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ABSTRACT 11 

DNA manipulation is crucial for many biotechnological prospects and for medical 12 

applications such as gene therapy. This requires the amplification and extraction of DNA 13 

from bacteria and the transfer of these DNA molecules into cells, including bacterial and 14 

mammalian cells. The capacity of the natural magnesium silicate clay mineral sepiolite to 15 

bind to DNA makes it a potentially useful tool for biotechnological/medical strategies. In 16 

addition, sepiolite is inexpensive and classified as non-toxic and non-carcinogenic. This 17 

review will first describe the physico-chemical interactions between sepiolite and DNA. 18 

Then, the leverage of sepiolite/DNA interactions for DNA extraction from bacteria, to 19 

optimize DNA transfer into bacteria and DNA transfection into mammalian cells, are 20 

presented. Finally, the putative toxicity of sepiolite and its advantages and perspectives for 21 

future prospects, such as the improvement of immunotherapy, are also discussed. 22 

 23 
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INTRODUCTION 27 

Genome engineering is a major strategy for the development of new biological models of 28 

interest in academia and the applied sciences, such as biotechnological, biomedical, and 29 

agronomic research. Remarkably, this constitutes the basis of gene therapy aiming to correct 30 

an endogenous, mutated, defective gene and to restore normal physiological functions. DNA 31 

is the central biomolecule bearing the genetic information that is transmitted from one 32 

generation to another. Hence, methods aimed at extracting and purifying DNA and/or 33 

transferring DNA into living cells represent central issues in biotechnology and biomedical 34 

applications. 35 

Notably, the development of vectors based on biohybrid materials for DNA transfer, which 36 

allows the avoidance of virus-based vectors, represents an appealing approach for the 37 

treatment of different genetic disorders (Choy et al., 2000; Lin et al., 2006; Shi et al., 2011; 38 

Wu et al., 2014; Choi et al., 2014). Among the different micro/nanoparticles, sepiolite 39 

represents an alluring solution. 40 

Sepiolite is a natural magnesium silicate clay mineral with a micro-fibrous morphology. The 41 

size of sepiolite fibres varies according to geographical origin. For example, the length of 42 

sepiolite fibres from Taxus Basin deposits in Spain ranges from 0.2 to 0.8 m (Castro-43 

Smirnov et al., 2016; Piétrement et al., 2018). Interestingly, sepiolite is able to bind different 44 

kinds of biological molecules, including polysaccharides (Alcântara et al., 2014), lipids 45 

(Wicklein et al., 2010), proteins (Alcântara et al., 2012), and virus particles (Ruiz-Hitzky et al., 46 

2012). These capacities make sepiolite a promising micro/nanovector for the non-viral 47 

transfer of biomolecules (Piétrement et al., 2018). Particularly, combining analyses from 48 

physics, chemistry, and biology, sepiolite has been shown to bind to DNA (Castro-Smirnov et 49 
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al., 2016). These capabilities can be leveraged for biotechnology applications for future 50 

promising biomedical strategies. 51 

This aim of this review was to discuss the potential biotechnological and biomedical uses of 52 

sepiolite, based on the physico-chemical characterisation of sepiolite/DNA interactions. Such 53 

interactions allow consideration of sepiolite as a promising substrate for DNA extraction 54 

from bacteria, for improving sepiolite-mediated bacterial transformation, and for 55 

mammalian cell DNA transfection. A further objective was to envision the putative toxicity of 56 

sepiolite versus its advantages and future perspectives. 57 

SEPIOLITE AND ITS INTERACTION WITH DNA 58 

Sepiolite Structure. 59 

DNA/sepiolite interactions depend mainly on the sepiolite nanostructure and surface 60 

properties. Sepiolite belongs to a family of clays called pseudo-layered hydrated fibrous 61 

magnesium phyllosilicates. Its chemical formula is Si12Mg8O30(OH)4(H2O)4(H2O)8 and it has a 62 

trioctahedral structure: two layers of tetrahedral silica sandwiching a central octahedral 63 

magnesium oxide-hydroxide layer (TOT family). Unlike other phyllosilicates, sepiolite, like 64 

palygorskite, exhibits a three-dimensional crystalline organization with surface channels and 65 

internal tunnels. The crystal structure of sepiolite was studied by Brauner and Preisinger 66 

(Brauner & Preisinger, 1956) and is shown in Fig. 1. The internal channels have dimensions of 67 

close to 0.37 × 1.06-nm2. 68 

Many active sites on the sepiolite surface consist of both silanol groups (SiOH) located at the 69 

periphery of the fibers and magnesium hydroxyl type (Mg-(H2O)2) groups located on either 70 

side of the channels (see Fig. 1). These sites play an essential role in DNA adsorption  (Castro-71 

Smirnov et al., 2016) and allow the grafting of numerous chemical groups (García et al., 72 

2011; Moreira et al., 2017; Undabeytia et al., 2019) and are responsible for the remarkable 73 
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physico-chemical properties of sepiolite. Sepiolite also has a sorption capacity mainly due to 74 

the edge surfaces: the tunnels can accept molecules and retain them in a three-dimensional 75 

space, whereas the surface channels interact with the outside. Both participate in very 76 

different sorption mechanisms.  77 

Like all clays, sepiolite has the property of retaining and exchanging cations with its 78 

environment, which is called the cation exchange capacity (CEC). However, the structure of 79 

sepiolite makes the internal faces of the channels difficult to access, and its three-80 

dimensional structure prevents swelling, unlike many of the two-dimensional phyllosilicate 81 

clays. Sorption is, therefore, limited to the capacity of binding to the faces of the edges of 82 

the sheets that emerge at the periphery of the fibres. For sepiolite, the CEC is quite low (20 83 

to 30 meq/100 g of mineral) compared to other clays, but nevertheless plays an essential 84 

role in the ability of sepiolite to adsorb various biomolecules, such as polysaccharides 85 

(Darder et al., 2006), lipids (Wicklein et al., 2012), proteins (Alcântara et al., 2012), and 86 

viruses (Ruiz-Hitzky et al., 2009), giving rise to a great diversity of bio-nanocomposites. 87 

Finally, as a consequence of its structure, sepiolite has a large interaction surface that can be 88 

split into two contributions; the internal surface is close to 300 m2/g, and the external 89 

surface ranges from 200 to 300 m2/g (mainly depending on the fineness of the fibres). This 90 

large surface of interaction (both internal and external) partly gives an understanding of how 91 

sepiolite can interact strongly with biomolecules. 92 

This ability to adsorb cations has helped to develop the theory that clays could be the cradle 93 

of life on Earth, or, more specifically, of complex biochemical compounds that made life 94 

possible (Yang et al., 2013). The hypothesis is that the clay hydrogel, thanks in part to its 95 

structure organized in microcavities, plays a containment role for basic chemical elements 96 

that could have carried out the complex reactions at the origin of the formation of proteins, 97 
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DNA, and ultimately all of the machinery involved in the functions of a living cell. The clay 98 

hydrogels could also then have confined and protected these chemical processes until the 99 

formation of the membrane surrounding the living cells.  100 

In addition, the adsorption of DNA on mineral surfaces might favor horizontal gene transfer 101 

into living organisms, which may play a significant role in the evolution of living species. All 102 

these studies suggest a specific interaction between clays and nucleic acids.  103 

Sepiolite and DNA 104 

With the aim of using sepiolite as a new DNA vector, a study have thus shown that DNA 105 

could efficiently bind to sepiolite, notably highlighting the role of multivalent cations as 106 

enhancers of the DNA binding process (Castro-Smirnov et al., 2016). However, while 107 

monovalent cations reduce the adsorption of DNA molecules to mica (Pastre et al., 2003), 108 

surprisingly, these cations promote the adsorption to sepiolite fibres. While monovalent 109 

cations are less effective than multivalent cations, they unequivocally contribute to the 110 

adsorption process (see Fig. 2). Interestingly, the presence of polyvalent cations (Mg2+, Ca2+, 111 

spermidine, or spermine) strongly stimulates the adsorption of DNA depending on the 112 

valence of the cation (see Fig. 2). These results suggest an adsorption mechanism mediated 113 

by an electrostatic bridge through hydrogen bonds between the DNA phosphate groups and 114 

the silanol groups located on the outer surface of the sepiolite, which is unlike the mica 115 

surface, where counterion correlations occur (Pastre et al., 2003; Pastré et al., 2006). 116 

Fourier-transform infrared (FTIR) spectroscopy analysis thus showed that, indeed, the 117 

interaction of DNA with sepiolite was mediated by only the external silanol groups, whereas 118 

the hydroxyl groups of the octahedral sheets of sepiolite play no role (Castro-Smirnov et al., 119 

2016). 120 
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If the DNA is adsorbed onto the sepiolite fibres, the question of its desorption also arises in 121 

the context of a project to create a nano-cargo for cell transfection. In cellulo, the 122 

mechanisms that could induce this desorption remain unknown, but the possibility of DNA 123 

desorption in vitro has been tested through the desorption of DNA from the 124 

bionanocomposite by incubating it with EDTA, a well-known metal ion chelating agent. By 125 

using different DNA plasmids, the quality of the DNA recovered after its attachment to 126 

sepiolite was examined and the different DNA isoforms (super-coiled, open circle, or linear) 127 

were unmodified after their binding to sepiolite. This shows that sepiolite does not alter the 128 

quality of DNA and that this method can be considered a new method of DNA purification 129 

(Castro-Smirnov et al., 2016). 130 

All these results confirmed the potential of sepiolite as an efficient cargo for DNA transfer 131 

into cells. Moreover, the capacity of desorption suggests the possibility of using sepiolite for 132 

DNA extraction. 133 

EXTRACTION OF PLASMID DNA FROM BACTERIA 134 

DNA extraction and purification, especially of plasmids, is the basis of molecular biology. 135 

Plasmids are circular DNA molecules that autonomously replicate in bacteria and are 136 

essential tools in molecular biology and biotechnology, from bacteria to mammalian cells. 137 

Indeed, they are used as DNA vectors/backbones in gene transfer technology. Hence, fusion 138 

of an exogenous DNA (for example, a piece of a human DNA) allows replication and 139 

amplification into bacteria. After this replication and amplification process, their extraction is 140 

necessary for subsequent experiments. 141 

Several methods of plasmid extraction are available commercially. These methods are more 142 

or less expensive and time-consuming. The DNA binding capability of sepiolite, associated 143 

with the possibility of DNA release, makes sepiolite a simple and inexpensive alternative 144 
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method (Castro-Smirnov et al., 2020). Indeed, the binding of DNA onto sepiolite requires 145 

cations, notably divalent cations such as Mg2+ or Ca2+ (Castro-Smirnov et al., 2016). The 146 

chelation of cations with EDTA, therefore, enables the release of DNA from sepiolite, which 147 

is not covalently bound (Castro-Smirnov et al., 2020). The general protocol (Castro-Smirnov 148 

et al., 2020) can be summarized as follows: 149 

a- Bacteria bearing plasmids are grown in the appropriate medium with the suitable 150 

selection of antibiotics. 151 

b- At the mid-saturation state (as monitored by spectrophotometry), bacteria are 152 

pelleted by centrifugation and then re-suspended in specific buffers. Bacteria are 153 

lysed, and the DNA is denatured (the two complementary strands are separated) in 154 

alkaline buffers. 155 

c- The addition of neutralizing buffer allows plasmid DNA (which are small DNA 156 

molecules) to renature (return to the bicatenary DNA structure), remaining soluble. 157 

In contrast, bacterial genomic DNA (which are long DNA molecules) cannot properly 158 

renature, and so they precipitate. 159 

d- Centrifugation precipitates genomic DNA pellets and bacterial debris. 160 

e- The supernatant (containing the plasmid DNA) is recovered. Sepiolite plus Mg2+ or 161 

Ca2+ is added, allowing plasmid DNA to bind to sepiolite, allowing the subsequent 162 

washing steps to eliminate contaminants. 163 

f- Sepiolite-bearing DNA is centrifuged and washed with Tris buffer. 164 

g- Then, EDTA is added to the sepiolite/DNA pellets, releasing the plasmid DNA from 165 

the sepiolite. 166 

h- Plasmid DNA and sepiolite are then separated by centrifugation (sepiolite in the 167 

pellet and plasmid DNA in the supernatant). 168 



Clays & Clay Minerals 

 9 

Steps (a) to (d) are common to almost all methods of plasmid extraction. 169 

Importantly, the structures of plasmid DNA molecules are not altered by this procedure, as 170 

shown by electrophoresis and transmission electron microscopy analyses. Moreover, 171 

plasmid DNA can be processed by enzymes such as restriction enzymes (Castro-Smirnov et 172 

al., 2020). These facts attest to the good quality of the plasmid DNA extracted by the 173 

sepiolite-based method. 174 

IMPROVEMENT OF THE YOSHIDA EFFECT ON BACTERIAL TRANSFORMATION 175 

In bacteria and non-animal eukaryotic cells, the non-viral transfer of DNA is called 176 

transformation. In animal cells, it is called transfection. 177 

Efficient transformation requires first rendering the bacteria to be competent for DNA 178 

transfer. However, the protocols to prepare competent bacteria are generally laborious and 179 

time consuming. One alternative is to purchase commercially competent bacteria, but this 180 

method is expensive. One advantage of the Yoshida effect protocol for bacterial 181 

transformation is that it does not require the use of competent bacteria. 182 

In the Yoshida effect protocol, the solution containing the bacteria and the acicular material 183 

forms a colloidal solution. Upon spreading on solid agar medium in Petri dishes using a solid 184 

spreader, the sliding friction stimulates bacterial transformation (Yoshida et al., 2001; 185 

Yoshida, 2007; Yoshida & Sato, 2009). However, the Yoshida effect was first described with 186 

asbestos, thus raising health and toxicity concerns for its use. Sepiolite, which is considered 187 

non-toxic and non-carcinogenic (see below), can circumvent this health worry. Indeed, the 188 

fibrous nature of sepiolite favors bacterial transformation through a Yoshida-like effect 189 

(Yoshida, 2007; Yoshida & Sato, 2009; Tan et al., 2010; Wilharm et al., 2010; Rodríguez-190 

Beltrán et al., 2012; Rodriguez-Beltran et al., 2013). 191 
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The Yoshida effect does not absolutely require the pre-assembly of DNA with the fibers. 192 

However, combining different capacities of sepiolite (i.e. the use of sonicated sepiolite, the 193 

capacity to bind DNA and bacteria), a 100-fold improvement in transformation efficiency has 194 

been observed (Castro-Smirnov et al., 2020). The general protocol can be summarized as 195 

follows. 196 

a- The use of sonicated sepiolite (sSep). Indeed, sepiolite spontaneously aggregates and 197 

can be dissociated by sonication, increasing its spreading efficiency. 198 

b- Pre-assembly of DNA and sSep, using the characteristics  (incubation in the presence of 199 

divalent cations) then centrifugation) described above, before adding the bacteria. 200 

c- Pre-incubation of the sSep/DNA biohybrid material with bacteria (at the mid-phase of 201 

growth) before spreading. Indeed, sepiolite can spontaneously bind to bacteria (Castro-202 

Smirnov et al., 2016, 2020) and it can thus be used for liquid decontamination. In 203 

addition, this procedure favors bacterial transformation (Castro-Smirnov et al., 2020). 204 

However, the Yoshida effect is still necessary because sepiolite-bacteria assembly alone is 205 

not sufficient for efficient internalization. 206 

Adapting these 3 conditions to the Yoshida effect, transformation efficiencies reached close 207 

to 106 transformants per microgram of DNA (Castro-Smirnov et al., 2020). Such 208 

transformation efficiency is lower than that of the commercially available competent 209 

bacteria but is largely sufficient for most molecular biology applications at a lower cost. This 210 

method is also much less time-consuming than the classical protocols for preparing 211 

competent bacteria. 212 

TRANSFECTION OF MAMMALIAN CELLS 213 

Transfer of DNA into mammalian cells is an essential issue in biotechnology and biomedical 214 

applications. Indeed, this constitutes the basis of strategies aimed at designing new model 215 
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organisms for academic, biomedical, or agronomical research and gene therapy. However, 216 

mammalian cells do not efficiently incorporate exogenous DNA. 217 

The Yoshida effect cannot work with mammalian cells because frictional forces kill them. 218 

However, sepiolite can be spontaneously internalized into mammalian cells without 219 

requiring friction, mainly through endocytosis and macropinocytosis pathways that involve 220 

the invagination of the cell membrane around the sepiolite fibers, resulting in its 221 

incorporation in the endosomes (intracellular organelles embedded into membranes) of the 222 

cells (Castro-Smirnov et al., 2017). Interestingly, this process has a low effect on viability 223 

(Castro-Smirnov et al., 2017; Ragu, Dardillac, et al., 2020). Given that sepiolite can bind DNA, 224 

it can serve as a vector for stable DNA transfection into mammalian cells (Castro-Smirnov et 225 

al., 2016). This application relies on the binding of DNA to sSep prior to the addition of the 226 

sSep/DNA bio-hybrid material to the cell media. The uptake of the sSep/DNA bio-hybrid also 227 

acts through the endocytosis pathway, and the intracellular sSep/DNA bio-hybrid is then 228 

embedded in endosomes. The addition of drugs that destabilize endosome membranes, 229 

such as chloroquine, results in a 2-fold increase in the transfection efficiency (Castro-230 

Smirnov et al., 2016). 231 

These methods of cell transfection are somewhat less efficient than the use of commercial 232 

reagents but are much less expensive. Different strategies can be envisioned to increase the 233 

efficiency of intake of the nanoparticles into the cell. These strategies might be based on the 234 

structure of the cell membrane, which is constituted of a bi-layer of lipids. Moreover, 235 

techniques that could favor the delivery from the endosomes, such as favoring endosome 236 

collapse into the cells, are now address; this might favor DNA delivery into cells. Moreover, 237 

the pH of the endosome is very acid, and thus might lead to hydrolysis of the DNA. Methods 238 

controlling this issue are, therefore, under investigation. The injection of sepiolite in vivo 239 

https://en.wikipedia.org/wiki/Organelles
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should be precisely analyzed. Indeed, it could be injected into the blood micro-vessel and/or 240 

accumulated in the liver. Moreover, the production of ROS (reactive oxygen species) and of 241 

inflammatory cytokines might generate unwanted inflammation and/or premature ageing. 242 

Therefore, the behavior and the fate of sepiolite, as well as the consequences of sepiolite 243 

injection (through different procedures such as in blood versus intra-peritoneal), should be 244 

addressed and analyzed in depth and in vivo in a mouse model before attempting this 245 

transfer in humans. 246 

TOXICITY OF SEPIOLITE IN HUMAN CELLS 247 

Because of the multiple potential uses of sepiolite, including its biomedical applications, the 248 

question of its toxicity has become an important issue. Its fibrous nature has led to concerns 249 

of asbestos-like effects. This can be supported by the fact that, like asbestos, sepiolite can 250 

generate a Yoshida effect and, in addition, generate DNA damage in bacteria (González-251 

Tortuero et al., 2018). However, translating these conclusions to mammalian cells would 252 

represent an over-interpretation. Indeed, bacteria are much smaller than mammalian cells 253 

(approximately 1000-fold). Therefore, while the length of a sepiolite fibre is similar to that of 254 

a bacterial cell, the sepiolite fiber is much smaller than that of a human cell (Castro-Smirnov 255 

et al., 2017; Ragu, Dardillac, et al., 2020). In addition, the genome of eukaryotes (including 256 

human cells) is embedded into a nuclear compartment, while in prokaryotes (bacteria) no 257 

nucleus exists, and DNA is contained directly in the cytoplasm. Therefore, a sepiolite fiber 258 

that penetrates bacteria can directly interact with its genomic DNA to alter it. In contrast, in 259 

mammalian cells, the sepiolite fibre that enters the cell will be in the cytoplasm and not in 260 

the nucleus. Hence, the sepiolite is not in contact with the genomic DNA (Castro-Smirnov et 261 

al., 2017; Ragu, Dardillac, et al., 2020). For DNA interaction, the sepiolite fiber should be 262 

transported into the nucleus, which appears to be an  infrequent process (Castro-Smirnov et 263 
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al., 2017; Ragu, Dardillac, et al., 2020). In agreement with this observation, the interaction of 264 

human cells with sepiolite does not trigger the DNA damage response (Ragu, Dardillac, et al., 265 

2020), supporting the fact that sepiolite does not attack genomic DNA in mammalian cells. 266 

Coherently, sepiolite appears to be weakly toxic in cultured mammalian cells (Castro-267 

Smirnov et al., 2017; Ragu, Dardillac, et al., 2020), especially at the doses used for DNA 268 

transfection, which are much lower than other classical transfection methods. 269 

Sepiolite also induces the production of reactive oxygen species (ROS) in cells (Ragu, 270 

Dardillac, et al., 2020). Because ROS can potentially alter any biological component, 271 

including DNA, and lead to mutagenesis, this has raised some concerns about the potential 272 

toxicity of sepiolite. The respiratory chains that synthetize ATP and provide the energy 273 

required for various metabolic pathways generate ROS as by-products. However, cells can 274 

also control the production of ROS that act as secondary messengers in physiological 275 

processes (Ameziane-El-Hassani et al., 2016). In this situation, ROS are beneficial to the 276 

organism. Notably, while antioxidants have been proposed to protect against tumorigenesis, 277 

in contrast, treatment with antioxidants favors the development of lung carcinomas and 278 

metastasis (Breau et al., 2019; Le Gal et al., 2015; Wiel et al., 2019), thus underlying the 279 

potential benefit of ROS production. In addition, ROS can also trigger the induction of 280 

apoptosis, eliminating stressed cells, to the benefit of the whole organism. Hence, an 281 

intracellular increase in ROS can result from the detection of sepiolite by cells and their 282 

response but does not automatically imply that the fate of the cell or organism will be 283 

jeopardized. 284 

Finally, ROS can oxidize lipid cell membranes, leading to lipid peroxidation (LP). However, 285 

sepiolite represses LP from the supernatants of rat brain homogenates, suggesting a putative 286 

antioxidant role for sepiolite (Cervini-Silva et al., 2015). One hypothesis is that cells respond 287 
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to sepiolite interaction through the production of controlled ROS but, in parallel, sepiolite 288 

could also scavenge ROS, thus protecting against potential noxiousness. 289 

One important component of the potential toxicity of fibres (such as asbestos) relies on the 290 

fact that they remain stuck in tissues, generating chronic inflammation, which can become 291 

pathogenic with time. These concerns connect two issues: the size of the fibres and the 292 

exclusion capacity of the cells to the fibres. Indeed, small fibres should more easily be 293 

excluded, thereby avoiding a potential asbestos-like effect. The large majority of the 294 

sepiolite fibres from Vallecas-Vicalvaro deposits in Spain range in length from 200 to 800 nm 295 

(Castro-Smirnov et al., 2016), values that are lower than those reported in the literature 296 

(Bellmann et al., 1997). Such sizes are much smaller than those of mammalian cells; 297 

therefore, the capacity of the cells themselves to exclude such sepiolite fibres thus becomes 298 

prominent for its harmlessness. Interestingly, the stable natural intrinsic fluorescence of the 299 

sepiolite used in the present study( from Vallecas-Vicalvaro deposit) enabled examination of 300 

its fate in cells (Castro-Smirnov et al., 2017; Ragu, Dardillac, et al., 2020). In particular, time-301 

lapse fluorescent video microscopy analysis revealed the spontaneous exclusion of these 302 

sepiolite fibers from mammalian cells, likely through an exocytosis process that involved the 303 

membranes of endosomes (Castro-Smirnov et al., 2017). These data can account for the low 304 

cellular toxicity of sepiolite (Denizeau et al., 1985; Castro-Smirnov et al., 2016; Ragu, 305 

Dardillac, et al., 2020). More generally, and in agreement with the size effect hypothesis, 306 

both epidemiological studies and in vitro and in vivo analyses have led to the conclusion that 307 

sepiolite, especially with fiber lengths less than 5 µm, does not present a health risk 308 

(Maisanaba et al., 2015). Moreover, previous biological and epidemiological analyses have 309 

led the International Agency for Research on Cancer (IARC) to classify sepiolite as non-310 
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hazardous and non-carcinogenic (McConnochie et al., 1993; Santarén & Alvarez, 1994; 311 

Wagner et al., 1987). 312 

PERSPECTIVES FOR IMPROVEMENT OF IMMUNOTHERAPY 313 

Additional bio-medical applications can be derived from the interaction of sepiolite with 314 

cells, such as immunotherapy. This strategy takes advantage of the capacity of the immune 315 

system to eliminate stressed cells. It has been applied to cancer therapy (Esfahani et al., 316 

2020) and was recognized by the Nobel Academy (Nobel prize of Physiology or Medicine to 317 

James Allison and Tasuku Honjo, in 2018). This process is triggered by the production and 318 

excretion of inflammatory cytokines that modify the microenvironment of the cell. This leads 319 

to activation of the innate immune response, which recruits immune system cells (for 320 

instance, natural killer cells, macrophages, and lymphocytes). Tumors are classified as hot or 321 

cold, depending on whether they respond to immunotherapy. Unfortunately, the majority of 322 

tumors are cold. Therefore, strategies that are able to change the status of cold tumors to 323 

hot tumors should represent important progress in immunotherapy (Duan et al., 2020). 324 

Sepiolite is internalized into cells and recognized, leading to the production of inflammatory 325 

cytokines (Ragu, Dardillac, et al., 2020). Hence, this particularity opens a hopeful perspective 326 

to turn cold tumors into hot tumors for immunotherapy. 327 

Additionally, grafting DNA onto sepiolite can be expected to optimize the inflammatory 328 

response. Indeed, cytoplasmic DNA is recognized by cells that induce inflammatory cytokines 329 

(Ragu, Matos-Rodrigues, et al., 2020). Thus, one hope would be that the bio-hybrid 330 

sepiolite/DNA material that delivers DNA into the cytoplasm of the cell might synergize the 331 

efficiency of cytokine production and thus the immune response. 332 

CONCLUSIONS 333 
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DNA is negatively charged, and the first obstacle is the cell membrane, which is made of lipid 334 

bilayers that have charges  incompatible with the spontaneous DNA uptake by cells. Non-335 

viral methods use physical and chemical strategies to bypass the membrane barrier but are 336 

generally toxic to the cell. One limitation of both viral and physicochemical methods is the 337 

fact that they can transfer DNA only. One ideal strategy would be based on transport 338 

systems that can co-convey different kinds of molecules. The development of novel 339 

nanocarriers using biohybrid materials for non-viral gene transfer constitutes thus a 340 

promising approach. In this context, sepiolite is an enticing candidate as a nanocarrier for 341 

the non-viral vectorization of DNA, because it is biocompatible and is spontaneously 342 

internalized and excreted by mammalian cells. Moreover, thanks to its spontaneous 343 

fluorescence, sepiolite can be detected in cells (and maybe hopefully in animals) without 344 

requirement of fluorescent chemical grafting and can be followed in cells. Importantly, 345 

sepiolite is weakly toxic to mammalian cells and is classified as non-hazardous and non-346 

carcinogenic by the IARC (WHO). Strategies based on natural internalization/externalization 347 

capacities of the mammalian cells are preferable to limit cell toxicity. These strategies 348 

implied that DNA should first bind to sepiolite to form a sepiolite/DNA (Sep/DNA) biohybrid. 349 

Indeed, sepiolite can adsorb different molecules very efficiently, thus allowing the 350 

development of many elaborate strategies, and, as a natural clay, sepiolite represents an 351 

answer to societal concerns regarding challenging nanotechnologies. 352 
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 545 

Fig. 1. Sepiolite structure (adapted from (Brauner & Preisinger, 1956)). 546 

 

 

 547 

Fig. 2. (A) The effects of the presence of cations with various valences on DNA adsorption. 548 

Reaction conditions: 10 mM Tris-HCl pH 7.5, salmon sperm DNA and sepiolite concentrations 549 

of 615 ng/μl and 1 mg/mL, respectively (from (Castro-Smirnov et al., 2016)). TEM images of 550 

DNA condensed with (B) spermidine and (C) the interaction with sepiolite fibers. 551 

Transmission electron microscopy (TEM) imaging: DNA molecules (5 nM) were condensed in 552 

10 mM Tris-HCl pH 8, 50 mM NaCl, and 1 mM spermidine. 5 µL of reaction mixture was 553 

deposited onto a 600 mesh copper grid coated with a thin carbon film previously activated 554 

by glow discharge in the presence of 1-aminopentane (Merck, Saint Quentin Fallavier, 555 

France) (Dupaigne et al., 2018). After 1 min, the grids were washed with aqueous 2 wt.% 556 

uranyl acetate (Merck, Saint Quentin Fallavier, France) and then dried with ashless filter 557 

paper (VWR, Rosny sous bois, France). TEM observations were carried out on a Zeiss 912AB 558 

transmission electron microscope in bright field mode. Electron micrographs were obtained 559 

using a ProScan 1024 HSC digital camera and iTEM software (Olympus, Soft Imaging 560 

Solutions, Munster, Germany). 561 
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