffusion coefficients as functions of volume fractions, sizes, and temperatures of particles in d = 2
and 3 dimensions. Thus, we model excluded-volume interactions for nonequilibrium systems but also extend the
scope to short-range soft potentials and compare our results to Brownian-dynamics simulations. Remarkably,
we show that both viscosity and energy flux display a nonlinear dependence on size. The simplicity of our
formalism allows to discover various interesting scenarios that can be relevant for biological systems and active
colloids.

DOI: 10.1103/PhysRevResearch.3.023207

I. INTRODUCTION

A particle in a solvent is constantly bombarded by the sol-
vent molecules (receiving random kicks at a rate ∼ τ−1

s ) which
push the particle, while the particle dissipates the excess en-
ergy through dynamical friction also exerted by the solvent at
longer time scales. This leads to the well-known Brownian
motion [1]. The transport is measured by the mean-square
displacement (MSD) of the particle, which is determined by
its diffusion constant D = T/ζ at time periods t � τs. Here,
T is the temperature of the solvent, i.e., the “bath” temper-
ature, and ζ is the friction coefficient of the particle, which
depends on the viscosity of the solvent and the size of the
particle. For finite concentrations of interacting particles, at
much longer time spans t � τc the diffusion constant of a
single tagged particle differs from the bare diffusion constant
D, because the particle experiences numerous collisions with
the surrounding particles at a rate ∼ τ−1

c . In equilibrium fluids,
this effect is a consequence of the effective friction due to
the excluded-volume interactions [2] and can only reduce the
value of long-time value diffusion constant Ds of the tagged
particle, i.e., its self-diffusion coefficient.

By contrast, in an active fluid, a passive tracer particle can
gain extra energy through interactions with the surrounding
active particles [3–5]. The self-diffusion coefficient is then
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determined by the interplay between the effective friction
discussed above and this energy transfer. In biological sys-
tems, crowding, energy transmission, and composition are
key factors on the transport of material [6–10], and out-
of-equilibrium aspects enrich the dynamics. Notably in the
cytoplasm, not only the long-time friction scales nonlinearly
[11,12], but also the energy flux varies with the size of the
probe particle [13]. Disentangling these elements is difficult
in general polar active models. Yet, we can attempt to es-
tablish simpler models, which keep the relevant features of
these systems. In particular, activity brings extra persistence
with velocity v to the translational motion of active particles
while the direction is randomized at a rotational time scale
τr . At intermediate time scales τc > t � τr, this motion ap-
pears diffusive with D ∼ v2τr , and can be described by an
effective temperature, higher than the thermal one. Similar
characteristics can be achieved by phoretic motility in ar-
tificial self-propelled particles [14]. While τr is very short
for biomolecules, it gains importance for self-propelled par-
ticles. At time scales t < τc, the tagged particle diffusion
is only perturbed by hydrodynamic interactions [15,16]. A
recent study explores how the hydrodynamic field of the mi-
croswimmer leads to a ballistic motion of tracer particles at
short to intermediate time scales [17]. On the other hand, at
long time scales t � τc, the dynamics converges to diffusive
motion where direct collisions dominate and the effect of
the hydrodynamic field is decreased in the long-time self-
diffusion coefficient Ds [18,19]. This allows for a consistent
separation of time scales to implement a multiple-temperature
model for studying the long-time transport properties in out-
of-equilibrium systems.

Various studies using particles with different tempera-
tures explored rich phenomena beyond equilibrium mixtures:

2643-1564/2021/3(2)/023207(7) 023207-1 Published by the American Physical Society

https://orcid.org/0000-0003-0553-9032
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.023207&domain=pdf&date_stamp=2021-06-14
https://doi.org/10.1103/PhysRevResearch.3.023207
https://creativecommons.org/licenses/by/4.0/


ILKER, CASTELLANA, AND JOANNY PHYSICAL REVIEW RESEARCH 3, 023207 (2021)

active/passive phase separation of colloids [20,21], poly-
meric systems [22–24], activity-mediated interactions [25],
interaction-dependent temperatures [26], diffusion of a pas-
sive particle weakly coupled to an active field (and vice
versa) [27], among others. Recently, we constructed a the-
ory of phase separation for these systems, and showed that
the three-body correlations lead to nonreciprocal interactions
upon coarse-graining [28] and hence a shift from an effec-
tive equilibrium construction. This reflects similar governing
principles and peculiarities observed in polar active models
[29,30]. Moreover, the concept of a second temperature suc-
cessfully describes other systems, ranging from biology to
plasma physics [31–40].

In this paper, we provide a theoretical and numerical
analysis of the long-time behavior of transport properties
and energy transfer as functions of sizes, temperatures,
and concentrations in mixtures of particles with different
temperatures. We start from the Langevin dynamics with
excluded-volume interactions while neglecting hydrodynamic
interactions, and derive the long-time transport coefficients
expanded up to first order in concentrations. In Sec. II, we de-
scribe the model and highlight the central results of this paper,
which we compare with the Brownian dynamics simulations.
In Sec. III, we discuss how modeling of excluded-volume
interactions in nonequilibrium systems differs from the equi-
librium systems. The detailed derivations are included in
Supplemental Material [41], which we hope to be useful for
further studies in nonequilibrium systems as we extend the
scope of microrheology approaches developed in equilibrium
systems and simplify the framework.

II. MODEL AND RESULTS

We consider the motion of colloidal particles in d = 2, 3
dimensions following overdamped Langevin dynamics

ζmṙm = −∂rmUN + (2Tmζm)1/2ξm(t ). (1)

The total potential energy UN = 1
2

∑
i, j u(|r(i) − r( j)|) +∑

i uv(r(i) ) includes both the interactions between particles
and an external potential, which confines our system in a
volume V . The position of particle i is denoted by ri, its
friction coefficient by ζi, its temperature by Ti and ξi(t ) is a
d-dimensional standard Gaussian white noise vector with zero
mean and unit variance, i.e., 〈ξi(t ) · ξ j (t

′)〉 = d δ(t − t ′)δi j .
We consider multiple species of particles. Each particle of
species α is in contact with a thermostat at temperature Tα

and friction coefficient ζα . In general, the observables of the
multiparticle system can be expressed as a series expansion
in the particle densities. At first order in concentrations, the
correction to isolated particle properties results from the sum
of the contributions of all two-particle clusters.

For two particles of species α and β, respectively, at
positions r1 and r2 and interacting through a pairwise po-
tential, which depends only on the distance between the
particles, uαβ ≡ uαβ (|r2 − r1|), we choose a coordinate sys-
tem where r = r2 − r1 is the separation vector and R =
wr1 + (1 − w)r2 the center of motion, with w ≡ Dβ/(Dα +
Dβ ) = ζαTβ/(ζαTβ + ζβTα ). With this choice, the diffusive
motions along the directions r and R are statistically

independent [20]. As a result, we obtain the two-particle
Langevin dynamics in the form:

ṙ = − 1

ζ
αβ
r

∂ruαβ (r) + (
2Dαβ

r

)1/2
ξr (t ), (2)

Ṙ = − 1

ζ
αβ
R

∂ruαβ (r) + (
2Dαβ

R

)1/2
ξR(t ) (3)

as 〈ξk (t ) · ξl (t
′)〉 = d δ(t − t ′)δkl and 〈ξk,l (t )〉 = 0 where

Dαβ
r = Tαβ/ζr and ζ αβ

r = ζαζβ

ζα+ζβ
, Tαβ = ζβTα+ζαTβ

ζα+ζβ
, Dαβ

R =
TαTβ

ζαTβ+ζβTα
, and ζ

αβ
R = ζβ Tα+ζαTβ

Tα−Tβ
. The advective term in Ṙ leads

to energy transfer, it only exist for nonequilibrium systems,
and it vanishes as ζ−1

R → 0 for Tα = Tβ .
We may now proceed to derive long-time dynamical coef-

ficients for a tagged particle of species α that has temperature
Tα , friction coefficient ζα , and diameter σα , which plays a role
in excluded-volume interactions. Throughout this paper, we
define each secondary particle as type β, hence {β} represents
a set of different particle types surrounding the tagged particle.
Accordingly, for an α-type tagged particle, there are Nβ pairs
for αβ interactions (we take Nα − 1 ≈ Nα), and we leverage
the statistical equivalence of pair interactions described in
Eqs. (2) and (3).

A. Long-time friction coefficient

At long times, the collisions with the surrounding par-
ticles alters the effective friction on the tagged particle. In
order to determine the density dependent long-time friction
coefficient, we apply a small constant test force F on a
tagged particle of species α at position r1, along the lines of
Refs. [42,43]. The test force F breaks the symmetry of the
steady state and creates a nonhomogeneous distribution of the
other particles around the tagged one. In return, this alters
the force balance and induces an effective mean force Fin

on the tagged particle through the excluded-volume inter-
actions with the surrounding particles. The average velocity
follows a linear relation with the total applied forces 〈uα〉 =
(F + Fin)/ζα from which we can infer the long-time friction
coefficient ζ L

α as we look for 〈uα〉 = F/ζ L
α . To account for

all pair interactions with the tagged particle, we define the
concentrations for each species {β} with Nβ particles of di-
ameter σβ in a volume V as cβ = Nβ/V , and the volume
fractions as φβ = 
d

2d d (σβ )d cβ , where 
d is the solid angle in
d dimensions. We obtain [41]

ζ L
α = ζα

(
1 +

∑
β

4
ζ αβ

r

ζα

(
σαβ

σβ

)d

φβ

)
, (4)

in d = 2, 3 where σαβ = (σα + σβ )/2 is the contact dis-
tance. The summation is performed over all particle species,
and hence our theory is valid for arbitrary polydisperse
compositions with many particle species at linear order in
concentrations. Including the size effects on solvent-based
friction constants [44], this suggests a weak compositional
dependence in d = 2 in accordance with experimental results
[19] and a strong dependence in d = 3 as we illustrate with
simulations below. We should note that the long-time fric-
tion coefficients are temperature independent and identical
for equilibrium systems of particles in contact with a single
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thermostat and for nonequilibrium systems with the same
types of particles having multiple temperatures. This cal-
culation is sufficient to determine the self-diffusion coef-
ficient at linear order in equilibrium systems where Ds

α =
Dαζα/ζ L

α . However, the nonequilibrium counterpart for the
self-diffusion coefficient Ds

α requires an investigation of the
dynamics of the tagged-particle density.

B. Long-time diffusion constant

The free diffusion constant of an α-type particle is given by
Dα = Tα/ζα and reflects the behavior at short time scales in
the absence of collisions. The long-time diffusion constant is
obtained from the asymptotic behavior of the MSD 〈(rα (t ) −
rα (0))2〉 of tagged particles as t → ∞ (averaged over all the
α particles from many realizations). We may define

D̄α (t ) = 〈(rα (t ) − rα (0))2〉
2dt

. (5)

By definition, D̄α (0+) = Dα and D̄α (∞) = Ds
α .

The self-diffusion constant Ds
α is linked to the tagged-

particle scattering function F (k, t ) = 〈e−ik·(r1(t )−r1(0))〉, which
is the Fourier transform of the tagged-particle density auto-
correlation function. Here, each incident wave is weighted
with the steady-state probability distribution of finding the
tagged particle at r1(0) at t = 0 and the conditional probabil-
ity of finding the particle at r1(t ) at time t given that it started
at r1(0) (see Supplemental Material [41]). For small values of
the Laplace variable s conjugate to t , and small wave vector k,
the Laplace transform of the tagged-particle scattering func-
tion can be expanded as sF (k, s) ≈ 1 − Ds

αk2/s. The explicit
calculation of Ds

α is detailed in Supplemental Material [41].
To first order in concentrations, we obtain

Ds
α = Dα −

∑
β

4
ζ αβ

r

ζα

(
Tα

ζα

+ Tα − Tβ

ζα + ζβ

)(
σαβ

σβ

)d

φβ (6)

in d = 2, 3 dimensions [45]. The second term in the sum
reflects the nonequilibrium contributions to the self-diffusion
constant due to the different temperatures.

To illustrate certain aspects of Eq. (6), we consider a binary
system of particles with one single particle of type-A (tracer)
surrounded by many type-B particles (crowders), i.e., φA → 0
and φB > 0 while the temperatures differ by an amount �T =
TB − TA. When TB � TA and σA � σB, the fractional change
in root-MSD scales linearly with the size of the tracer, i.e.,
(
√

Ds
A − √

DA)/
√

DA ∼ σA, remarkably similar to the obser-
vations on tracer diffusion in bacterial cytoplasm where the
metabolic activity is tuned by energy depletion procedures
[13]. For equal-sized A and B particles with particle size σA =
σB and ζA = ζB = ζ , the self-diffusion constant of particle
A becomes Ds

A = DA(1 − 2φB) + (�T/ζ )φB. For equilibrium
systems, �T = 0, and the self-diffusion constant recovers the
known value Ds

A = DA(1 − 2φB) [18,46]. For nonequilibrium
systems, as �T �= 0, we investigate two opposite limits: (i)
When TA � TB, Ds

A ≈ DA(1 − 3φB) increasing the slowing
down of the hot particle by the cold crowders. This effect is
also observed with active Brownian particles for which the
propulsion speed is more damped [47] when the surround-
ing bath is composed of less active particles [48]. (ii) When

TA  TB, Ds
A ≈ DBφB such that the diffusion of cold particles

is mainly driven by hot crowders.

C. Modified Einstein relation and effective temperatures

We can define an effective temperature T eff
α for the tagged

particle by imposing an Einstein relation Ds
α = T eff

α /ζ L
α (see

Supplemental Material [41]), and we find

T eff
α = Tα −

∑
β

4
ζαζβ

(ζα + ζβ )2 (Tα − Tβ )

(
σαβ

σβ

)d

φβ. (7)

Thus, this measure corresponds only to the translational mo-
tion and the difference between the effective temperature
and the real thermostat temperature reflects the energy ex-
change between hot and cold particles. For binary mixtures
of equal-sized hard spheres, this simplifies to T eff

A = TA +
�T φB. Since the interaction potential is conservative the total
energy conservation imposes that [22,24]∑

α

Tαcα =
∑

α

T eff
α cα, (8)

which naturally follows from Eq. (7).

D. Brownian dynamics simulations and results in 3 dimensions

To test our predictions, we perform Brownian dynamics
simulations of Eq. (1) with a soft repulsive pairwise potential,
vαβ (r) = k

2 (σαβ − r)2 for r < σαβ and vαβ (r) = 0 otherwise.
For a short-range potential with sufficiently narrow cut-off,
an effective hard-core interaction diameter can be defined in
d = 2, 3, and it reads

σ ′
αβ =

(
dBαβ


d

)1/d

, (9)

where Bαβ = 
d
∫

(1 − e−vαβ (r)/Tαβ )rd−1dr is the second virial
coefficient [20,28], which recovers σ ′

αβ = (σα + σβ )/2 for
hard spheres. This transformation allows for an equivalent
hard-sphere description with scaled contact distances [49–52]
using which we can compare the simulation results with our
analytical formulas from Eqs. (4), (6), and (7) by replacing
σαβ with σ ′

αβ (see Supplemental Material for details [41]).
In Fig. 1(a), we show D̄α (t ) [Eq. (5)] obtained from simu-

lations and the fitting curve from which we determine the Ds
α

values for two examples a tagged hot particle in a cold particle
bath (orange) and a tagged cold particle in a hot particle bath
(blue). We extract Ds

α by extrapolating Eq. (5) with a stretched
exponential, i.e., D̄α (t ) = Dα + (Ds

α − Dα )(1 − e−(t/τ )γ ) and
typically γ ≈ 1/2 as previously employed in hard-sphere sim-
ulations [53]. The details on the simulations and their analysis
are given in Sec.V of the Supplemental Material [41]. The
size dependence enters in Eqs. (4), (6), and (7), both through
the contact distance σαβ and the friction coefficient, which
follow Stokes’ law ζα ∼ σα . We first consider the behavior
of a tagged particle A in a bath of crowders B. In all exam-
ples, we set σB = σ , total volume V = 5 × 104πσ 3/6, κ ≡
kσ 2/Tmax = 102, where Tmax = max(TA, TB). In Fig. 1(b),
we observe the size and concentration dependence of the
long-time friction coefficient. The increase with radius is
stronger than the Stokes’ law as the concentration of crowders
increases. Equation (4) suggests that ζ L

A ∼ σA[1 + ε(φB)σAB
2]
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FIG. 1. Tagged particle A in a bath of crowders B in d = 3. (a) D̄A(t ) from simulations [Eq. (5), shown in log scale] as a function of
time interval log(t ) for two examples; cold particle in hot bath (blue), hot particle in cold bath (orange). In (b)–(f), the color code depicts
size ratios σA/σB = 0.5, 1, 2 in gray, purple, and green, respectively, and dots are obtained from simulations, solid lines represent theoretical
results for friction coefficient, self-diffusion coefficient, and effective temperature shift, respectively, from Eqs. (4), (6), and (7) with scaled
contact distances σαβ → σ ′

αβ . In (b), the long-time friction coefficient increases with crowder volume fraction φB and displays a behavior
beyond Stokes’ law as ζ L

A ∼ σA[1 + ε(φB )σAB
2] where ε(φB ) = 4φB/σB

2. Panels (c)–(e) show how both self-diffusion (shown in log scale) and
temperature vary with sizes, temperatures, and volume fraction of crowders. A slight discrepancy between the theory, Eq. (6), and simulations
for self-diffusion arises for larger tracer particles for which Eq. (10) (dashed lines) show better success. In (f), we show three illustrative cases
where the energy transfer balances frictional forces for temperature ratios satisfying Eq. (11).

where ε(φB) = 4φB/σB
2. This nonlinear scaling of the friction

constant with increasing tracer size is observed in cytoplasmic
transport and polymeric systems [11]. Although the interac-
tions in those systems are not limited to steric interactions
but also include hydrophobic and electrostatic interactions,
one can use our formalism extended to narrow-range soft
potentials, which defines an effective contact distance σ ′

αβ .
In Figs. 1(c)–1(e), we show the self-diffusion constant and
energy transfer, respectively, for TB = 10TA, TB = 100TA,
TB = 0.1TA. Our theory fits particularly well the simulations
for the effective temperatures, whereas we observe slight dis-
crepancy in self-diffusion constant as the size ratio σA/σB

increases. To propose a correction, we attempted to write

Ds
α

† = T eff
α

ζ L
α

, (10)

using T eff
α from Eq. (7), and ζ L

α from Eq. (4). The outcome is
shown by dashed lines and and slightly improves the agree-
ment with the simulation results. It obviously recovers the
rigorously-derived Eq. (6) at linear order, while it is an un-
controlled expansion at higher orders.

An interesting limit is that where energy transfer balances
the friction from the same type of surrounding particles. This
happens when

TA

TB
= 1

2 + σB/σA
, (11)

then Ds
A = DA becomes insensitive to φB, see Fig. 1(f). Thus,

the friction of the B bath vanishes and the crowder particles
appear completely transparent to the tracer particle. The mo-
tion remains diffusive (only solvent-based) at all time scales
(but strictly t � τr for systems with active swimmers) as the
only process is collisions with nonviscous crowders.

Next, we study binary mixtures of equal-sized particles at
finite concentrations, e.g., φA = φB = 0.025 and TB/TA > 1.
We also investigate the dependence on potential stiffness and

the self-diffusion coefficients converge to the hard-sphere val-
ues with increasing κ as limκ→∞ σ ′

αβ = σαβ . Upon increasing
the temperature ratio, the fractional increment in diffusion
coefficient of cold particles is significant and follows a linear
trend. On the other hand, the fractional loss for hot particles is
less sensitive to TB/TA and converges to Ds

B/DB = 1 − 3φA −
2φB as TB � TA (and κ → ∞) predicted by our theory. We
also verified the energy conservation (8) for the same system
[Fig. 2(b)]. This holds irrespective of the potential stiffness
and the energy transfer in this example more strictly suggests
T eff

A + T eff
B = TA + TB since cA = cB.

FIG. 2. Mixtures, κ dependency, and energy conservation. In (a),
we show the self-diffusion coefficients in free-diffusion coefficient
units for equal-sized cold (top) and hot (bottom) particle species
in a mixture with φA = φB = 0.025 for varying values of potential
stiffness κ = 50, 100, 400, respectively, shown as circles, triangles,
and squares. As κ → ∞, the self-diffusion coefficients converge to
the hard-sphere values (dashed lines). In (b), we display the energy
conservation Eq. (8) resulting the condition T eff

A + T eff
B = TA + TB

for cA = cB, which is conserved irrespective of the potential stiffness.
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III. NATURE OF EXCLUDED-VOLUME INTERACTIONS

On a final note, we stress a crucial distinction on how to
model excluded-volume interactions in nonequilibrium sys-
tems. For real-world systems, the excluded-volume refers to
repulsive steric interactions. In equilibrium systems, these can
be treated as a boundary condition for the moving particle in
which interparticle distances r < σαβ are not allowed. This
would produce the same statistics for more realistic potentials
with nearly hard-sphere descriptions (e.g., Lennard-Jones po-
tential at high temperatures) while both simplifying analytical
approaches and allowing for Monte Carlo methods. How-
ever, in such description, the diffusion of a moving particle
is always constrained by the existence of the surrounding
particles. Thus, even for the colder particle, we would expect
no increase in diffusivity, such that Ds

α � Dα for all tem-
perature ratios. On the other hand, this would no longer be
an obligation for repulsive interactions, and the cold particle
can gain energy through collisions. Conventional Monte Carlo
methods would fail to mimic this effect as jump rates are only
constrained—and not enhanced—by the existence of another
particle. Yet, a proper description can be recovered in lattice
models by adding a simple collision rule as demonstrated
in Ref. [54].

Here, our derivation conserves the analytical properties of
pair distribution functions, and enables us to approach the
hard-sphere limit through a smooth function (and vice versa
towards soft potentials). We are therefore able to capture
nonequilibrium aspects while keeping the simplicity of a hard-
sphere description.

IV. CONCLUSIONS

In this paper, we have identified the effect of energy
flux and friction on the long-time self-diffusion constant of
colloidal particles. We intended to study nonequilibrium mix-

tures, but Eq. (6) also provides an explicit formula that can
be used in equilibrium systems of polydisperse solutions
at Tα = Tβ = T (more generally with σαβ → σ ′

αβ ). We left
out the effect of hydrodynamic interactions in our current
analysis, where we focused on the long-time dynamics. How-
ever, hydrodynamic interactions could be included in our
framework. Yet this would be a more ambitious undertak-
ing, because also there is no consensus even for equilibrium
systems on the significance of the contribution of hydrody-
namic interactions to the long-time value of the self-diffusion
coefficient Ds

α ,compared to the value only due to direct
collisions [16,18,55–57]. It would be interesting to investi-
gate these effects on tagged particle dynamics at different
time windows in a study complemented by experimental
results.

We hope that our theory will also shed light on ex-
perimental studies of active colloids, microswimmers, and
single-molecule dynamics in biological mixtures such as the
cytoplasm. Notably, the theoretical predictions on the size
scalings of diffusion enhancement and long-time friction at
dilute concentrations of crowders show close resemblance
with earlier experimental results on the cytoplasmic transport.
Even though we set our theory in the mixing regime, it can
be adapted to complex fluids that have spatial heterogeneities
by introducing local values of the volume fractions. This
would require further study and we leave this to a future
work.
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