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FUNCTOR HOMOLOGY OVER AN ADDITIVE CATEGORY

AURÉLIEN DJAMENT AND ANTOINE TOUZÉ

Abstract. We prove a series of results which open the way to computations
of functor homology over arbitary additive categories. In particular, we gener-
alize the strong comparison theorem of Franjou Friedlander Scorichenko and
Suslin to an arbitrary Fp-linear additive category. This result allows us to
compare the cohomology of the classical algebraic groups and the cohomology
of their discrete groups of k-points when k is an infinite perfect field of positive
characteristic, in the spirit of the celebrated theorem of Cline Parshall Scott
and van der Kallen over finite fields.

Résumé. Nous établissons une série de résultats rendant accessibles de nombreux
calculs d’homologie des foncteurs sur une catégorie additive arbitraire. En particulier,
nous généralisons le théorème de comparaison forte de Franjou, Friedlander, Scorichenko
et Suslin à une catégorie source additive Fp-linéaire quelconque. Cela nous permet de
comparer la cohomologie des groupes algébriques classiques à celle des groupes discrets
de leurs points sur un corps parfait infini de caractéristique non nulle, dans l’esprit d’un
célèbre théorème de Cline, Parshall, Scott et van der Kallen pour les corps finis.

1. Introduction

Given a small category C and a commutative ring k, we denote by k[C]-Mod
(resp. Mod-k[C]) the category of covariant (resp. contravariant) functors from C
to k-modules, and natural transformations between such functors. As the notation
suggests, k[C]-Mod behaves very much like a category of modules over a ring R.
In particular, one can compute Ext in these functor categories, and there is also a
tensor product over k[C]

−⊗k[C] − : Mod-k[C]× k[C]-Mod→ k-Mod

which can be derived to define Tor-modules. Such Ext and Tor-modules are some-
times referred to as ‘functor (co)homology’. Functor homology is a classical subject
of study, going back to Mitchell’s influential article [31] in the early seventies. Close
relations with K-theory were discovered later, namely stable K-theory [42, 17],
topological Hochschild homology [36] and stable homology of groups with twisted
coefficients [14, 8, 24] can all be expressed in terms of Ext or Tor groups over k[C]
with C = PR, the category of finitely generated projective R-modules.

The first success of the functor homology approach to these K-theoretic invari-
ants was the quick computation of THH of finite fields in [15]. This showed the
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computational power of functor homology over finite fields, and prompted the de-
velopment of computational techniques. The strong comparison theorem [14, Thm
3.10] is one of the most important results. It bridges, for a finite field k, Ext-
computations in k[Pk]-Mod with Ext-computations in the much nicer category
Pk of strict polynomial functors in the sense of Friedlander and Suslin [18]. The
latter is an avatar of modules over Schur algebras and it is much more amenable
to computation. By using the strong comparison theorem jointly with the theorem
describing the homological effect of Frobenius twists [5, 46, 52] one indeed gets an
effective way of performing many homological computations in k[Pk]-Mod, when
k is a finite field.

However, except a few insights [16, 33] for R = Z or Z/nZ, explicit homological
computations in k[PR]-Mod have been limited to finite fieldsR over the past twenty
years, the case of more general rings staying out of reach. Quoting Suslin from [14,
Appendix p.717] the Ext-modules in k[PR]-Mod ‘do not seem to be computable
unless we are dealing with finite fields’.

The purpose of the present article is to provide a series of fundamental results
which allow to compute functor homology (much) beyond the case of finite fields –
in fact, many of our results hold when PR is replaced by a small additive Fp-linear
category A or even an arbitrary additive category A. In order to understand the
results, the reader should keep in mind that functor (co)homology is analogous
to group (co)homology, where the group is replaced by the additive category A.
(As already mentioned, this is actually more than a mere analogy since functor
(co)homology is group (co)homology in some cases [14, 8, 24].) Our results can
then be classified into three types.

Tensor products: theorem 4.4 allows to compute functor homology involv-
ing tensor products F ⊗ F ′ from the functor homology involving F and
F ′ separately when F and F ′ have different structures (that is are respec-
tively polynomial and antipolynomial). It is a homological companion of a
Steinberg tensor product decomposition proved in [11].

Restriction: the results of section 5 as well as theorem 6.9 tell us when
restriction along an additive functor A → A′ induces isomorphism in ho-
mology. We call these results ‘excision results’ because of the analogy with
Suslin’s excision results in K-theory [45, 43], see remark 5.9. They can be
typically used to reduce the computation to an additive category with finite
Hom-sets, or to discard the ‘cross characteristic part’ of A which is not seen
by k.

Algebraic versus discrete: the results of sections 8 and 10 are functor ho-
mology analogues of the natural comparison between the algebraic group
cohomology (a.k.a. rational cohomology in [22]) of an algebraic group and
the cohomology of the underlying discrete group of k-points. They can be
typically used to compute functor homology over A from classical algebraic
data, such as generic homology of Schur algebras and Hochschild homology,
which are more amenable to computations.

Each of these results is interesting in itself, and can be used independently of the
others to obtain explicit functor homology computations. For example, we use exci-
sion to prove a homological vanishing result in corollary 5.11. As another example,
the comparison between algebraic and discrete cohomology given by corollary 10.11
allows us to quickly generalize in corollary 11.1 the cohomological computations of
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[14] to an infinite perfect field, which was (as noted by Suslin) previously com-
pletely out of reach. However, these independent results are also intended to be
used jointly. Indeed, we proved in [11] that reasonable functors over an additive
category are all constructed (via tensor products and restrictions along additive
functors) from simpler standard pieces. The results of the present paper explain
how to compute the homology of a given functor from the homology of these sim-
pler standard pieces. This perspective on our results is explained in details the last
part of this introduction, entitled ‘a short guide to functor homology’.

Recall that an important motivation for studying functor homology over additive
categories such as PR is the connection with K-theory and group homology. We
give one notable application of our results to the cohomology of groups in section 11
(leaving further applications to future work). Namely, by exploiting the connections
between functor homology and stable group homology, we compare the rational
cohomology [22] and the discrete group cohomology [3] of the classical groups over
infinite perfect fields. To be more specific, we show in theorem 11.13 that if V and
W are two finite-dimensional polynomial representations of degree d of GLn(k),
the natural morphism is an isomorphism in low degrees (an explicit degree range
is given in our theorem, the range increases with n):

Ext∗GLn(k)(V
[r],W [r])→ Ext∗GLn(k)(V,W ) .

Here Ext denotes the extensions computed in the category of rational represen-
tations, while the other Ext is computed in the category of all representations of
GLn(k). The symbol [r] refers to the r-th Frobenius twist of a rational represen-
tation (one knows that the left hand side does not depend on r in low degrees
provided r is big enough, and it is called generic extensions of GLn(k), see remark
11.14). This gives an analogue of the celebrated result of Cline, Parshall, Scott and
van der Kallen [6] in the context of infinite perfect fields k of positive characteristic.
Similar results for symplectic and orthogonal groups are given in theorem 11.15.

Note that contrarily to the finite field case [6], our comparison result requires a
stabilization on the rank n of the group. Our bounds on n are maybe not optimal,
but some stabilization is most probably needed, already when V = W = k are
trivial representations. Indeed, in this case, the left hand-side of the comparison
map vanishes in positive degrees for all r by Kempf theorem [22, II cor 4.11].
Thus an isomorphism for all n would be equivalent to the vanishing of the mod p
cohomology of the discrete group GLn(k) for all n and an arbitrary perfect field k.
Such a vanishing follows from classical p-divisibility results in K-theory if n is large
(see lemma 11.5) but it is not known (nor conjectured) for small values n.

Now let us say a brief word about the proofs. In order to establish our results on
functor homology, we have to overcome two fundamental problems which cannot be
addressed with the standard functor homology techniques found e.g. in [31, 14, 35].
Firstly, considerable problems with (co)limits arise when one tries to replace the
source category Pk over a finite field k by a small additive category A which does
not enjoy similar nice finiteness property. Getting around these problems required
a number of technical detours, the most visible ones being the necessity of consider-
ing both Tor and Ext (even if we are primarily interested in computing Ext, see e.g.
remark 10.14), and the modification of A by the means of the ℵ-additivization pro-
cedure of section 2.6. The second fundamental problem concerns the comparison of
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the homological properties of k[A]-Mod together with that of its full subcategory
kA-Mod of additive functors. Our solution to this problem involves classical homo-
topy theory. Indeed, in several places we encode the properties of functor categories
into the homology of certain simplicial objects while we encode the properties of
the full subcategories of additive functors into the homotopy groups of the same
simplicial objects. Variants of the Hurewicz theorem given in section 3 allow us to
compare these quantities.

The remainder of this introduction is written as a self-contained short guide to
functor homology, which describes in details the main results of the present article,
and places them in the wider perspective of the structural results established in
[11] and recalled below.

A short guide to functor homology

We fix a small additive category A (that is a small Z-linear category A having
biproducts), and k denotes a commutative ring. Unadorned tensor products are
taken over k. As before, k[A]-Mod stands for the category of (non necessarily
additive) functors A → k-Mod, and natural transformations between them.

Polynomial versus antipolynomial functors. Functors F : A → k-Mod can be
rather wild objects. However, their study is substantially simplified by the rigidity
results established in [11]. For example, if k is a big field (e.g. an algebraically
closed field) and if F is a simple functor with finite dimensional values there is a
unique tensor decomposition [11, Cor 4.13]:

F (a) ' F anti(a)⊗ F pol(a) .

The functor F pol is polynomial in the sense of Eilenberg and Mac Lane [12], hence
quite closely related to additive functors (typical polynomial functors are tensor
powers of additive functors). The functor F anti is antipolynomial, which means
that it factors through an additive functor π : A → B whose codomain is a k-
trivial category, that is, an additive category B with finite Hom-sets and such that
B(b, b′)⊗Z k = 0 for all pairs of objects (b, b′). By their definition, antipolynomial
functors are quite far from polynomial functors, actually the only functors which
are both polynomial and antipolynomial are the constant functors. If F satisfies
finiteness hypotheses milder than simplicity, and the field k may be not big enough,
a slightly weaker result subsists. Namely, there is [11, Cor 4.11] a unique bifunctor
B : A×A → k-Mod, which is antipolynomial with respect to its left variable and
polynomial with respect to its right variable such that

F (a) ' B(a, a) .

We say in this article that such a bifunctor B is of AP-type. If k is only a commu-
tative ring, results similar to the ones of [11] have not been investigated, but we
nonetheless obtain a very large variety of functors F : A → k-Mod by restricting
bifunctors of AP-type along the diagonal functor ∆ : A → A×A.

Our first result deals with functor homology involving bifunctors of AP-type. We
denote by ∆∗B the functor obtained by restricting B along the diagonal: ∆∗B(a) =
B(a, a).
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Theorem 1.1. Let B, B′ and C be three bifunctors of AP-type, with B contravari-
ant in both variables. Restriction along the diagonal ∆ yields isomorphisms:

Ext∗k[A×A](B
′, C) ' Ext∗k[A](∆

∗B′,∆∗C) ,

Tork[A]
∗ (∆∗B,∆∗C) ' Tork[A×A]

∗ (B,C) .

Theorem 1.1 should be interpreted as the fact that polynomial functors and an-
tipolynomial functors cannot interact homologically, a fact which greatly simplifies
the computations. For example, assume to simplify that k a field, and that

B(a, b) = F anti(a)⊗ F pol(b) , C(a, b) = Ganti(a)⊗Gpol(b) .

Then in view of the classical Künneth formula (recalled in proposition 2.21), theo-
rem 1.1 actually expresses Tork[A]

∗ (∆∗B,∆∗C) as the tensor product of two terms
of a different nature, namely

Tork[A]
∗ (F anti, Ganti) and Tork[A]

∗ (F pol, Gpol) ,

which we respectively call antipolynomial homology and polynomial homology. In
the remainder of the introduction, we examine how to compute these two terms.

Remark 1.2. In the remainder of the introduction, we privilege the computation
of Tor in our exposition. Indeed, Ext computations follow the same pattern, but
often require additional finiteness assumptions, which lengthen the exposition. As
an example, the Künneth isomorphism for Ext holds only under suitable finiteness
assumptions, see proposition 2.22 and remark 2.23.

Antipolynomial homology. For every pair of antipolynomial functors (F anti, Ganti),
we can always find such a full, additive, and essentially surjective π : A → B with
k-trivial codomain such that F anti and Ganti both factor through π. The next result
allows to transport the computation of antipolynomial homology in the category
k[B]-Mod. Since B is k-cotrivial – in particular it has finite Hom-sets – the latter
category has a much nicer structure than k[A]-Mod, see e.g. [11, Prop 11.7], and
it is potentially more accessible via combinatorial methods.

Theorem 1.3. Let k be a commutative ring and let π : A → B be a full, additive,
and essentially surjective functor, with k-trivial codomain B. Let F , F ′ and G
be three functors from B to k-Mod, with F contravariant. Let π∗F denote the
composition F ◦ π. Restriction along π yields isomorphisms:

Ext∗k[B](F
′, G) ' Ext∗k[A](π

∗F ′, π∗G) ,

Tork[A]
∗ (π∗F, π∗G) ' Tork[B]

∗ (F,G) .

We actually obtain theorem 1.3 as a special case of the excision theorem 5.1,
which is analogous to Suslin’s excision theorems in algebraic K-theory [45, 43], see
remark 5.9.

Functor homology over a k-trivial source category B has not received much at-
tention until now, appart from Kuhn’s structure results [24]. Building on the latter,
we prove a new cancellation result in corollary 5.11. Namely, if k is a field of char-
acteristic zero and if F anti and Ganti both factor through PR for a finite semi-simple
ring R, then Tork[A]

∗ (F anti, Ganti) and its Ext analogue are zero in positive degrees.
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Polynomial homology: preliminary reductions. In our computations of polynomial
homology, we assume that k is a field. For all field extensions k → K, the Künneth
formula yields an isomorphism

K ⊗k Tork[A]
∗ (F pol, Gpol) ' TorK[A]

∗ (K ⊗k F pol,K ⊗k Gpol) .

So we can reduce ourselves to the case where k is an infinite perfect field, and we
will make this assumption in the remainder of the introduction.

Many polynomial functors of interest are constructed from the so-called strict
polynomial functors introduced by MacDonald in characteristic zero [28, I, App.
A] and by Friedlander and Suslin over arbitrary fields [18]. If k is an infinite field,
a functor F : Pk → k-Mod with finite-dimensional values is d-homogeneous strict
polynomial if for all pairs (v, w) of finite-dimensional vector spaces, the coordinate
functions of the map

Mp,q(k) ' Homk(v, w)
f 7→F (f)−−−−−→ Homk(F (v), F (w)) 'Mr,s(k)

are d-homogeneous polynomials of the pq entries of the matrix representing f .
Frequent examples of d-homogeneous strict polynomial functors are the symmetric
d-th powers Sd, the exterior d-th powers Λd or the Schur functors associated with
a partition of d as in the work of Akin, Buchsbaum and Weymann [2]. Strict
polynomial functors also arise in tight connection with classical Schur algebras as
in [20, 30]. Indeed the full subcategory Pd,k of k[Pk]-Mod on the d-homogeneous
strict polynomial functors is equivalent [18, Thm 3.2] to modules over some classical
Schur algebras.

In general, being strict polynomial is a more restrictive condition than being
polynomial in the sense of Eilenberg and Mac Lane. That’s why, unlike MacDonald,
we insist on keeping the word ‘strict’. Strict polynomial functors are building blocks
for more general polynomial functors from A to k-Mod, by considering tensor
products of the form

F pol = π∗1F1 ⊗ · · · ⊗ π∗mFm Gpol = ρ∗1G1 ⊗ · · · ⊗ ρ∗nGn(1)

where each π∗i Fi (resp. ρ∗iGi) is the composition of a homogeneous strict polynomial
functor Fi (resp. Gi) and an additive functor πi (resp. ρi) fromA to k-vector spaces.
It is known [11, Thm 5.5] that when the field is big enough, every simple functor
with finite-dimensional values has this form.

Remark 1.4. Since the domain of a strict polynomial functor is the category of
finite-dimensional vector spaces, the composition π∗F = F ◦ π makes sense only
when π has finite-dimensional values. However, we go further and we actually allow
additive functors πi and ρi with infinite-dimensional values in the tensor products
(1). If so, we interpret an expression like π∗F as the composition of F ◦ π where
F denotes the left Kan extension of F to all vector spaces, see definition 6.1. This
extension to additive functors with infinite-dimensional values allows to incorporate
additional interesting examples, and it is also a crucial point for several proofs where
additive functors with infinite-dimensional values naturally appear.

In the sequel, we concentrate on computing functor homology involving functors
F pol and Gpol of the form (1). Then, some standard techniques recalled in section
6 allow to reduce the computation of Tork[A]

∗ (F pol, Gpol) to the case of only one
factor in the tensor products.



FUNCTOR HOMOLOGY OVER AN ADDITIVE CATEGORY 7

In fact, there are two reduction procedures, depending on the characteristic of the
field k. In the advantageous situation where the characteristic of k is large, that is,
each Fi is di-homogeneous and each Gj is ej-homogeneous for some integers such
that di! and ej ! are nonzero in k (thus, characteristic zero is always large!), the
computation of Tork[A]

∗ (F pol, Gpol) reduces to the computation of

Tork[A]
∗ (πi, ρj)(2)

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. If the characteristic of k is not large (in particular
k is a field of positive characteristic), the situation is more complicated and we
cannot reduce ourselves to computing functor homology between additive functors.
Instead, we can reduce ourselves to computing terms of the form

Tork[A]
∗ (π∗i F, ρ

∗
jG)(3)

for some strict polynomial functors F and G computed from F pol and Gpol.
The computation of the terms (2) and (3) is examined in the next two paragraphs.

In these paragraphs, we assume further that A is Fp-linear. This is a simplifying
hypothesis, which is satisfied in many situations of interest. The case of a general
additive source category A, which is not linear over a field, remains somewhat
mysterious, but in several such situations, one may also replace the category A
by an Fp-linear one, for example by using the polynomial analogue of the excision
theorem that we prove in theorem 6.9.

Polynomial homology: the case of additive functors. Let us examine the computa-
tion of Ext and Tor between additive functors. There are two categories in which
we can perform such homological computations. Firstly, we can consider Ext and
Tor in the category k[A]-Mod of all functors with domain A and codomain k-
vector spaces – this is what we are really interested in, and which appears in (2).
Secondly, we can consider Ext and Tor in the full abelian subcategory kA-Mod of
all additive functors. The latter category has a simpler structure, so one expects
easier homological computations there1.

In the advantageous case of a field k of characteristic zero, it is known [9, Thm
1.2] that we have graded isomorphisms:

Ext∗k[A](π
′, ρ) ' Ext∗

kA(π′, ρ) , Tork[A]
∗ (π, ρ) ' Tor kA∗ (π, ρ) .

These providential isomorphisms allow us to perform homological computations in
the much nicer category kA-Mod. Unfortunately, if k has positive characteristic
it is well-known [9] that there are no such graded isomorphisms. Nonetheless, we
prove the following theorem, which still allows to reduce homological computations
to the category kA-Mod.

Theorem 1.5. Let k be an infinite perfect field of positive characteristic p, and let
π, π′, ρ be three additive functors from A to k-Mod, with π contravariant. If A is
Fp-linear, there are graded isomorphisms, natural with respect to π, π′ and ρ:

Ext∗
kA(π′, ρ)⊗ E∗∞ ' Ext∗k[A](π

′, ρ) ,

Tor kA∗ (π, ρ)⊗ T∞∗ ' Tork[A]
∗ (π, ρ) ,

1In particular, when A is the category PR of finitely generated projective right R-modules, of
most importance for applications to K-theory and group homology of GLn(R) or other classical
groups, kA-Mod is nothing but the category of R⊗Z k-modules under disguise by the Eilenberg-
Watts theorem, see e.g. [11, Prop 2.1].
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where E∗∞ and T∞∗ denote the graded vector spaces equal to k if ∗ is even and
non-negative, and to zero in the other degrees.

Remark 1.6. The graded vector spaces E∗∞ and T∞∗ have an interpretation in terms
of the generic homology that we recall below, namely E∗∞ = Ext∗gen(I, I) and T∞∗ =
Torgen
∗ (I∨, I), where I and I∨ are defined by I(v) = v and I∨(v) = Homk(v, k) for

all finite-dimensional vector spaces v.

If A is the category of finitely generated projective R-modules, then Tork[A]
∗ (π, ρ)

is related [36] to the topological Hochschild homology of R, while Tor kA∗ (π, ρ) is
related to the Hochschild homology of R. Thus, although technically very different,
our theorem 1.5 is similar in spirit to the main theorems of [25, 26] (see also [34,
Cor 4.2]) which compare Hochschild homology and topological Hochschild homology
over smooth Fp-algebras.

Polynomial homology: the generalized comparison theorem. The previous para-
graph substantially simplifies the task of computing polynomial functor homology
of the form (2). Now we are going to examine the much harder situation of functor
homology of the form (3), that is:

Tork[A]
∗ (π∗F, ρ∗G)

where F and G are d-homogeneous strict polynomial functors, π and ρ are additive
functors from A to the category of k-vector spaces, respectively contravariant and
covariant, and k is an infinite perfect field of positive characteristic p.

Contrarily to what happens with additive functors in theorem 1.5, it seems very
difficult to produce a closed formula computing these graded vector spaces with-
out any further simplifying assumption. We shall provide such a formula under a
suitable vanishing of Tor kA∗ (π, ρ) – this is a restrictive assumption, but still covers
a large number of situations of interest.

Our formula expresses the result in terms of generic homology of strict polynomial
functors. This generic homology is a classical object: it already appears (in the Ext
form) in [14] and it plays a central role in making the bridge between the cohomology
of reductive algebraic groups and that of the corresponding finite groups of Lie type
[6] — see also [52] for a survey of these topics including a formula allowing explicit
computations. We denote by F (r) the r-fold precomposition of a d-homogeneous
strict polynomial functor F by the Frobenius twist functor I(1)

F (r) = F ◦ I(1) ◦ · · · ◦ I(1)︸ ︷︷ ︸
r times

.

This notation applies to strict polynomial functors which may be covariant or con-
travariant, and yields dpr-homogeneous strict polynomial functors with the same
variance. If 2pr > i, the vector space Tori(F

(r), G(r)) computed within the category
of dpr-homogeneous strict polynomial functors does not depend on r, it is called
the generic Tor between F and G, and denoted by Torgen

i (F,G).
The next result is a generalization of the strong comparison theorem [14, Thm

3.10] to the small additive categories which are F-linear over a big enough field
F. It is a special case of the generalized comparison theorem 10.1 that we state
and prove in section 10. In the latter, there is no assumption on the size of F, in
particular we can use it when F = Fp, but this assumption is removed at the price
of a more complicated formula. We also refer the reader to section 10.4 for similar
results for Ext, which hold under suitable finiteness hypotheses.



FUNCTOR HOMOLOGY OVER AN ADDITIVE CATEGORY 9

Theorem 1.7 (The generalized comparison theorem - F-linear case). Let k be
an infinite perfect field containing a (finite or infinite) subfield F and let A be an
additive F-linear category. Let π and ρ be two F-linear functors from A to k-
modules, respectively contravariant and covariant, and let F and G be two objects
of Pd,k with d less or equal to the cardinal of F. Assume furthermore that

Tor kAi (π, ρ) = 0 for 0 < i < e.

Then for 0 ≤ i < e there are k-linear isomorphisms

Tor
k[A]
i (π∗F, ρ∗G) ' Torgen

i (D∗π,ρF,G)

where Dπ,ρ refers to the contravariant functor Dπ,ρ(v) = Homk(v, π ⊗k[A] ρ).

We point out that generic Tor can be expressed in the language of Schur algebras.
Indeed, F (kn) and G(kn) are respectively right and left modules over the Schur
algebra S(n, d) in a natural way, and if 2pr > i and n ≥ dpr we have an isomorphism

Torgen
i (F,G) ' Tor

S(n,dpr)
i (F (kn)[r], G(kn)[r])

where the exponent ‘[r]’ indicates restriction along the morphism of Schur algebras
S(n, dpr)→ S(n, d) provided by the Frobenius morphism. Thus theorem 1.7 com-
pares a rather mysterious functor homology Tork[A]

∗ (π∗F, ρ∗G) with a familiar Tor
over a Schur algebra. This drastically simplifies explicit computations, and this
also implies some surprising qualitative properties of polynomial functor homology
(such as finiteness of dimensions in each homological degree), since Schur algebras
have good homological finiteness properties.

Theorem 1.7 is already nontrivial and interesting for A = Pk. In this case, the
Tor-vanishing condition follows from the Hochschild-Kostant-Rosenberg theorem,
and we obtain the following result in corollaries 10.10 and 10.11. It is the infinite
field version of the main comparison theorem of [14].

Corollary 1.8. Let k be an infinite perfect field, and let F and G be two objects
of Pd,k. Let also F∨ denote the contravariant strict polynomial functor F∨(v) =
F (Homk(v, k)). There are graded isomorphisms

Ext∗gen(F,G) ' Ext∗k[Pk](F,G) , Torgen
∗ (F∨, G) ' Tork[Pk]

∗ (F∨, G) .

Some general notations and terminology. For the convenience of the reader,
we gather here some notations and terminology which are used throughout the
article.
• The letter k denotes a commutative ring, unadorned tensor products are taken

over k, k[X] denotes the free k-module on a set X.
• Categories have a class of objects, and we require that the morphisms between

any two objects form a set. We say that a category C is small if the isomorphism
classes of objects of C form a set (those categories are often called ‘essentially
small’ in the literature, we prefer to call them ‘small’ to avoid heavy terminology).
We say that a category C is additive if it is a Z-category with a zero object and
finite biproducts [27, VIII.2].
• The letter A denotes a small additive category, k[A] is the free k-category on A,

and kA = k ⊗Z A is the k-category obtained by base change. If k = Z/nZ, the
latter is also denoted by A/n.
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• The letter R denotes a ring, and PR denotes the category of finitely generated
projective left Rop-modules and Rop-linear morphisms (or equivalently finitely
generated right modules over R). When R is a commutative ring, we identify PR
with a full subcategory of R-Mod in the obvious way.

• Given a functor φ : C → D, we use the same notation to denote the induced
functor on the opposite categories φ : Cop → Dop.

• Finally, we use the standard terminology about connectedness: a morphism of
cohomologically graded k-modules f : H∗ → K∗ is e-connected if it is bijective
in degrees ∗ < e, and injective in degree ∗ = e. A morphism of cohomologically
graded k-modules f : L∗ → M∗ is e-connected if it is bijective in degrees ∗ < e,
and surjective in degree ∗ = e.

2. Prerequisites of functor homology

2.1. Functor categories. We recall some standard notations and terminology
from [31]. In particular, the term k-category refers to a k-linear category, that
is, a category whose homomorphism sets are equipped with a k-module structure
and such that the composition is k-bilinear. The k-functors are the k-linear func-
tors, that is the functors whose action on morphisms is given by a k-linear map.

Given a small k-category K, we denote by K-Mod the category whose objects are
the k-functors F : K → k-Mod, whose morphisms are the natural transformations
between such functors, the composition being the usual composition of natural
transformations. We let Mod-K = Kop-Mod. Throughout the article, we will use
the following notation, which makes a typographical distinction between the level
of the source category K and the level of the functor category K-Mod.

Notation 2.1. Objects of K are denoted by lowercase letters x, y, . . . and homo-
morphism groups in K are denoted by K(x, y). Objects of K-Mod are denoted by
uppercase letters F,G, . . . and k-modules of homomorphism in K-Mod are denoted
by HomK(F,G).

Remark 2.2 (smallness). Smallness of K ensures that the morphisms between two
objects K-Mod form a set.

The category K-Mod has the structure of a k-category, and it is a Grothendieck
category (i.e. an AB5 abelian category with a set of generators) with enough
projectives and injectives. To be more specific, limits and colimits in K-Mod are
computed objectwise, in particular a sequence 0 → F ′ → F → F ′′ → 0 is exact if
and only if the sequence of k-modules 0→ F ′(x)→ F (x)→ F ′′(x)→ 0 is exact for
all objects x of K. The representable functors hxK = K(x,−) yield a set of projective
generators, which are called the standard projectives. Finally, if M is an injective
cogenerator of k-Mod, the dual functors Homk(hxKop ,M), which send an object
y to Homk(hxKop(y),M) = Homk(K(y, x),M) yield a set of injective cogenerators,
called the standard injectives.

We are chiefly interested in the following classical examples of functor categories.
The third one, namely, the category of homogeneous strict polynomial functors, will
not be used before section 6.

Example 2.3. Ordinary functors. Let C be a small category, and let k[C] be
the free k-category on C, that is, the category with the same objects as C, and such
that k[C](a, b) = k[C(a, b)]. The category k[C]-Mod identifies with the category
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F(C; k) of all functors F : C → k-Mod and natural transformations between such
functors. The latter category is called the category of ordinary functors, the term
‘ordinary’ refering to the fact that there is no k-linearity condition on the functors
of this category.

Example 2.4. Additive functors. Let A be a small additive category, and let
kA be the k-category obtained by base change. Thus kA has the same objects as
A, and kA(a, b) = k⊗ZA(a, b). The category kA-Mod identifies with the category
Add(A; k) of all additive functors F : A → k-Mod and natural transformations.

Example 2.5. Homogeneous strict polynomial functors. Let ΓdPk denote
the Schur category. This k-category is defined as follows. First, we denote by
Γd(v) = (v⊗d)Sd the d-th divided power of a finitely generated projective k-module
v. Then ΓdPk has the same objects as Pk and

ΓdPk(v, w) = Γd(Homk(v, w)) = HomkSd(v⊗d, w⊗d)

(i.e. the module of k-linear morphisms from v⊗d to w⊗d which are equivariant for
the action of the symmetric group Sd which permutes the factors of the tensor
product). The composition is the usual composition of equivariant morphisms.
The category ΓdPk-Mod is an avatar of representations of Schur algebras. Indeed,
let S(n, d) = EndΓdPk(kn) denote the classical Schur algebra as in [20]. Then
evaluation on kn yields an equivalence of categories ΓdPk-Mod ' S(n, d)-Mod.

In [18], Friedlander and Suslin introduce the category of d-homogeneous strict
polynomial functors Pd,k over a field k. As observed in [35], this category Pd,k iden-
tifies with the full subcategory category ΓdPk-mod of ΓdPk-Mod on the functors
F such that F (v) is finite-dimensional for all v.

In the case of a field, the equivalence of categories between ΓdPk-Mod and
modules over Schur algebras restricts to an equivalence of categories ΓdPk-mod '
S(n, d)-mod. Thus, just as in the case of modules over Schur algebras, the Ext
computed in the category ΓdPk-mod are the same as the Ext computed in the
bigger category ΓdPk-Mod. Hence working with the former or the latter is rather a
matter of taste. In this article, we choose to work in the bigger category ΓdPk-Mod,
and we call its objects the d-homogeneous strict polynomial functors over k.

2.2. Tensor products and Tor over a k-category. Given a small k-category K
there is a tensor product over K:

−⊗K − : Mod-K ×K-Mod→ k-Mod

which is defined by the coend formula [27, IX.6] (recall that unadorned tensor
products are taken over k):

F ⊗K G =

∫ x

F (x)⊗G(x) .

Thus, F ⊗K G is the quotient module of
⊕

x∈Ob(K) F (x) ⊗ G(x) by the relations
F (f)(t)⊗ s = t⊗G(f)(s) for all t⊗ s ∈ F (y)⊗G(x) and all f ∈ K(x, y).

Example 2.6. If R is a k-algebra, and K = ∗R is the category with one object ∗
with endomorphism ring equal to R, then K-Mod = R-Mod and ⊗K is nothing
but the usual tensor product of R-modules.

Usual properties of tensor products over a ring generalize to tensor products
over a category. In particular, the tensor product over K is characterized by the



12 A. DJAMENT AND A. TOUZÉ

fact that it is k-linear and preserves colimits with respect to each of its variables,
together with the ‘Yoneda isomorphisms’, natural with respect to F , G, x, y:

F ⊗K hxK ' F (x) and hyKop ⊗K G ' G(y) .(4)

To be more specific, the first Yoneda isomorphism sends the class Js ⊗ fK of an
element s⊗f ∈ F (y)⊗K(x, y) to F (f)(s) ∈ F (x). The second Yoneda isomorphism
is given by a similar formula.

Alternatively, the tensor product over K is characterized by the isomorphism
natural with respect to the functors F and G and the k-module M :

α : Homk(F ⊗K G,M) ' HomK(G,Homk(F,M)) ,(5)

where the functor Homk(F,M) is defined by Homk(F,M)(x) = Homk(F (x),M).
To be more explicit, the natural isomorphism α is defined by sending a morphism
f : F ⊗K G → M to the natural transformation α(f) such that the k-linear map
α(f)x : G(x) → Homk(F (x),M) sends an element s to s′ 7→ f(Js⊗ s′K) where the
brackets refer to the class of s⊗ s′ ∈ F (x)⊗G(x) in the quotient F ⊗K G.

The tensor product over K is a left balanced bifunctor, hence can be left derived
in by taking a projective resolution of F or a projective resolution of G. We denote
by TorK∗ (F,G) these derived functors. By deriving the adjunction isomorphism (5)
we obtain the following result.

Lemma 2.7. For all k-functors F , G and for all injective k-modules M , the ad-
junction morphism α derives to a graded isomorphism:

Homk(TorK∗ (F,G),M)
α−→
'

Ext∗K(G,Homk(F,M)) .

2.3. Restriction functors. If φ : K → L is a k-functor, there is a k-functor called
restriction along φ and denoted by φ∗:

φ∗ : L-Mod → K-Mod
F 7→ φ∗F := F ◦ φ .

In this article, we mainly deal with the following examples of restriction functors.

Example 2.8. Ordinary functors. If φ : C → D is a functor between two small
categories, we still denote by φ : k[C] → k[D] the induced k-functor. If we iden-
tify k[C]-Mod with the category of ordinary functors F(C; k), then the restriction
functor φ∗ : k[D]-Mod→ k[C]-Mod identifies with the functor F(D; k)→ F(C; k)
given by precomposition by φ.

Example 2.9. Additive functors. If φ : A → B is an additive functor between
two small additive categories, we also denote by φ : kA → kB the induced k-
functor. If we identify kA-Mod with the category of additive functors Add(A; k),
then the restriction functor φ∗ : kB-Mod → kA-Mod identifies with the functor
Add(B; k)→ Add(A; k) given by precomposition by φ.

Example 2.10. Ordinary versus additive functors. Let π : k[A]→ kA be the
k-functor which is the identity on objects and which is defined on morphisms by
π(
∑
λff) =

∑
λf ⊗ f . Then the restriction functor π∗ : kA-Mod → k[A]-Mod

identifies with the embedding Add(A; k) ↪→ F(A; k). In order to avoid overloaded
notations, the restriction functor π∗ will often be omitted, i.e. an additive functor
will be denoted by the same letter F when viewed as an object of kA-Mod or as
an object of k[A]-Mod.
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Example 2.11. Ordinary versus strict polynomial functors. Let γd : k[Pk]→
ΓdPk be the k-functor which is the identity on objects and which is defined on mor-
phisms by γd(

∑
λff) =

∑
λff

⊗d. Then the restriction functor γd ∗ : ΓdPk-mod→
k[Pk]-Mod identifies with the forgetful functor Pd,k → F(Pk; k). It is fully faithful
if k is field with at least d elements [14, Prop 1.4]. In order to avoid overloaded
notations, the restriction functor γd ∗ will often be omitted, i.e. a strict polyno-
mial functor will be denoted by the same letter F when viewed as an object of
ΓdPk-Mod or as an object of k[Pk]-Mod.

Restriction along φ yields k-linear morphisms

φ∗ : HomL(G,F )→ HomK(φ∗G,φ∗F )

that we also call restriction morphisms. Similarly there are k-linear restriction
morphisms, natural with respect to F and G:

resφ : φ∗F ⊗K φ∗G→ F ⊗L G .

To be more specific, resφ sends the class of an element s⊗ s′ ∈ φ∗F (x)⊗φ∗G(x) to
the class of the same element s⊗ s′ now viewed as an element of F (y)⊗G(y) with
y = φ(x). These two restriction maps derive to morphisms of graded k-modules,
which are also denoted by the same letters:

φ∗ : Ext∗L(G,F )→ Ext∗K(φ∗G,φ∗F ) ,(6)

resφ : TorK∗ (φ∗F, φ∗G)→ TorL∗ (F,G) .(7)

These two restriction maps are related by the following proposition.

Proposition 2.12. For all objects F and G of Mod-K and K-Mod, for all k-
functors φ : K → L, and for all injectives k-modules M , there is a commutative
square:

Ext∗L(G,Homk(F,M)) Homk(TorL∗ (F,G),M)

Ext∗K(φ∗G,φ∗Homk(F,M)) Homk(TorK∗ (φ∗F, φ∗G),M)

φ∗

α
'

Homk(resφ,M)

α
'

.

Proof. Commutativity of the diagram in degree 0 is a straightforward verification
from the definitions. The commutativity in higher degrees follows from the fact
that the arrows are all obtained by deriving the arrows in degree zero. �

Several results in the article assert that under certain conditions, the two restric-
tion maps (6) and (7) are isomorphisms. We will use the next corollaries to reduce
the proofs of these results to checking that one of these maps is an isomorphism.

Corollary 2.13. Given two functors F and G and an integer i, the restriction
map (9) below is an isomorphism if the restriction map (8) is an isomorphism for
all injective k-modules M .

φ∗ : ExtiL(G,Homk(F,M))→ ExtiK(φ∗G,φ∗Homk(F,M))(8)

resφ : TorKi (φ∗F, φ∗G)→ TorLi (F,G)(9)

The following standard terminology will be often used in the article.
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Definition 2.14. Let e be a positive integer. A morphism f : H∗ → K∗ between
cohomologically graded k-modules is called e-connected if it is an isomorphism
in degrees i < e and if it is injective in degree i = e. Similarly, a morphism
g : L∗ →M∗ between homologically graded k-modules is called e-connected if it is
an isomorphism in degrees i < e and if it is surjective in degree i = e.

A morphism of graded k-modules is ∞-connected if it is e-connected for all
positive integers e.

The following global version of definition 2.14 will be used in section 5.

Proposition-Definition 2.15. Let e be a positive integer or ∞. The restriction
functor φ∗ : L-Mod→ K-Mod is called e-excisive if it satisfies one of the following
equivalent assertions.

(1) For all F,G, the map (6) is an isomorphism in degrees 0 ≤ ∗ < e.
(1+) For all F,G, the map (6) is e-connected.
(2) For all F,G, the map (7) is an isomorphism in degrees 0 ≤ ∗ < e.

(2+) For all F,G, the map (7) is e-connected.
(3) The restriction functor φ∗ : L-Mod → K-Mod is fully faithful and for all

objects x, y of L: ⊕
0<i<e

TorKi (φ∗hxLop , φ∗h
y
L) = 0 .

Proof. It suffices to prove that the five assertions are equivalent for all positive
integers e. It is clear that (1+)⇒(1) and (2+)⇒(2), and the converses follow from
inspecting the long exact sequences associated to a short exact sequence 0→ K →
P → G→ 0 with P projective.

Let us prove (1)⇔(2). We claim that (1) is equivalent to the following assertion.

(1’) For all standard injectives F and for all G, the map (6) is an isomorphism
in degrees 0 ≤ ∗ < e.

Indeed, it is clear that (1)⇒(1’). Conversely, every F has a coresolution J by direct
products of standard injectives. We have two spectral sequences:

Ep,q1 = ExtqK(G, Jp))⇒ Extp+qK (G,F ) ,

′Ep,q1 = ExtqL(φ∗G,φ∗Jp)⇒ Extp+qL (φ∗G,φ∗F ) ,

and φ∗ induces a morphism of spectral sequences. If (1’) holds then the two spectral
sequences have isomorphic first pages, hence isomorphic abutments, hence (1) holds.
Now (1’) is equivalent to (2) by corollary 2.13.

Finally, let us prove (2)⇔(3). If (2) holds, then φ∗ is fully faithful by (1), and
moreover TorKi (φ∗hxLop , φ∗h

y
L) is isomorphic to TorLi (hxLop , h

y
L) for all 0 < i < e,

hence it is zero by projectivity of hxLop , which proves (3). Conversely, if φ∗ is fully
faithful then (2) holds for e = 1, hence resφ is an isomorphism in degree 0 by (1).
If in addition the Tor-vanishing is satisfied, then the map (7) is an isomorphism in
degrees 0 ≤ ∗ < e for all projective objects F and G, hence for all objects F and G
by a décalage argument, which proves (2). �

Example 2.16. If φ : K → L is full and essentially surjective, then φ∗ : L-Mod→
K-Mod is 1-excisive. Indeed, φ∗ is easily checked to be fully faithful.
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2.4. Adjoint functors in homology. We now recall from [35, Lm 1.3 and Lm
1.5] the good homological properties that restriction along φ : K → L enjoys when
φ admits a right adjoint.

Proposition 2.17. Let φ : K� L : ψ be an adjoint pair and let u : id→ ψ ◦φ and
e : φ ◦ ψ → id denote the unit and the counit of an adjunction. Then the following
composition is an isomorphism:

Ext∗L(ψ∗F,G)
φ∗−→ Ext∗K(φ∗ψ∗F, φ∗G)

Ext∗K(F (u),G)−−−−−−−−−→ Ext∗K(F, φ∗G) ,

whose inverse is given by the composition:

Ext∗K(F, φ∗G)
ψ∗−−→ Ext∗L(ψ∗F,ψ∗φ∗G)

Ext∗L(F,G(e))−−−−−−−−−→ Ext∗L(ψ∗F,G) .

There is a similar result for Tor.

Proposition 2.18. Let φ : K� L : ψ be an adjoint pair and let u : id→ ψ ◦φ and
e : φ ◦ ψ → id denote the unit and the counit of an adjunction. Then the following
composition is an isomorphism:

TorK∗ (φ∗F,G)
TorK∗ (φ∗F,G(u))−−−−−−−−−−→ TorK∗ (φ∗F, φ∗ψ∗G)

resφ−−→ TorL∗ (F,ψ∗G) ,

whose inverse is given by the composition:

TorL∗ (F,ψ∗G)
TorL∗ (F (e),ψ∗G)−−−−−−−−−−→ TorL∗ (ψ∗φ∗F,ψ∗G)

resψ−−−→ TorK∗ (φ∗F,G) .

Example 2.19. If n ≥ 2, the k-functor ∆ : k[A] → k[A×n] such that ∆(x) =
(x, . . . , x) is adjoint on both sides to the k-functor Σ : k[A×n] → k[A] such that
Σ(x1, . . . , xn) = x1 ⊕ · · · ⊕ xn. The unit and counit for these two adjunctions are
given by the morphisms

diag : a→ a⊕n , proj : (
⊕

1≤i≤n

ai, . . . ,
⊕

1≤i≤n

ai)→ (a1, . . . , an) ,

sum : a⊕n → a , incl : (a1, . . . , an)→ (
⊕

1≤i≤n

ai, . . . ,
⊕

1≤i≤n

ai) ,

such that the coordinate morphisms of diag and ρ are equal to ida and the co-
ordinate morphisms of proj and incl are given by the canonical projections and
inclusions. The Ext-isomorphisms

Ext∗k[A](∆
∗G,F ) ' Ext∗k[A×n](G,Σ

∗F ) ,

Ext∗k[A](F,∆
∗G) ' Ext∗k[A×n](Σ

∗F,G) ,

and the analogue Tor-isomorphisms will be often refered to as sum-diagonal ad-
junction isomorphisms.

If the functor φ : K → L does not have adjoints, the isomorphisms of propositions
2.17 and 2.18 are replaced by spectral sequences. To be more explicit, for all integers
i, let Lφi , R

i
φ : K-Mod→ L-Mod denote the functors such that

(Lφi F )(y) = TorKi (φ∗hyLop , F ) , (RiφF )(y) = ExtiK(φ∗hyL, F ) .

Then Lφ0 and R0
φ are respectively left ajoint and right adjoint to the restriction

functor φ∗ : L-Mod→ K-Mod, and the Lφi and Riφ are the derived functors of Lφ0
and R0

φ respectively. The following proposition is proved in the same way as the
usual base change spectral sequences [54, Chap 5, Thm 5.6.6].
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Proposition 2.20. There are base change spectral sequences:

Es,t2 = ExtsL(F,RtφG)⇒ Exts+tK (F, φ∗G) ,

′Es,t2 = ExtsL(Lφt F,G)⇒ Exts+tK (F, φ∗G) ,

′′E2
s,t = TorLs (F ′, LφtG)⇒ TorKs+t(φ

∗F ′, G) .

2.5. External tensor products. We recall from [31] the tensor product K⊗L of
two k-categories K and L. The objects of this tensor category are the pairs (x, y)
where x is an object of K and y is an object of L, and its k-module morphisms
are the tensor products K(x, x′) ⊗ L(y, y′). There is an external tensor product
operation

� : K-Mod× L-Mod→ K⊗L-Mod

which sends a pair (F,G) to the k-functor (F �G)(x, y) = F (x)⊗G(y).

Proposition 2.21 (Künneth). Assume that k is a field. There is an isomorphism
of graded k-vector spaces, natural with respect to F , G, H, K:

TorK∗ (F,H)⊗ TorL∗ (G,K) ' TorK⊗L∗ (F �G,H �K) .

Proof. Since h(x,y)
K⊗L is equal to hxK � hyL, there is an isomorphism

(F �G)⊗K⊗L (hxK � hyL) ' F (x)⊗G(y) ' (F ⊗K hxK)⊗ (G⊗L hyL) .

Tensor products preserve arbitrary direct sums with respect to each variable. So if
P , resp. Q, is a projective resolution of H, resp. K, the complex (F � G) ⊗K⊗L
(P � Q) is isomorphic to the complex (F ⊗K P ) ⊗ (G ⊗L Q). Now P � Q is a
projective resolution of H � K, hence the result follows from the usual Künneth
isomorphism for complexes. �

There is a similar result on the level of extension groups. Namely, the tensor
product induces a graded morphism:

Ext∗K(F,H)⊗ Ext∗L(G,K)→ Ext∗K⊗L(F �G,H �K) .(10)

However Hom only preserve finite direct sums, so one needs an additional assump-
tion to adapt the proof of proposition 2.21 for Ext. One says [35, Section 2.3]
that a functor is of type fp∞ if it has a projective resolution by finite direct sums
of standard projectives (or equivalently if it has a resolution by finitely generated
projectives). With this additional hypothesis, one easily proves:

Proposition 2.22 (Künneth). Let k be a field. Assume that F and G are of type
fp∞, or assume that F is of type fp∞ and that H has only finite-dimensional
values. Then morphism (10) is an isomorphism.

Remark 2.23. Being of type fp∞ is a rather strong property, which is usually very
hard to check in an elementary way on a given functor. When K = PFq , one
may prove such properties by using Schwartz’s fp∞-lemma [15, Prop 10.1], or by
using that k[PFq ]-Mod is locally noetherian [39]. When K = k[A] over more general
additive categories A, local noetherianity often fails but one can use generalizations
of Schwartz’s fp∞-lemma given in [10].
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2.6. The ℵ-additivization of a k-category. Let ℵ denote a cardinal. A k-
category is called ℵ-additive if it has all ℵ-direct sums, that is, if all direct sums
indexed by sets of cardinality less or equal to ℵ exist. A k-functor between two
such categories is called ℵ-additive if it preserves ℵ-direct sums. The following
construction will be used in sections 8 and 9.

Definition 2.24. The ℵ-additivization of a small k-category K is the category Kℵ
whose objects are the families of objects of K indexed by sets of cardinality less
or equal to ℵ. Such an object is denoted by a formal direct sum

⊕
i∈I xi. The

morphisms f :
⊕

j∈J xj →
⊕

i∈I yi are the ‘matrices’ [fij ](i,j)∈I×J such that each
fij ∈ K(xj , yi), and such that for all j0 only a finite number of morphisms fij0 are
nonzero. The composition of morphisms is given by matrix multiplication.

We identify K with the full k-subcategory of Kℵ on the formal direct sums with
only one object.

The definition of morphisms in Kℵ shows that the formal direct sum
⊕

i∈I xi
is the categorical coproduct of the xi in Kℵ, and also the categorical product if I
is finite, which justifies the direct sum notation. The next elementary proposition
gathers the basic properties of ℵ-additivization.

Proposition 2.25. The k-category Kℵ is small and ℵ-additive. Moreover:
(1) An object x of Kℵ is isomorphic to a finite direct sum of objects of K if and

only if the functor Kℵ(x,−) : Kℵ → k-Mod is ℵ-additive.
(2) Every k-functor F : K → L whose codomain is a ℵ-additive extends to a

unique (up to isomorphism) ℵ-additive functor Fℵ : Kℵ → L.

Proof. Let us prove (1). The objects of K (hence their finite direct sums) are
ℵ-additive by the definition of morphisms in Kℵ. Conversely, if x =

⊕
xi is an ob-

ject such that Kℵ(x,−) is ℵ-additive, the isomorphism Kℵ(x,
⊕
xi) '

⊕
Kℵ(x, xi)

shows that idx factors through a finite direct sum of the xi, hence x is isomorphic
to a finite direct sum of objects of K. Now we prove (2). For all objects x =

⊕
xi

we choose a direct sum
⊕
F (xi) in L. The assignment Fℵ(x) =

⊕
F (xi) defines

an ℵ-additive functor such that Fℵ ◦ ι = F . Uniqueness follows from the fact that
given any pair of ℵ-additive functors F ′, G′ : Kℵ → L, every natural transformation
θ between their restrictions to K extends uniquely into a natural transformation
θ′ : F ′ → G′. Indeed it suffices to define θ′⊕ xi

as the unique morphism fitting in the
commutative square in which the vertical arrows are the canonical isomorphisms:

F ′(
⊕
xi) G′(

⊕
xi)

⊕
F (xi)

⊕
G(xi)

θ′⊕ xi

' ⊕
θxi

' .

�

The following examples are easily checked by using the universal properties of
the categories in play.

Examples 2.26. 1. Let Fk denote the full subcategory of k-Mod on the free k-
modules. Its ℵ-additivization Fℵk is equivalent to Fk if ℵ is finite, and to the full
subcategory of k-Mod on free modules of rank less or equal to ℵ if ℵ is infinite.

2. We have canonical equivalences of categories k[Aℵ] ' k[A]ℵ and k(Aℵ) ' ( kA)ℵ.
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Proposition 2.27. Assume that for all pairs (x, y) of objects of K, the k-module
K(x, y) belongs to Fℵk . Then for all objects x of K, the functor Kℵ(x,−) : Kℵ → Fℵk
has a left adjoint −⊗ x : Fℵk → Kℵ.

Proof. Let v be a free k-module with basis (bi)i∈I . We let v ⊗ x =
⊕

i∈I xi where
each xi denotes a copy of x. The k-linear map v 7→ Kℵ(x, v ⊗ x), sending bi to the
canonical inclusion of x as the factor xi of v ⊗ x is initial in v ↓ Kℵ(x,−), and the
result follows from [38, Lm 4.6.1]. �

Proposition 2.28. Let x be an object of Kℵ decomposed as a direct sum x =⊕
i∈I xi of objects of K. Let F denote the poset of finite direct summands

⊕
i∈J xi

ordered by the canonical inclusions. The left Kan extension of a k-functor F : K →
k-Mod along the inclusion ι : K ↪→ Kℵ is given by

LanιF (x) = colim
y∈F

F (y) .

Thus the functor Lanι : K-Mod→ Kℵ-Mod is exact and restriction along ι yields
isomorphisms

Ext∗K(F, ι∗G) ' Ext∗Kℵ(LanιF,G) , TorK∗ (ι∗G,F ) ' TorK
ℵ

∗ (G,LanιF ) .

Proof. Since F is a filtered category which is cofinal in the comma category K ↓ x,
we have LanιF (x) = colimy∈F F (y). Since filtered colimits of k-modules are exact,
and since exactness of a short exact sequence of functors is tested objectwise, this
implies that Lanι is exact. Moreover, Lanι preserves projectives (because it has an
exact right adjoint). This implies the Ext and Tor isomorphisms. �

3. Simplicial techniques

3.1. Simplicial objects in abelian categories. We denote by sM the category
of simplicial objects in an abelian categoryM. The Dold-Kan correspondence [19,
Cor 2.3] or [54, Section 8.4] yields two mutually inverse equivalences of categories

N : sM� Ch≥0(M) : K

between the category sM of simplicial objects in M and the category of non-
negatively graded chain complexes in M. The functor N is the functor of nor-
malized chains, and the functor K is the Kan functor. Two simplicial morphisms
f, g : X → Y are homotopic if the morphisms of chain complexes Nf and Ng are
homotopic. The Kan functor preserves homotopies.

The homotopy groups π∗X of an object X of sM are defined as the homology
groups of the normalized chains NX.

The category M is called concrete if it is equipped with a faithful functor to
the category of sets. If M is concrete, every object X of sM has an underlying
simplicial set and we let Hss

∗ (X; k) denote the homology with coefficients in k of the
underlying simplicial set of X, that is, Hss

∗ (X; k) = π∗k[X].

Remark 3.1. If the faithful functorM→ Set is the composition of an exact functor
to the category of abelian groupsM→ Ab and the usual forgetful functor Ab→
Set, then the homotopy groups of X coincide with the homotopy groups of its
underlying simplicial set by [19, Cor 2.7] or [54, Thm 8.3.8].

Let e be a non-negative integer. An object X of sM is e-connected if πiX = 0
for all i ≤ e. A morphism f : X → Y is e-connected if πif : πiX → πiY is bijective
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for all i < e and surjective for i = e. (Thus f is e-connected if and only if its
homotopy cofiber is e-connected). A morphism f : X → Y is a weak equivalence if
it is e-connected for all e ≥ 0.

A simplicial projective resolution of an object X of sM is a weak equivalence
f : P → X where P is degreewise projective inM. As usual, we identifyM with
the full subcategory of sM on the constant simplicial objects. Hence a simplicial
projective resolution of an object X of M is a degreewise projective simplicial
object P such that πiP = 0 for i > 0, equipped with an isomorphism π0P ' X. If
M has enough projectives then by the Dold-Kan equivalence every object of sM
has a simplicial resolution, and every morphism between simplicial objects can be
lifted to a morphism of simplicial resolutions, unique up to homotopy.

3.2. Eilenberg MacLane spaces and Hurewicz theorems. For all abelian
groups A and all n ≥ 0, we denote by K(A,n) any simplicial free abelian group
such that πiK(A,n) = 0 for i 6= n and πnK(A,n) ' A. Such a simplicial free
abelian group is called an Eilenberg-MacLane space and is unique up to homo-
topy equivalence. The study of simplicial abelian groups often reduces to that of
Eilenberg-MacLane spaces by the following classical lemma, see e.g. [19, Prop 2.20].
We impose that Eilenberg-MacLane spaces are degreewise free abelian groups by
definition in order to have genuine maps rather than zig-zags in this lemma.

Lemma 3.2. For all simplicial abelian groups A, there is a weak equivalence
(unique up to homotopy) ∏

i≥0

K(πiA, i)→ A .

Moreover for all morphisms of simplicial abelian groups f : A→ B, let K(πif, i) :
K(πiA, i)→ K(πiB, i) denote a lift of πif : πiA→ πiB to the level of the simplicial
resolutions. Then the following diagram commutes up to homotopy:∏

i≥0K(πiA, i)
∏
i≥0K(πiB, i)

A B

∏
K(πif,i)

f

.

If A is a simplicial abelian group, the morphism of simplicial sets A → Z[A]
induces a natural morphism of graded abelian groups

h∗ : π∗A→ Hss
∗ (A;Z)

called the Hurewicz morphism. The following well-known proposition recalls the
classical Hurewicz theorems in the context of simplicial abelian groups (injectivity
of h∗ as well as the fact that no hypothesis on fundamental groups is needed for
the relative version are specific to the abelian group setting).

Proposition 3.3 (Classical Hurewicz Theorems). Let e be a nonnnegative integer.
(1) (Absolute theorem) The Hurewicz map h∗ is split injective. Moreover, if A

is e-connected then hi is an isomorphism for i ≤ e+ 1.
(2) (Relative theorem) Every e-connected morphism of simplicial abelian groups

f : A→ B induces an e-connected map Hss
∗ (f ;Z) : Hss

∗ (A;Z)→ Hss
∗ (B;Z).

Proof. (1) The canonical morphism of abelian groups Z[A]→ A yields a retract of
h∗. The isomorphism is given by [19, III Thm 3.7]. (2) Since simplicial groups are
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fibrant simplicial sets [19, I Lm 3.4], any weak equivalence between simplicial groups
yields a homotopy equivalence of simplicial sets [19, II Thm 1.10], hence it induces
an isomorphism in homology. Therefore, lemma 3.2 and the Künneth theorem
reduce the proof of the isomorphism to the case where A and B are Eilenberg-
MacLane spaces, with nonzero homotopy groups placed in the same degree i. If
i < e, f is e-connected if and only if it is a weak equivalence, hence if and only if
it induces an isomorphism in homology. If i ≥ e, then A and B are e-connected
hence the result follows from (1). �

For our purposes, we need a k-local version of the absolute Hurewicz theorem.
We shall derive it from the following presumably well-known property of Eilenberg-
MacLane spaces, which we have not found in the literature – though the case of a
prime field k is of course given by the classical calculations of Cartan [1].

Lemma 3.4. Let k be a commutative ring, let A be an abelian group. If k⊗ZA = 0
and TorZ1 (k,A) = 0, then Hss

i (K(A,n), k) = 0 for all positive integers n and i.

Proof. We say that an abelian group A is k-negligible if TorZ1 (k,A) = 0 = k ⊗Z A.
We first take n = 1. The lemma holds if A is a k-negligible torsion-free group

because Hss
i (K(A, 1); k) ' k ⊗Z ΛiZ(A) = Λik(k ⊗Z A) = 0. The lemma also holds if

A is a k-negligible torsion group. Indeed, if A is finite, the lemma holds by a direct
computation. If A is infinite, then A is the filtered union of all its finite subgroups
Aα. And since any subgroup of a k-negligible torsion group is k-negligible, we
have: Hss

i (K(A, 1); k) = colimαH
ss
i (K(Aα, 1); k) = 0. Now let A be an arbitrary

abelian group with torsion subgroup Ators. If A is k-negligible, then so are Ators

and A/Ators. So the lemma holds for A as a consequence of the Hochschild-Serre
spectral sequence of the fibration K(Ators, 1)→ K(A, 1)→ K(A/Ators, 1).

Assume now that n > 1. Then K(A, 1)⊗ZK(Z, n−1) is an Eilenberg Mac Lane
space K(A,n). Thus Hss

∗ (K(A,n)) is the abutment of the spectral sequence of the
bisimplicial k-moduleMpq = k[K(Z, n−1)q⊗ZK(π, 1)p]. Let us choose K(Z, n−1)
such that it is free of finite rank r(q) in each degree q (e.g. take the image of the
complex Z[−n] by the Kan functor). Then for q fixed, the simplicial k-module M•q
is isomorphic to k[K(A×r(q), 1)]. Thus the simplicial spectral sequence of Mpq can
be rewriten as:

E1
pq = Hss

p

(
K(A×r(q), 1)

)
=⇒ Hss

p+q(K(A,n)) .

The first page is zero by the case n = 1, whence the result. �

Proposition 3.5 (k-local absolute Hurewicz theorem). Let A be a simplicial abelian
group, let k be a commutative ring and let e be a non-negative integer. Assume that
for 0 < i ≤ e and for 0 < j < e we have k ⊗Z πiA = 0 = TorZ(k, πjA). Then

(1) Hss
0 (A; k) = k[π0A];

(2) Hss
i (A; k) = 0 for 0 < i ≤ e;

(3) Hss
e+1(A; k) contains the following k-module as a direct summand:

k[π0A]⊗k
(
k ⊗Z πe+1A ⊕ TorZ(k, πeA)

)
.

Proof. Lemma 3.2 and the Künneth theorem reduce the proof to the case of an
Eilenberg-MacLane space A. Assume that the nonzero homotopy group of A is
placed in degree i. If i = 0, the result holds by a direct computation. If 0 < i < e
then the result follows from lemma 3.4. If i ≥ e, the result follows from the classical
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absolute Hurewicz theorem of proposition 3.3 together with the universal coefficient
theorem which says that the graded k-module Hss

∗ (A; k) is (non canonically) iso-
morphic to k ⊗Z H

ss
∗ (A;Z)⊕ TorZ(k,Hss

∗−1(A;Z)). �

Corollary 3.6. The k-modules Hss
i (A; k) vanish for 0 < i ≤ e if and only if

k ⊗Z πiA and TorZ1 (k, πjA) vanish for 0 < i ≤ e and 0 < j < e.

3.3. Functors of simplicial objects. Assume that M is an abelian category.
Evaluating a functor F : M → s(k-Mod) on a simplicial object M in M yields
a bisimplicial object F (Mp)q, and we denote by F (M) the associated diagonal
simplicial k-module. This construction is natural with respect to F and M .

We shall say that a natural transformation f : F → F ′ is e-connected if for all
M inM, the morphism of simplicial k-modules F (M)→ F ′(M) is e-connected.

Remark 3.7. If M is small, the category k[M]-Mod is well-defined. In that case
the functors F :M→ s(k-Mod) (resp. the natural transformations between such
functors) identify with the simplicial objects in k[M]-Mod (resp. the morphisms
between such simplicial objects), and the definition of e-connectedness given here
coincides with the one given in section 3.1.

Proposition 3.8. Let M be an abelian category of global dimension 0. For all
e-connected natural transformations f : F → F ′ and for all e-connected simplicial
morphisms g : M →M ′, the induced morphism F (M)→ F ′(M ′) is e-connected.

Proof. We prove that f(M) : F (M) → F ′(M) and F ′(g) : F ′(M) → F ′(M ′) are
e-connected. The e-connectedness of f(M) follows from the spectral sequence [19,
IV, section 2.2], which is natural with respect to F :

E1
m,n(F ) = πm(F (Mn))⇒ πm+n(F (M)) .

Let us prove the e-connectedness of F ′(g). We choose a small additive subcate-
goryM′ ⊂M which contains the objectsMn andM ′n for n ≥ 0. Let π : P → F ′ be
a simplicial projective resolution in s(M′-Mod). We have a commutative square
of simplicial k-modules

P (M) P (M ′)

F (M) F (M ′)

P (g)

π(M) π(M ′)

F (g)

whose vertical arrows are weak equivalences by the preceding paragraph, so it suf-
fices to prove that P (g) is e-connected. By using the spectral sequence natural with
respect to M :

F 1
m,n(M) = πn(Pm(M))⇒ πm+n(P (M)) ,

the proof reduces further to showing that for all projective objects Q inM′-Mod,
the morphism of simplicial k-modules Q(g) is e-connected. Since Q is a direct sum-
mand of a direct sum of standard projectives, we can assume that Q = k[M(x,−)].
Since M has global dimension zero, the functor M(x,−) is exact, in particular
M(x, g) is e-connected. Hence, the result follows from the relative Hurewicz theo-
rem of proposition 3.3. �
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4. Homology of bifunctors of AP-type

In this section we prove theorem 1.1 from the introduction. So we fix a commu-
tative ring k and a small additive category A.

We first come back to the definition of bifunctors of AP-type. Recall from [31,
p.18] that an ideal of A is a subfunctor of A(−,−) : Aop×A → Ab. Given such an
ideal I, we can form the additive quotient A/I of A, with the same objects as A
and with morphisms (A/I)(x, y) = A(x, y)/I(x, y). We let πI : A → A/I denote
the additive quotient functor. The following definitions are introduced in [11].

Definition 4.1. An additive category B is k-trivial if for all objects x and y the
abelian group B(x, y) is finite and such that k ⊗Z B(x, y) = 0. An ideal I of A is
k-cotrivial if A/I is k-trivial. A functor F : A → k-Mod is antipolynomial if there
is a k-cotrivial ideal I of A such that F factors though πI : A → A/I.

We also need the polynomial functors introduced by Eilenberg and Mac Lane in
[12]. Given a positive integer d, an object F of k[A]-Mod is polynomial of degree
less than d if its d-th cross-effect crdF vanishes. This d-th cross-effect is an object
of k[A×d]-Mod, defined as the image of a certain idempotent endomorphism of
the functor F (x1 ⊕ · · · ⊕ xd). We refer the reader to [11, Section 1] for a detailed
description of polynomial functors and further references. We will use the following
classical properties. (The Tor vanishing can be obtained from the Ext-vanishing
and the isomorphism of lemma 2.7.)

Proposition 4.2. The full subcategory k[A]-Mod<d of k[A]-Mod on the poly-
nomial functors of degree less than d is stable under subobjects, extensions, arbi-
trary direct sums and products. Moreover, if F and F ′ are polynomial of degree
less than d, then for all objects Fi of k[A]-Mod and F ′i of Mod-k[A] satisfying
Fi(0) = 0 = F ′i (0), we have

Ext∗k[A](F1 ⊗ · · · ⊗ Fd, F ) = 0 = Ext∗k[A](F, F1 ⊗ · · · ⊗ Fd) ,(11)

Tork[A]
∗ (F ′1 ⊗ · · · ⊗ F ′d, F ) = 0 = Tork[A]

∗ (F ′, F1 ⊗ · · · ⊗ Fd) .(12)

Definition 4.3. A bifunctor B : A×A → k-Mod is of antipolynomial-polynomial
type (AP-type) if for all objects x of A the functor y 7→ B(y, x) is antipolynomial
and the functor y 7→ B(x, y) is polynomial.

The remainder of the section is devoted to the proof of theorem 1.1, which we
restate here for the convenience of the reader.

Theorem 4.4. Let B, C, B′ be three bifunctors of AP-type, with B′ contravariant
in both variables. Restriction along the diagonal ∆ : A → A × A yields isomor-
phisms:

Ext∗k[A×A](B,C) ' Ext∗k[A](∆
∗B,∆∗C) ,

Tork[A]
∗ (∆∗B′,∆∗C) ' Tork[A×A]

∗ (B′, C) .

(Notice that the Hom-isomorphism is included in [11, Prop 4.9], which is proved
by another method.)

If B′ : Aop × Aop → k-Mod is of AP-type, then for all injective k-modules M ,
the bifunctor Homk(B′,M) = Homk(−,M) ◦ B′ is also of AP-type. Therefore, by
proposition 2.12, it suffices to prove the Ext-isomorphism of theorem 4.4. We shall
prove this Ext-isomorphism in two steps. We first reduce the proof to bifunctors B
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‘of special-AP-type’, that is, bifunctors of the form B(x, y) = A(x)⊗P (y) for some
particular antipolynomial functor A. Then we establish the isomorphism for these
bifunctors of special AP-type.

Step 1: Reduction to bifunctors of special-AP-type. Given an ideal I of A and a
positive integer d, we denote by CI,d the full subcategory of k[A×A]-Mod whose
objects are the bifunctors B such that:
i) B factors through πI × id : A×A → (A/I)×A, and
ii) for all x, the functor y 7→ B(x, y) is polynomial of degree less than d.

The subcategory CI,d of k[A×A]-Mod is stable under limits and colimits. Stability
under colimits ensures that any object B of k[A×A]-Mod has a largest subobject
BI,d belonging to CI,d.

Lemma 4.5. If B is a bifunctor of AP-type then B =
⋃
I,dBI,d, where I runs

over the set of k-cotrivial ideals of A and d runs over the set of positive integers.

Proof. We fix two objects x, y of A. Let d be the degree of t 7→ B(x, t) and let
I be a k-cotrivial ideal such that s 7→ B(s, y) factors through A/I. To prove
the lemma, it suffices to show that the inclusion BI,d ↪→ B induces an equality
BI,d(x, y) = B(x, y).

Let Bd(a,−) be the largest subfunctor of B(a,−) of degree less than d. Any
map f : a → b induces a map Bd(a,−) → Bd(b,−), so that the functors Bd(a,−)
assemble into a bifunctor Bd : A×A → k-Mod which is a subfunctor of B, poly-
nomial of degree less of equal to d with respect to its first variable. By construction
Bd(x, y) = B(x, y). Similarly, let BI(−, b) be the largest subfunctor of B(−, b)
factorizing through A/I. These functors assemble into a bifunctor BI : A×A →
k-Mod factorizing through A/I × A. By construction BI(x, y) = B(x, y). Since
BI ∩Bd ⊂ BI,d we finally obtain that BI,d(x, y) = B(x, y). �

An object B of k[A×A]-Mod is of special-AP-type if there is an object z of A,
a k-cotrivial ideal I and a polynomial functor F in k[A]-Mod such that

B(x, y) = k[A/I(z, x)]⊗ F (y) .

Lemma 4.6. Let B be an object of k[A×A]-Mod such that B =
⋃
I,dBI,d, where

I runs over the the set of k-cotrivial ideals of A and d over the set of positive
integers. Then B has a resolution Q whose terms are direct sums of bifunctors of
special-AP-type.

Proof. It suffices to prove that every BI,d, is a quotient of a direct sum of bifunctors
of special-AP-type. By definition BI,d = (πI × idA)∗B′ for some bifunctor B′ :
A/I × A → k-Mod such that each B′z(−) := B′(z,−) is polynomial of degree
less than d. The standard resolution of B′ [31, section 17] yields an epimorphism⊕

z h
z
k[A/I] � B′z → B′, where the sum is indexed by a set of representatives z

of isomorphism classes of objects of A/I. The result follows by restricting this
epimorphism along πI × idA. �

Proposition 4.7. Let C be an arbitrary object of k[A×A]-Mod. If the map:

∆∗ : Ext∗k[A×A](B,C)→ Ext∗k[A](∆
∗B,∆∗C)

is an isomorphism for all bifunctors B of special-AP-type then it is an isomorphism
for all bifunctors B of AP-type.
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Proof. By lemmas 4.5 and 4.6, B has a resolution Q by direct sums of bifunctors
of special AP-type. We have two spectral sequences:

Ep,q1 = Extqk[A×A](Qp, C)⇒ Extp+qk[A×A](B,C) ,

′Ep,q1 = Extqk[A](∆
∗Qp,∆

∗C))⇒ Extp+qk[A](∆
∗B,∆∗C) ,

and ∆∗ induces a morphism of spectral sequences. So it suffices to prove that ∆∗ is
an isomorphism when B = Qp, hence when B is a functor of special-AP-type. �

Step 2: Proof for bifunctors of special-AP-type. The proof relies on three vanishing
lemmas. The first two lemmas are quite general, and we will also use them later in
the article, in the proof of proposition 5.10 and theorem 6.9.

Lemma 4.8. Let C and D be two small categories and let B and C be two objects
of k[C × D]-Mod. There is a first quadrant spectral sequence

Ep,q2 = Extpk[Dop×D](k[D];EqC)⇒ Extp+qk[C×D](B,C)

where k[D] and EqC are the objects of k[Dop ×D]-Mod respectively defined by

k[D](x, y) = k[D(x, y)] , EqC(x, y) = Extqk[C](B(−, x), C(−, y)) .

In particular, if E∗C = 0 then Ext∗k[C×D](B,C) = 0.

Proof. We use the notation Homk[C](B,C) := E0
C . There is an isomorphism, natu-

ral with respect to B, C, and the object D of k[Dop ×D]-Mod:

Homk[Dop×D](D,Homk[C](B,C)) ' Homk[C×D](B ⊗k[Dop] D,C) .

This isomorphism is the functor analogue of [4, IX.2 Prop 2.2], and we may con-
struct it as follows. Firstly, there is a natural isomorphism when D is a standard
projective. Indeed D(x, y) = k[D(x, c)]⊗ k[D(d, y)] and the the two sides are natu-
rally isomorphic to E0

C(c, d) by the Yoneda lemma. Now the isomorphism extends
to every functor D by taking a projective presentation of D.

Thus we have two spectral sequences converging to the same abutment (the
construction of these spectral sequences is exactly the same as the one given for
categories of modules in [4, XVI.4]):

Ip,q = Extpk[Dop×D](D,E
q
C)⇒ Hp+q

IIp,q = Extpk[C×D](Tork[Dop]
q (B,D), C)⇒ Hp+q .

If D = k[D] then for all x, k[D](−, x) is a projective object of k[Dop]-Mod, hence
the functor Tork[Dop]

q (B, k[D]) is zero for positive q, and the Yoneda isomorphism
(4) shows that for q = 0 this functor is isomorphic to B. Thus the second spectral
sequence collapses at the second page and H∗ = Ext∗k[C×D](B,C). Hence the first
spectral sequence gives the result. �

The next two lemmas use the notion of a reduced functor. A functor of k[A]-Mod
is reduced if it satisfies F (0) = 0. In general, we denote by F red the reduced part of a
functor F in k[A]-Mod. Thus F red is a reduced functor such that F ' F (0)⊕F red

in k[A]-Mod. This decomposition is natural with respect to F , in particular we
have a decomposition of Ext (since the full subcategory of constant functors is
equivalent to k-Mod, the Ext between F (0) and G(0) can be indifferently computed
in k[A]-Mod or k-Mod):

Ext∗k[A](F,G) ' Ext∗k(F (0), G(0))⊕ Ext∗k[A](F
red, Gred)
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and a similar decomposition for Tor.

Lemma 4.9. Let G : Aop → Z-Mod be such that TorZ1 (k,G(x)) = 0 and k ⊗Z
G(x) = 0 for all objects x of A, and let k[G] denote its composition with the
k-linearization functor k[−]. For all functors H and for all reduced polynomial
functors F and F ′ we have:

Tork[A]
∗ (k[G]red ⊗H,F ) = 0 = Ext∗k[Aop](k[G]red ⊗H,F ′) .

Proof. We prove the Tor-vanishing, the proof of the Ext-vanishing is similar. The
functor k[G] is isomorphic to k[G(0)] ⊗ k[Gred], hence to a direct sum of copies of
k[Gred]. Therefore, to prove the vanishing, we may assume that G is reduced.

Let K be the kernel of the augmentation ε : k[G] → k, such that ε(
∑
λf [f ]) =∑

λf . Then k[G]red = K. By lemma 3.4, the hypotheses on G(x) imply that
this abelian group has trivial homology with coefficients in k. Thus the reduced
normalized bar construction of k[G(x)] yields an exact sequence

· · · → K⊗i+1 → K⊗i → · · · → K → 0

inMod-k[A]. SinceK has k-free values, this complex becomes a split exact complex
of k-modules after evaluation on every object x or A. Therefore, if we tensor this
sequence by K⊗r−1 ⊗H for a positive integer r, we obtain an exact complex with
associated hypercohomology spectral sequence:

E1
s,t(r) = Tort(K

⊗s+r+1 ⊗H,F )⇒ Tor
k[A]
t (K⊗r ⊗H,F ) .

Now we can prove that Tork[A]
∗ (K⊗r ⊗H,F ) = 0 for all positive integers r. Since

K⊗r ⊗H is the direct sum of K⊗r ⊗Hred and K⊗r ⊗H(0), this is true if r > d
by proposition 3.4. Now if this is true for a given r, then E1

∗,∗(r − 1) = 0, hence
Tork[A]
∗ (K⊗r−1 ⊗H,F ) = 0. The result follows. �

Lemma 4.10. Let A, P , and F be three objects of k[A]-Mod. Assume that A
is antipolynomial and that P is polynomial. Then Ext∗k[A](A ⊗ F, P ) = 0 if A is
reduced, and Ext∗k[A](P ⊗ F,A) = 0 if P is reduced.

Proof. We prove the first Ext-vanishing, the proof of second one is similar. By
sum-diagonal adjunction Ext∗k[A](A⊗ F, P ) is isomorphic to Ext∗k[A×A](A� F, P ),
where B(x, y) = P (x ⊕ y) (see example 2.19). For all x, the functor x 7→ P (x ⊕
y) is polynomial, hence by lemma 4.8, it suffices to prove that Ext∗k[A](A,P ) =
0 for all reduced antipolynomial functors A and for all polynomial functors P .
Since A is reduced, we may as well assume that P is reduced. Since A = π∗IA

′

for some k-cotrivial ideal I and some functor A′ in k[A/I]-Mod, the first base
change spectral sequence of proposition 2.20 shows that is suffices to prove that
Ext∗k[A](k[A/I(−, x)], P ) = 0 for all x in A. The latter follows from lemma 4.9
(with G = A/I(−, x), H = k and F = P ). �

The next proposition finishes the proof of theorem 4.4.

Proposition 4.11. Let B be a bifunctor of special-AP-type, and let C be a bifunctor
of AP-type. Restriction along the diagonal yields an isomorphism:

∆∗ : Ext∗k[A×A](B,C)
'−→ Ext∗k[A](∆

∗B,∆∗C) .
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Proof. We have B = A � F and ∆∗B = A ⊗ F , with F polynomial of degree less
than d, and A = k[A/I(z,−)] for a k-cotrivial ideal I and an object z of A.

We have A ' k⊕Ared. We also have an isomorphism F (x⊕ y) ' F (x)⊕G(x, y)
for some bifunctor G. Since A(x⊕ y) ' A(x)⊗A(y), we have a decomposition

(A⊗ F )(x⊕ y) '
(
A(x)⊗ F (y)

)
⊕ X(x, y) ⊕ Y (x, y)

where the bifunctors X and Y are defined by

X(x, y) := A(y)⊗G(x, y) , Y (x, y) := A(x)⊗Ared(y)⊗ F (x⊕ y) .

Moreover, let q : A�F ⊕X⊕Y � A�F denote the canonical projection. Then we
readily check from the expression of the adjunction isomorphism α given in example
2.19 that the following diagram commutes:

Ext∗k[A×A](A� F,C) Ext∗k[A](A⊗ F,∆∗C)

Ext∗k[A×A](A� F ⊕X ⊕ Y,C)

Ext∗k[A×A](q,C)

∆∗

α
' .

Therefore, it suffices to prove that there is no nonzero Ext between X ⊕ Y and C.
But for all objects y and y′, there is no nonzero Ext betweenX(x,−) and C(x,−)

by lemma 4.10 since C(−, y′) is antipolynomial and X(−, y) is polynomial and such
that X(0, y) = 0. Hence there is no nonzero Ext between X and C by lemma 4.8.
Similarly, there is no nonzero Ext between Y and C, whence the result. �

5. Excision in functor homology

In this section, we prove theorem 1.3 from the introduction. In fact, we prove
theorem 1.3 in corollary 5.6, by deriving it from the following more general excision
theorem, which is a variant of the result sketched in [7, Proposition 2.19.4]. This
excision theorem is a functor homology analogue of the excision theorem of Suslin
and Wodzicki in K-theory [45], see remark 5.9.

Theorem 5.1 (excision). Let φ : A → B be an additive functor between two small
additive categories, such that φ∗ : k[B]-Mod→ k[A]-Mod is fully faithful. For all
positive integers e, the following assertions are equivalent.
(1) The restriction functor φ∗ is e-excisive.
(2) For all objects x and y of B we have:⊕

0≤i<e

k ⊗Z πiA(x, y) = 0 and
⊕

0≤i<e−1

TorZ(k, πiA(x, y)) = 0 ,

where A(x, y) is the simplicial abelian group A(x, y) := Qx⊗A φ∗hyB, where Qx
is a projective simplicial resolution of the functor φ∗hxBop in Mod-A.

Proof. By lemma 5.2 below, the simplicial k-module k[A(x, y)] is isomorphic to
k[Qx]⊗k[A] k[φ∗hyB]. But we have:

k[φ∗hyB] = k[B(y, φ(−))] = φ∗hyk[B] , k[φ∗hxBop ] = k[B(φ(−), x)] = φ∗hxk[Bop] ,

and k[Qx] is a simplicial projective resolution of φ∗hxk[Bop] by the relative Hurewicz
theorem of proposition 3.3 (with e =∞). Whence an isomorphism:

π∗k[A(x, y)] ' Tork[A]
∗ (φ∗hxk[Bop], φ

∗hyk[B]) .(13)
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The second assertion of the theorem is equivalent to the vanishing of πik[A(x, y)]
for 0 < i < e by the k-local Hurewicz theorem of corollary 3.6. Thus, the result
follows from the isomorphism (13) and proposition 2.15. �

The following result is well-known to experts, but we do not know any written
reference for it.

Lemma 5.2. Let A : Aop → Z-Mod and B : A → Z-Mod be two additive
functors, and let k[A] and k[B] denote the composition of these functors with the
k-linearization functor k[−]. There is an isomorphism of k-modules, natural with
respect to A and B:

k[A]⊗k[A] k[B] ' k[A⊗A B] .

Proof. For all objects x of A, we let θA,B,x : k[A(x)]⊗ k[B(x)]→ k[A⊗AB] be the
k-linear map such that θA,B,x(s⊗t) = Js⊗tK for all s in A(x) and all t ∈ B(x). (The
brackets refer to the class of an element of A(x) ⊗ B(x) in the quotient A ⊗A B.)
These maps θA,B,x induce a k-linear map, natural in A and B:

θA,B : k[A]⊗k[A] k[B]→ k[A⊗A B] .

Assume thatB = A(x,−), hence k[B] is a standard projective in k[A]-Mod. One
checks on the explicit formulas that the composition of θA,B with the k-linearization
of the Yoneda isomorphism A⊗

kA A(x,−) ' A(x) is equal to the Yoneda isomor-
phism k[A] ⊗k[A] k[A(x,−)] ' k[A(x)]. Thus θA,A(x,−) is an isomorphism. Since
every finitely generated projective object of A-Mod is a direct summand of a stan-
dard projective, it follows that θA,B is an isomorphism for all finitely projective
functor B in A-Mod.

Every projective functor A-Mod is the filtered colimit of its finitely generated
projective subfunctors. Since both the source and the target of θA,B , viewed as
functors of B, preserve filtered colimits of monomorphisms, we obtain that θA,B is
an isomorphism for all projectives B.

Now let B be arbitrary and let P → B be a projective simplicial resolution
of B in A-Mod. Then we have a commutative square of simplicial k-modules in
which the top row is an isomorphism, the bottom row features constant simplicial
k-modules and the vertical arrows are induced by the simplicial maps P → B:

k[A]⊗k[A] k[P ] k[A⊗A P ]

k[A]⊗k[A] k[B] k[A⊗A B]

ΘA,P

'

ΘA,B

.

By right exactness of tensor products and by the relative Hurewicz theorem of
proposition 3.3, the vertical morphisms are isomorphisms in π0. Hence ΘA,B is an
isomorphism. �

Some special cases of the excision theorem. We now investigate concrete conditions
which imply the second assertion of theorem 5.1.

Theorem 5.3. Let A and B be small additive categories, and let φ : A → B be a full
and essentially surjective additive functor. Assume that for all x, B(x, x)⊗Z k = 0.
Then the restriction functor φ∗ : k[B]-Mod→ k[A]-Mod is ∞-excisive.

Proof. Let C denote the following full subcategory of abelian groups:
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• if char k 6= 0, the objects of C are the groups on which multiplication by
char k is invertible;

• if char k = 0, the objects of C are the torsion groups whose elements have
orders invertible in k.

This subcategory is stable under kernels, cokernels and direct sums. Moreover, for
all A ∈ C we have TorZ1 (A, k) = 0 = A⊗Z k.

Now, the hypothesis on B implies that B(x, y) ∈ C for all (x, y), thanks to
lemma 5.4 below (applied to the rings k and B(y, y), using that B(x, y) is a B(y, y)-
module). Thus, for all standard projectives haAop in Mod-A, the abelian group
haAop ⊗A φ∗hyB = B(y, φ(a)) belongs to C. Therefore, A(x, y) is a simplicial group
in C. In particular, its homotopy groups belong to C. Thus the second assertion of
theorem 5.1 is satisfied for all e, whence the result. �

Lemma 5.4. Let R and S be rings such that R⊗ZS = 0. Let us denote r := charR
and s := charS. Then (r, s) 6= (0, 0). Moreover, if r 6= 0, then r belongs to S×.

Proof. If a tensor product of abelian groups is zero, at least one of them is torsion,
whence (r, s) 6= (0, 0). If r 6= 0, then Z/r is a direct summand of the additive group
of R, whence Z/r ⊗Z S = 0, what implies r ∈ S×. �

The next two corollaries are direct consequences of theorem 5.3. Corollary 5.6
provides a proof of theorem 1.3 from the introduction.

Corollary 5.5. Let A be a small additive category and let n be an integer invert-
ible in k. The restriction functor φ∗ : k[A/n]-Mod → k[A]-Mod induced by the
quotient functor φ : A → A/n is ∞-excisive.

Corollary 5.6. Let I be a k-cotrivial ideal of a small additive category A. The
restriction functor π∗ : k[A/I]-Mod→ k[A]-Mod induced by the quotient functor
π : A → A/I is ∞-excisive.

Under some favorable assumptions on A and B, theorem 5.1 can also be refor-
mulated in terms of categories of additive functors.

Definition 5.7. Let k be a commutative ring. We say that an additive category
C is k-torsion-free if TorZ(k, C(x, y)) = 0 for all objects x, y of C.

Theorem 5.8. Let φ : A → B be an additive functor between two small additive
categories, such that φ∗ : k[B]-Mod → k[A]-Mod is fully faithful. Assume that
that A and B are both k-torsion free. Then the following assertions are equivalent.
(1) The functor φ∗ : k[B]-Mod→ k[A]-Mod is e-excisive.
(2) The functor φ∗ : kB-Mod→ kA-Mod is e-excisive.

Proof. We first claim that for all objects x, y and all integers i we have a short
exact sequence, where A(x, y) is the simplicial group defined in theorem 5.1:

0→ k ⊗Z πiA(x, y)→ πi(k ⊗k A(x, y))→ TorZ(k, πi−1A(x, y))→ 0 .

If B is k-torsion-free, then for all objects a of A, TorZ1 (k,−) vanishes on the abelian
group haAop ⊗A φ∗hyBop ' B(y, φ(a)), hence on the abelian groups A(x, y)q for all
q ≥ 0, and the short exact sequence is given by the universal coefficient theorem
[29, XII Thm 12.1]. Thus, the second assertion of theorem 5.1 is equivalent to the
vanishing of the homotopy groups of k ⊗Z A(x, y) ' (k ⊗Z Q

x) ⊗
kA (φ∗hy

kB) in
degrees 0 < i < e.
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Next, we claim that k ⊗Z Q
x is a simplicial resolution of k ⊗Z φ

∗hxBop = k ⊗Z
B(φ(−), x) in Mod- kA. If A is k-torsion-free, then TorZ1 (k,−) vanishes on the
objects of Qx, and also on π0Q

x because B is k-torsion-free. Thus the claim fol-
lows from the universal coefficient theorem [29, XII Thm 12.1]. As a consequence,
proposition 2.15 tells us that the vanishing of the homotopy groups of k⊗Z A(x, y)
is equivalent to φ∗ : kB-Mod→ kA-Mod being e-excisive. �

Remark 5.9. The above theorem is a functor homology analogue of Suslin-Wodzicki’s
excision theorem in rational algebraic K-theory [45] (see also [43] for the non-
rational case). Indeed, the second assertion in theorem 5.8 is a natural generaliza-
tion of the ‘H-unital’ condition which governs excision in K-theory.

To be more specific, if I is a two-sided ideal of a ring R, and if we consider
A = PR, B = PR/I and φ = − ⊗R R/I, then the second assertion of theorem 5.8
is easily seen to be equivalent to

(3) TorR⊗Zk
i ((R/I)⊗Z k, (R/I)⊗Z k) = 0 for 0 < i < e.

(To prove the equivalence, use proposition 2.15 and the fact that kA-Mod is equiv-
alent to R ⊗Z k by the Eilenberg-Watts theorem.) In the situation considered in
[45], that is, if R = Z ⊕ I where I is a ring without unit (seen as an ideal in the
unital ring R constructed by adding formally a unit to I) and k = Q, the Tor
appearing in assertion (3) can be computed with a bar complex, hence assertion
(3) is equivalent to R being H-unital.

An application of excision. The next proposition is a consequence of Kuhn’s struc-
ture results [24], and corollary 5.11 is the consequence for antipolynomial homology
that one immediately deduces from corollary 5.6.

Proposition 5.10. If R is a finite semi-simple ring and if k is a field of character-
istic zero, the k-vector spaces Extik[PR](F,G) and Tor

k[PR]
i (F,G) vanish in positive

degrees i for all functors F , G.

Proof. The main result of [24] says that k[PFq ]-Mod is equivalent to the infinite
product

∏
n≥0 k[GLn(Fq)]-Mod, which implies the vanishing result when R is a

finite field. Assume now that R is a finite simple ring. Then R is isomorphic to a
matrix ring Mn(Fq) and PR is therefore equivalent to PFq by Morita theory, which
implies that the vanishing result holds for finite simple rings. Finally, assume that
R is a finite semi-simple ring. Then R is isomorphic to a product R1 × · · · ×Rn of
simple rings, hence PR is equivalent to PR1

× · · · ×PRn . The vanishing result can
then be retrieved from the vanishing result for simple rings by iterated uses of the
spectral sequence of lemma 4.8. �

Corollary 5.11. Let k be a field of characteristic zero, and let F, F ′, G be three
functors from A to k-Mod, with F contravariant. If there is a finite semi-simple
ring R such that these three functors factor through PR, then for all i > 0 we have:

Extik[A](F
′, G) = 0 , Tor

k[A]
i (F,G) = 0 .

6. Preliminaries on polynomial homology

We use the term ‘polynomial homology’ as a shorthand for the computation of
Tor and Ext over k[A] between polynomial functors. Sections 6 to 10 deal with the
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computation of polynomial homology. We will assume that k is a field and we will
focus on the polynomial functors of the form

TF := π∗1F1 ⊗ · · · ⊗ π∗nFn(14)

where the Fi are strict polynomial functors over k and the πi are additive functors
from A to k-vector spaces. The purpose of this short section is to make preliminary
remarks on polynomial homology, which justify and explain the assumptions of our
theorems in sections 8 and 10. All the material presented in this section is more
or less standard, the new result is the polynomial analogue of excision given in
theorem 6.9.

6.1. The size of the field k. We can most often assume that the field k is as big
as we want, in particular infinite and perfect. Indeed, for all field extensions k → K
proposition 2.21 yields a base change isomorphism:

Tork[A]
∗ (F,G)⊗K ' TorK[A]

∗ (F ⊗K,G⊗K) .(15)

We have similar situation for Ext, however one needs suitable finiteness assumptions
(namely F is fp∞, or k → K is a finite extension of fields, see proposition 2.22) to
ensure that the following map is an isomorphism

Ext∗k[A](F,G)⊗K → Ext∗K[A](F ⊗K,G⊗K) .(16)

6.2. Additive functors πi with infinite dimensional values. Recall that over
an infinite field, the category of d-homogeneous polynomial functors is a full sub-
category of the category k[Pk]-Mod. In other words, strict polynomial functors
are functors from finite-dimensional vector spaces to all vector spaces, hence the
meaning of π∗i Fi = Fi ◦ πi is clear only when πi(x) is finite-dimensional for all x.
In general we use the following definition.

Definition 6.1. Let F : k-Mod → k-Mod denote the left Kan extension to all
vector spaces of a functor F : Pk → k-Mod. That is, F (v) is the colimit of
the vector spaces F (u) taken over the poset of finite-dimensional subspaces u ⊂ v
ordered by inclusion. For all additive functors π : A → k-Mod we define π∗F as
the composition

π∗F := F ◦ π .

The following lemma follows from the fact that F is defined by taking filtered
colimits and that limits and colimits in functor categories are computed objectwise.

Lemma 6.2. Sending a strict polynomial functor F to the composition π∗F yields
an exact and colimit preserving functor

π∗ : ΓdPk-Mod→ k[A]-Mod .

As a consequence, we have induced maps on the level of functor homology:

Ext∗ΓdPk(F,G)→ Ext∗k[A](π
∗F, π∗G) ,

Tork[A]
∗ (π∗F, π∗G)→ TorΓdPk

∗ (F,G) .

Remark 6.3. The notation π∗F used in definition 6.1 is compact and it extends the
classical notation for composition. However, we shall be careful about the following
phenomenon. If φ : k-Mod → k-Mod is an additive functor, we often denote
by the same letter φ : Pk → k-Mod its restriction to finite-dimensional vector
spaces. Now the functor F ◦ φ ◦ π need not be be isomorphic to F ◦ φ ◦ π – though
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these two functors do coincide if φ preserves filtered colimits of monomorphisms
of vector spaces or if π has finite-dimensional values. As a consequence, π∗(φ∗F )
might have two different meanings, depending on the fact that we consider φ :
k-Mod → k-Mod or its restriction to Pk. For this reason, we shall cautiously
avoid iterating the notation of definition 6.1 and we turn back to notations with
compositions whenever there is a risk of ambiguity.

6.3. Reducing the number of factors in tensor products. Computation of
Ext and Tor between tensor products of the form (14) can always be reduced to the
case where there is only one factor in the tensor products. The reduction procedure
is well-known (at least to the experts) and we briefly explain it here. We consider
two cases, according to the characteristic of the field k.

Definition 6.4. We say that the characteristic of the field k is large with respect
to the tensor product (14) if each Fi is a di-homogeneous strict polynomial functor
such that di! is invertible in k.

Notice that according to definition 6.4, characteristic zero is large. The following
well-known fact is a consequence of classical Schur-Weyl duality for Schur algebras,
together with the fact [18, Thm 3.2] that the category of d-homogeneous strict
polynomial functors is equivalent to the category of modules over the Schur algebra
S(n, d), if n ≥ d.

Lemma 6.5. Assume that d! is invertible in the field k. Then for all d-homogeneous
strict polynomial functor F there is a k[Sd]-moduleM and an isomorphism, natural
with respect to the vector space v

F (v) ' v⊗d ⊗k[Sd] M .

Assume that the characteristic of k is large with respect to the tensor product
(14) and let Sd = Sd1 × · · ·×Sdn . Lemma 6.5 yields a k[Sd]-module N such that

TF ' (π⊗d11 ⊗ · · · ⊗ π⊗dnn )⊗k[Sd] N

where the action of Sd on π⊗d11 ⊗ · · · ⊗ π⊗dnn is given by permuting the factors of
the tensor product. If the characteristic of k is also large with respect to another
tensor product TG := ρ∗1G1⊗· · ·⊗ρ∗mGm where each Gi is a ei-homogeneous strict
polynomial functor then we have a similar isomorphism:

TG ' (ρ⊗e11 ⊗ · · · ⊗ ρ⊗emm )⊗k[Se] M .

The assumption on the characteristic also ensures that k[Sd] and k[Se] are semisim-
ple, hence we have an isomorphism:

Tork[A]
∗ (TF , TG) ' T∗ ⊗k[Se]⊗k[Se] (N ⊗M)(17)

where T∗ denotes the right k[Sd]⊗k[Se]-module (with action ofSd andSe induced
by permuting the factors of the tensor product in the first argument of Tor and in
the second argument of Tor respectively):

T∗ := Tork[A]
∗ (π⊗d11 ⊗ · · · ⊗ π⊗dnn , ρ⊗e11 ⊗ · · · ⊗ ρ⊗emn ) .

Similarly Ext∗k[A](TF , TG) can be computed from

E∗ := Ext∗k[A](π
⊗d1
1 ⊗ · · · ⊗ π⊗dnn , ρ⊗e11 ⊗ · · · ⊗ ρ⊗emn ) .

Thus it remains to compute T∗ and E∗. This can be achieved by the standard tech-
nique using sum-diagonal adjunction isomorphisms (see example 2.19) and Künneth
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formulas (see section 2.5). Some special instances of this computation can be found
in the literature, see e.g. [13, Thm 1.8] or [49, Prop 5.4]. The general formula is
not harder to prove but it is combinatorially slightly more involved. We give the
result for T∗ (and leave its proof as an exercise to the reader).

Proposition 6.6. Let d = d1 + · · · + dn and e = e1 + · · · + em. If d 6= e then T∗
is zero in all degrees. If d = e, let

α : {1, . . . , d}� {1, . . . , n} and β : {1, . . . , d}� {1, . . . ,m}

be the nondecreasing surjective maps such that α−1(i) has cardinal di and β−1(i)
has cardinal ei for all i. There is an isomorphism of graded vector spaces:

T∗ '
⊕
σ∈Sd

Tσ
∗ , with Tσ

∗ =
⊗

1≤i≤d

Tork[A]
∗ (πασ(i), ρβ(i)) .

The action of (τ, µ) ∈ Sd ×Se on the right hand side of this isomorphism can be
described as follows. If t = t1 ⊗ · · · ⊗ tn ∈ Tσ

∗ then (τ, µ) · t equals

εtµ(1) ⊗ · · · ⊗ tµ(n) ∈ Tτ
−1σµ
∗

where ε ∈ {±1} is the Koszul sign such that t1 · · · tn = εtµ(1) · · · tµ(n) in the free
graded commutative algebra generated by t1, . . . , tn.

There is a similar result for Ext, provided the πi are of type fp∞ – this as-
sumption is needed for the Künneth formula, cf. proposition 2.22 and remark 2.23.
Isomorphism (17) and proposition 6.6 lead us to the following conclusion.

Conclusion 6.7. If the characteristic of the field k is large with respect to the
tensor products TF and TG, then the computation of Tork[A]

∗ (TF , TG) reduces to
the computation of Tork[A]

∗ (π, ρ) where π and ρ are some of the additive functors
appearing in the definition of TF and TG. A similar reduction to additive functors
holds for the computation of Ext-groups, provided the additive functors πi appear-
ing in the definition of TF are of type fp∞. (See remark 2.23 and the article [10]
for more details on the fp∞ condition).

If the characteristic of the field k is not large with respect to TF and TG, we may
not be able to reduce ourselves to the computation of Ext an Tor between additive
functors. But in principle, we can still reduce the computations to something
simpler. Namely sum-diagonal adjunction yields an isomorphism

Tork[A]
∗ (TF , TG) ' Tork[A×m]

∗ (T�m
F , ρ∗1G1 � · · ·� ρ∗mGm) ,

where T�m
F is the functor such that

T�m
F (x1, . . . , xm) = TF (x1 ⊕ · · · ⊕ xm) =

⊗
1≤i≤n

Fi(πi(x1)⊕ · · · ⊕ πi(xm))

Each Fi(v1⊕· · ·⊕ vm) has a finite filtration (e.g. its Loewy filtration) whose layers
are direct sums of tensor products of the form L1(v1)⊗ · · · ⊗Lm(vm), in which the
Li are strict polynomial functors. Thus T�m

F has a finite filtration whose layers are
direct sums of functors of the form TH1

� · · · � THm , where each THj is a tensor
product of the form (14):

THj = π∗1H1,j ⊗ · · · ⊗ π∗nHn,j .
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Therefore, the Künneth formula of proposition 2.21 reduces the computation of
Tork[A]
∗ (TF , TG) to the computation of the graded k-modules

Tork[A]
∗ (THj , ρ

∗
jGj)

In other words, we have reduced the computation of Tork[A]
∗ (TF , TG) to a similar

computation, where the tensor product in the right argument of Tor is now a tensor
product with only one factor. (Admittedly, this reduction may be hard to work out
in practice since it involves a computation of the filtration of T�m

F and the study
of the associated long exact sequences in Tor.)

A similar reasoning then allows to reduce the number of factors of the tensor
product in the left hand side argument of Tor, and we obtain the following conclu-
sion.

Conclusion 6.8. In principle, the computation of Tork[A]
∗ (TF , TG) can be reduced

to the computation of Tor-groups of the form Tork[A]
∗ (π∗H, ρ∗K), where H, K are

strict polynomial functors and π and ρ are some of the additive functors used in
the definition of TF and TG. A similar reduction holds for the computation of
Ext-groups under some suitable fp∞ assumptions.

6.4. Simplifying the source category A. If k is a field of positive characteristic
p, let I be a ideal of A contained in pA. Then every additive functor A → k-Mod
factors through A/I, hence every tensor product of the form (14) factors through
A/I. The next theorem is a polynomial analogue of the excision theorem. Under
good hypotheses on I, it reduces the computation of polynomial homology over A
to the computation of polynomial homology over A/I. A typical use of this theorem
is when I(x, y) is the abelian subgroup of all the elements of A(x, y) whose orders
are finite and invertible in k.

Theorem 6.9. Let k be an arbitrary commutative ring, and let I be an ideal of A
such that k ⊗Z I(x, y) = 0 = TorZ1 (k, I(x, y)) for all x and y in A. Then for all
polynomial functors F in k[A/I]-Mod and for all functors G in k[A/I]-Mod and
G′ in Mod-k[A/I], restriction along π : A� A/I yields isomorphisms

Ext∗k[A/I](G,F ) ' Ext∗k[A](π
∗G, π∗F ) , Tork[A/I]

∗ (G′, F ) ' Tork[A]
∗ (π∗G′, π∗F ) .

Proof. We prove the Ext-isomorphism, the proof of the Tor-isomorphism is similar.
Since π∗ : k[A/I]-Mod → k[A]-Mod is full and faithful, we only have to check
that for all x in A the functor π∗hxA/I = k[A/I(x,−)] is Homk[A](−, F )-acyclic.

For all objects x and y of A, Tork[I(x,y)]
∗ (k, k[A(x, y)]) equals zero in positive

degrees and k[A/I(x, y)] in degree zero, hence the normalized bar construction
yields an exact complex in k[A]-Mod:

· · · → K⊗i ⊗ hxA → K⊗i−1 ⊗ hxA → · · · → hxA → π∗hxA/I → 0

where K denotes the reduced part of the functor k[I(x,−)]. The functor hxA is
projective, and the functors K⊗i ⊗ hxA are Homk[A](−, F )-acyclic by lemma 4.9.
Hence π∗hxA/I is Homk[A](−, F )-acyclic by a dimension shifting argument. �

In some cases, A/I is Fp-linear. If not, one can at least hope to obtain informa-
tion on the polynomial homology over k[A/I] from the polynomial homology over
k[A/p] via the base change spectral sequences of proposition 2.20. In the sequel
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of the article, we bound ourselves to the study of polynomial homology over an
Fp-linear source category.

7. Polynomial homology over PFq

Let k be a perfect field of positive characteristic p containing a finite subfield Fq
with q elements and let t : PFq → Pk be the additive functor given by extensions
of scalars t(v) = k ⊗Fq v. In this section we compute the graded vector spaces
Ext∗k[PFq ](t

∗F, t∗G), where F and G are strict polynomial functors over k, in terms
of their so-called generic cohomology. For this purpose, we heavily rely on the
results and the proofs of the fundamental work of Franjou, Friedlander, Scorichenko
and Suslin [14]. The results of this section are one of the key ingredients for our
results on polynomial homology over arbitrary categories in sections 8 and 10.

7.1. Frobenius twists and generic homology. Let k be a perfect field of posi-
tive characteristic p. For all integers r and all k-vector spaces v we denote by (r)v
the k-vector space which equals v as an abelian group, with action of k given by

λ · x := λp
−r
x .

Thus (0)v = v and (s)((r)v) = (s+r)v. We note that (r)− is an additive endofunctor
of k-vector spaces which preserves dimension.

Notation 7.1. If L is a perfect field and F is an object of k[PL]-Mod we denote
by F (r) the composition of F and (r)− : PL → PL.

When r > 0, the functor (r)− : Pk → k-Mod is the underlying ordinary functor
of a certain strict polynomial functor. Indeed, let sym : Sp

r → ⊗pr be the sym-
metrization morphism. This is a morphism of pr-homogeneous strict polynomial
functors such that for all finite-dimensional k-vector spaces v:

sym : Sp
r

(v) → v⊗p
r

x1 · · ·xpr 7→
∑
σ∈Spr xσ(1) ⊗ · · · ⊗ xσ(pr)

.

The natural morphism (r)v → Sp
r

(v) which maps x to xp
r

identifies (r)v with the
kernel of sym. Hence (r)v is actually the underlying functor of a pr-homogeneous
strict polynomial functor, namely the kernel of sym, which is called the r-th Frobe-
nius twist functor and which is denoted by I(r). The following notation was intro-
duced in [18], it is the strict polynomial functor analogue of notation 7.1.

Notation 7.2. For all d-homogeneous strict polynomial functors F , we denote by
F (r) the dpr-homogeneous strict polynomial functor F (r) := F ◦ I(r).

Remark 7.3. The definition of composition of strict polynomial functors is the
obvious one if we think of strict polynomial functors in the way they are defined
in [18]. If we use the description of strict polynomial functors as k-linear functors,
then F (r) is the restriction of F along the k-linear functor Γdp

r

Pk → ΓdPk which
sends a vector space v to its Frobenius twist v(r), and whose action on morphisms
is induced by the verschiebung map

v : Γdp
r

Homk(u, v)→ Γd((r)Homk(u, v)) ' Γd(Homk((r)u, (r)v)) .

One checks that (I(r))(s) = I(r+s) for all positive integers r, s. This formula
extends to all non-negative integers if we define I(0) as the 1-homogeneous functor
such that I(0)(v) = v.
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Remark 7.4. The strict polynomial functor I(0) is known under many different
names, namely we have isomorphisms of 1-homogeneous strict polynomial functors
I(0) ' S1 ' Λ1 ' Γ1 ' ⊗1. The functor is also commonly denoted by the letter I,
this simpler notation being consistent with notation 7.2.

The next result is established in [14] when k is a finite field, but the case of an
infinite field k follows easily.

Proposition-Definition 7.5. Let F and G be two d-homogeneous strict polyno-
mial functors. The maps given by precomposition by I(1):

ExtiΓdprPk(F (r), G(r))→ Exti
Γdpr+1Pk

(F (r+1), G(r+1))

are always injective, and they are isomorphisms if i < 2pr. The stable value is called
the vector space of generic extensions of degree i and denoted by Extigen(F,G):

Extigen(F,G) := colim
r

ExtiΓdprPk(F (r), G(r)) ' ExtiΓdprPk(F (r), G(r)) if r � 0.

Proof. Injectivity on Ext is proved in [14, Cor 1.3] when k is a finite field, but the
proof also applies without change over when k is infinite. Isomorphism is proved
in [14, Cor 4.6] over a finite field. Thus, the isomorphism holds if k is infinite
and if F is a standard projective and G is a standard injective by base change
as in [44, 2.7]. The isomorphism for arbitrary F and G follows by considering a
projective resolution of F , an injective resolution of G, and by using a standard
spectral sequence argument. �

We refer the reader to [52] for a survey of these generic extensions and some for-
mulas to compute them (which simplify and generalize [14]). See also section 11.1.
We can define generic Tor in the same fashion as generic Ext. In order to compute
Tor, we need objects of Mod-ΓdPk that we call contravariant d-homogeneous strict
polynomial functors. The following proposition follows from proposition 2.12.

Proposition-Definition 7.6. Let F and G be two d-homogeneous strict polyno-
mial functors, with F contravariant. The maps given by precomposition by I(1)

Tori
Γdpr+1Pk

(F (r+1), G(r+1))→ ToriΓdprPk(F (r), G(r))

are always surjective, and they are isomorphisms if i < 2pr. The stable value is
called the vector space of generic torsion of degree i and denoted by Torgen

i (F,G):

Torgen
i (F,G) := lim

r
TorΓdp

r
Pk

i (F (r), G(r)) ' TorΓdp
r
Pk

i (F (r), G(r)) for r � 0.

7.2. The strong comparison theorem. Recall from lemma 6.2 the exact functor:

t∗ : ΓdPk-Mod→ k[PFq ]-Mod .

induced by forgetful functor from strict polynomial functors to ordinary functors
together and restriction along the base change functor t : PFq → Pk. If q = pr, there
are canonical isomorphisms t∗I(nr) ' t in k[PFq ]-Mod, which sends an element λ⊗x
in (nr)(k⊗Fq v) to the element λp

nr⊗x in k⊗Fq v. So if F and G are d-homogeneous
strict polynomial functors, we have canonical isomorphisms:

t∗F ' t∗(F (nr)) , t∗(G(nr)) ' t∗G .
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So if n is big enough, by combining these isomorphisms with the morphism of Ext
induced by t∗ we obtain a graded k-linear map:

Extigen(F,G) ' ExtiΓdpnrPk(F (nr), G(nr))→ Extik[PFq ](t
∗F, t∗G) .(18)

The next result follows from the strong comparison theorem [14, Thm 3.10].

Theorem 7.7. Let k be an infinite perfect field containing a finite subfield with
q elements, and let F and G be two d-homogeneous strict polynomial functors. If
q ≥ d, the map (18) is an isomorphism in all degrees i.

Proof. Theorem 7.7 generalizes the strong comparison theorem of [14] in two ways.
Firstly, contrarily to [14], we do not assume that k = Fq. Secondly, we work with
ΓdPk-Mod rather than with the category ΓdPk-mod, i.e. we allow our strict
polynomial functors to have infinite-dimensional values.

We overcome these two technical points as follows. The standard projective
objects of ΓdPk-Mod are the divided power functors Γd,s = Γd(Homk(ks,−)) and
the standard injectives are the symmetric power functors Sd,s = Sd(ks⊗−). These
two kinds of functors commute with base change: there are canonical isomorphisms

t∗Γd,s(v) ' Γd,sFq (v)⊗Fq k and t∗Sd,s(v) ' Sd,sFq (v)⊗Fq k

where the indices Fq indicate their counterparts in the category ΓdPFq -Mod of
strict polynomial functors over Fq. Thus the morphism (18) fits into a commutative
diagram

ExtiΓdPFq
(Γ
d,s (nr)
Fq , S

d,s (nr)
Fq )⊗Fq k ExtiΓdPk(Γd,s (nr), Sd,s (nr))

ExtiFq [PFq ](Γ
d,s
Fq , S

d,s
Fq )⊗Fq k Extik[PFq ](t

∗Γd,s, t∗Sd,s)

'

(18)

'

where the upper horizontal isomorphism is the base change functor for strict polyno-
mial functors [44, 2.7], and the lower horizontal isomorphism is induced by tensoring
by k over Fq (that tensoring by k yields an isomorphism follows from the Künneth
formula of proposition 2.22 and the fact that Γd,sFq is fp∞ by Schwartz’s fp∞ lemma
[15, Prop 10.1]), and the vertical morphism on the left hand side is induced by the
forgetful functor from strict polynomial functors to ordinary functors. This latter
morphism is an isomorphism if n� 0 by the strong comparison theorem [14, Thm
3.10], so that our morphism (18) is an isomorphism when F is a standard projective
and G is a standard injective. Next, we observe that the source and the target of
morphism (18) both turn sums into products when viewed as functors of F , and
they both turn products into products when viewed as functors of G, which implies
that morphism (18) is an isomorphism when F is an arbitrary projective strict
polynomial functor and G is an arbitrary injective strict polynomial functors (pos-
sibly with infinite-dimensional values). This implies that (18) is an isomorphism
when F and G are arbitrary objects of ΓdPk-Mod by a standard spectral sequence
argument. �

We have a similar situation with generic Tor. Namely, if F is a d-homogeneous
contravariant strict polynomial functors, and if G is a d-homogeneous strict polyno-
mial functor, restriction along t (as in lemma 6.2) together with the isomorphisms
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t∗F ' t∗F (nr) and t∗G ' t∗G(nr) induce a morphism:

Tor
k[PFq ]

i (t∗F, t∗G)→ TorΓdp
nr

Pk
i (F (nr), G(nr)) ' Torgen

i (F,G) .(19)

The next corollary follows from theorem 7.7 and proposition 2.12.

Corollary 7.8. If q ≥ d, the map (19) is an isomorphism in all degrees i.

7.3. Recollections of non-homogeneous strict polynomial functors. Non-
homogeneous strict polynomial functors are used in the generalizations of the strong
comparison theorem 7.7 that we give in sections 7.4 and 7.5. We abuse notations
(see remark 7.11 below) and we denote by ΓPk-Mod the category of strict poly-
nomial functors of bounded degree over a field k. This category is defined by

ΓPk-Mod =
⊕
d≥0

ΓdPk-Mod .

Thus a strict polynomial functor of bounded degree F is simply defined as a family of
d-homogeneous strict polynomial functors Fd, which are called the d-homogeneous
components of F , and all the Fd are zero but a finite number of them. The highest
d such that Fd 6= 0 is called the weight of F , and denoted by w(F ). We have F =⊕

d≥0 Fd. Morphisms of strict polynomial functors preserve these decompositions
into homogeneous components. More generally we have (only finitely many terms
of the sum are nonzero):

Ext∗ΓPk
(F,G) =

⊕
d≥0

Ext∗ΓdPk(Fd, Gd) .

We define generic extensions by:

Ext∗gen(F,G) =
⊕
d≥0

Ext∗gen(Fd, Gd) .

Remark 7.9. Let ΓPk-mod denote the full subcategory of ΓPk-Mod on the func-
tors F such that F (v) =

⊕
d≥0 F (v) has finite dimension for all v. Then ΓPk-mod

identifies with the category Pk introduced in [18]. The inclusion ΓPk-mod ↪→
ΓPk-Mod induces an isomorphism on Ext, so that working with the former cate-
gory or the latter is largely a matter of taste.

The forgetful functor from homogeneous strict polynomial functors to ordinary
functors described in section 2.3 extends to the non-homogeneous case. Namely,
we have a forgetful functor:

γ∗ : ΓPk-Mod =
⊕
d≥0

ΓdPk-Mod
∑
γd ∗−−−−→ k[Pk]-Mod .

If k is an infinite field, this forgetful functor is fully faithful, and an ordinary
functor F with finite-dimensional values is the image of a strict polynomial functor
of weight d if and only if the coordinate functions of the maps Homk(v, w) →
Homk(F (v), F (w)), f 7→ F (f), are polynomials of degree d.

Most often we will omit γ∗ from the notations, and simply denote by F the
underlying ordinary functor of a strict polynomial functor F .

Remark 7.10. The underlying ordinary functor of a strict polynomial functor of
bounded degree F is always polynomial in the sense of Eilenberg and Mac Lane,
used in section 4. Thus F has a weight w(F ) and a degree degF . We have w(F ) ≤
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degF , but the inequality may be strict. For example w(I(r)) = pr and deg I(r) = 1.
More detailed relations between these two notions of degree can be found in [51].
The discrepancy between these two notions is our reason for using the term ‘weight’
instead of the term ‘degree’ used in [18].

Similarly there is a category Mod-ΓPk of contravariant strict polynomial func-
tors of bounded degree and we have a similar decompositions (with finitely many
nonzero terms in the direct sum)

TorΓPk
∗ (F,G) =

⊕
d≥0

TorΓdPk
∗ (Fd, Gd) , Torgen

∗ (F,G) =
⊕
d≥0

Torgen
∗ (Fd, Gd) .

Remark 7.11. Despite its notation, the category ΓPk-Mod is not a category of
k-linear functors from some category ΓPk to k-modules. However this abuse of
notation emphasizes the fact the properties of the category ΓPk-Mod are very
close to those of the categories ΓdPk-Mod. It also allows compact notations for
Ext and Tor, with the fictious category ΓPk as a decoration.

7.4. Strong comparison without homogeneity. If F and G are two strict poly-
nomial functors of bounded degrees, we define a comparison map

Ext∗gen(F,G) =⊕
d≥0

Ext∗gen(Fd, Gd) →
⊕
d≥0

Ext∗k[PFq ](t
∗Fd, t

∗Gd)→ Ext∗k[PFq ](t
∗F, t∗G)(20)

where the map on the left hand side is the direct sum of the comparison maps (18)
used in theorem 7.7 while the map on the right hand side is the canonical inclusion
into

Ext∗k[Pk](t
∗F, t∗G) =

⊕
d,e≥0

Ext∗k[Pk](t
∗Fd, t

∗Ge) .

We will often refer to morphism (20) as the strong comparison map. The next result
extends the strong comparison theorem 7.7 to the non-homogeneous case.

Theorem 7.12. Let k be an infinite perfect field containing a finite subfield with
q elements, and let F and G be two strict polynomial functors, with weights less or
equal to q. Then the map (20) is an isomorphism.

Proof. The first map of the composition (20) is an isomorphism by the strong
comparison theorem 7.7. Thus it suffices to prove that Ext∗k[Pk](t

∗Fd, t
∗Ge) = 0 as

soon as d 6= e, which follows from the vanishing lemma 7.13 below. �

We shall explain the elementary vanishing result used in theorem 7.12 in a general
context, in order to use it again later. Let A be a small additive category. We
assume that A is F-linear, over a subfield F ⊂ k. In the next lemma, we say
that a functor F of k[A]-Mod is d-homogeneous (with respect to the field F) if
F (λf) = λdF (f) for all morphisms f in A and all λ ∈ F.

Lemma 7.13. Let F be a subfield of k, and let d 6= e be two non-negative inte-
gers such that cardF ≥ d, e. If F and G are two objects of k[A]-Mod which are
respectively d-homogeneous and e-homogeneous, then Ext∗k[A](F,G) = 0.

Proof. Let F and G be two arbitrary objects of k[A]-Mod. Since A is F-linear,
every element of F yields a natural transformation λF ∈ Endk[A](F ) whose com-
ponent at x equals F (λidx). Thus Ext∗k[A](F,G) has an F-F-bimodule structure
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given by λ · [ξ] · µ = [µG ◦ ξ ◦ λF ], where − ◦ λF is the pullback of an extension
along λF and λG ◦ − is the pushout of an extension along µG. Moreover, for all
morphisms f : H → K in k[A]-Mod we have f ◦ λH = µG ◦ f , which implies that
the two F-module structures coincide: λF · [ξ] = [ξ] · λG. Assume now that F is d
homogeneous and G is e-homogeneous. Then λF = λdidF and λG = λeidG. Thus
for all extensions [ξ] we have λd[ξ] = λF · [ξ] = [ξ] ·λG = λe[ξ]. Since the cardinal of
F is greater or equal to d and e, the maps λ 7→ λd and λ 7→ λe, seen as maps from
F to k, are not equal. Hence the equality λd[ξ] = λe[ξ] implies that [ξ] = 0. �

As before, this result can be dualized. Namely, if F and G are two strict poly-
nomial functors of bounded degrees, respectively contravariant and covariant, we
have a comparison map (where the first map is the canonical projection and the
second map is given by the direct sum of the comparison maps 19)

Tork[Pk]
∗ (t∗F, t∗G)→

⊕
d≥0

Tork[Pk]
∗ (t∗Fd, t

∗Gd)→
Torgen
∗ (F,G) =⊕

d≥0

Torgen
∗ (Fd, Gd) .(21)

We will often refer to morphism (21) as the strong comparison map (for Tor). By
using proposition 2.12 we deduce the following result from theorem 7.12.

Corollary 7.14. Let k be an infinite perfect field containing a finite subfield with
q elements, and let F and G be two strict polynomial functors, with weights less or
equal to q. Then the map (21) is an isomorphism.

7.5. Strong comparison over small fields. We are now going to generalize the
strong comparison theorem 7.12 to the case when q = pr is not big enough with
respect to the degrees of F and G. Our approach, in particular lemma 7.16 and
proposition 7.19, is inspired by the proof of [14, Thm 6.1].

Notation 7.15. Let L be a perfect field. For all positive integers a and s and
for all L-vector spaces v, we let (a,s)v = (0)v ⊕ (a)v ⊕ · · · ⊕ ( (s−1)a )v. For all
functors F in k[PL]-Mod, we denote by F (a,b) the composition of F with the
functor (a,s)− : PL → PL.

Assume that Fq ⊂ L is an extension of perfect fields, and let τ : PFq → PL be
the associated extension of scalars. Then if a is divisible by r then for all Fq-vector
spaces v there is a canonical isomorphism of L-vector spaces (a,s)τ(v) ' τ(v)⊕s,
which sends an element λi ⊗ xi of the i-th summand (ia)τ(v) of (a,s)τ(v) to the
element λp

ai

i ⊗ xi of the i-th summand of τ(v)⊕i. If we denote by diag : τ → τ⊕s

and sum : τ⊕s → τ the morphisms whose restrictions to the components of τ⊕s are
all equal to the identity of τ , we can define two morphisms in k[PFq ]-Mod:

τ∗F
F (diag)−−−−−→ (τ⊕s)∗F ' τ∗(F (r,s)) , τ∗(G(rs,s)) ' (τ⊕s)∗G

G(sum)−−−−−→ τ∗G .

These two morphisms, together with restriction along τ , yield a morphism of graded
k-vector spaces:

Ext∗k[PL](F
(r,s), G(rs,s))→ Ext∗k[PFq ](τ

∗F, τ∗G) .(22)

Lemma 7.16. If Fq ⊂ L is an extension of fields of degree s2 and q = pr, then for
all F and G in k[PL]-Mod, the map (22) is an isomorphism.
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Proof. We have a sequence of extensions of fields Fq ⊂ K ⊂ L of degree s. We
are going to convert Ext over k[PL] into Ext over k[PFq ] in two steps, by using
the effect on Ext of the restriction of scalars PL → PK and PK → PFq , and their
adjoints (with the help of proposition 2.17), and we are going to check that the
isomorphism obtained coincides with the map (22).

By [14, Prop 3.1] we have an adjoint pair

ρ′ : PL � PK : τ ′

where τ ′ is the extension of scalars and ρ′ the restriction of scalars associated to
the extension K ⊂ L. (Note that τ ′(v) = L ⊗K v is the right adjoint.) First,
for all L-vector spaces v, we have a natural isomorphism of (L,L)-bimodules φv :

L ⊗K v '
⊕

0≤i<s
(irs)v given by sending λ ⊗ x to

∑
0≤i<s λ

p−rsix. Whence an
isomorphism in k[PL]-Mod:

G(φ−1) : G(rs,s) ' ρ′∗τ ′∗G .(23)

Next, since ρ′ is left adjoint to τ ′, we have an isomorphism, for all H in k[PL]-Mod:

Ext∗k[PL](H, ρ
′∗τ ′
∗
G) ' Ext∗k[PK ](τ

′∗H, τ ′
∗
G) .(24)

To be more specific, isomorphism (24) is given by restriction along τ ′ and by the
map (τ ′

∗
G)(ε) where ε is the counit of the adjunction ρ′ a τ ′. By [14, Prop 3.1],

this counit of adjunction εu : L ⊗K u → u is given by εu(λ ⊗ x) = T (λ)x, where
T (λ) =

∑
0≤i<s λ

prsi is the trace of λ. Thus for all K-vector spaces u we have a
commutative square of L-vector spaces, in which the upper horizontal arrow is the
canonical isomorphism:⊕

0≤i<s
(−rsi)τ ′(u)

⊕
0≤i<s τ

′(u)

τ ′(ρ′(τ ′(u))) τ ′(u)

'

sumφτ′(u)

τ ′(εu)

.

It follows that the isomorphism

Ext∗k[PL](H,G
(rs,s))

'−→ Ext∗k[PK ](τ
′∗H, τ ′

∗
G)(25)

induced by isomorphisms (23) and (24) admits another description: it equals the

composition of τ ′∗ with the map induced by τ ′∗(G(rs,s)) ' (τ ′
⊕s

)∗G
G(sum)−−−−−→ G.

Similarly, we have a pair of adjoints, in which τ ′′ and ρ′′ are the extension of
scalars and the restriction of scalars associated to the extension Fq ⊂ K (and τ ′′ is
this time seen as a left adjoint):

τ ′′ : PFq � PK : ρ′′ .

For all K-vector spaces v, the isomorphism ψv : L ⊗Fq v '
⊕

0≤i<s
(ri)(L ⊗K v)

given by ψv(λ⊗ x) =
∑

0≤i<s λ
p−rix induces an isomorphism in k[PK ]-Mod:

F (ψ) : ρ′′
∗
τ∗F ' τ ′∗(F (r,s)) .(26)

Since ρ′′ is right adjoint to τ ′′ we have an isomorphism for all K in k[PK ]-Mod:

Ext∗k[PK ](ρ
′′∗τ∗F,K) ' Ext∗k[PFq ](τ

∗F, τ ′′
∗
K) .(27)

To be more specific, isomorphism (27) is induced by restriction along τ ′′ and by
(τ∗F )(η), where η is the unit of the adjunction τ ′′ a ρ′′. This unit of adjunction
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ηv : v → K ⊗Fq v is given by ηv(x) = 1 ⊗ x, whence a commutative diagram of
L-vector spaces, in which the lower horizontal arrow is the canonical isomorphism:

τ(ρ′′(τ ′′(u))) τ(u)

⊕
0≤i<s

(ri)τ ′(τ ′′(u))
⊕

0≤i<s τ(u)

ψτ′′(u)

τ(ηu)

diag

'

.

This shows that the isomorphism

Ext∗k[PK ](τ
′∗(F (r,s)),K)

'−→ Ext∗k[PFq ](τ
∗F, τ ′′

∗
K)(28)

induced by isomorphisms (26) and (27) admits another description: it is the com-

position of τ ′′∗ with the map induced by τ∗F
F (diag)−−−−−→ (τ⊕s)∗F ' τ ′′∗τ ′∗(F (r,s)).

Thus, the graded morphism (22) is the composition of the maps (25) (with
H = F (r,s)) and (28) (with K = τ ′

∗
G), hence it is an isomorphism. �

Notation 7.17. For all positive integers r and s, we denote by I(r,s) the (non-
homogeneous) strict polynomial functor of weight p(s−1)r defined by:

I(r,s) := I(0) ⊕ I(r) ⊕ · · · ⊕ I( (s−1)r ).

For all strict polynomial functors F we let F (r,s) = F ◦ I(r,s). If w(F ) = d then
w(F (r,s)) = p(s−1)rd.

Remark 7.18. The definition of composition of strict polynomial functors is the
obvious one if we think of strict polynomial functors in the way they are defined in
[18]. If we use the description of strict polynomial functors as families of k-linear
functors as we pretend to do it, then composition can be defined as follows. First
we can consider F (v0 ⊕ · · · ⊕ vs−1) as a strict polynomial functor of s variables as
in [51, Section 3.2]. Then we precompose each variable vi by the Frobenius twist
I(ir). The strict polynomial functor F (r,s) is then defined as the evaluation of the
resulting strict polynomial functor with s variables on the s-tuple (v, . . . , v).

For all strict polynomial functors F and G we define a morphism Ξk of graded
k-vector spaces as the composition

Ξk : Ext∗gen(F (r,s), G(rs,s))→ Ext∗k[PFq ](F
(r,s), G(rs,s))→ Ext∗k[PFq ](t

∗F, t∗G)(29)

where the first map is the strong comparison map (20), and the second map is
morphism (22) for L = Fq.

Proposition 7.19. Assume that k contains a finite field Fq of cardinal q = pr,
and let s be a positive integer. Then for all strict polynomial functors F and G of
weights less or equal to qs, the map (29) is an isomorphism in all degrees.

Proof. It suffices to prove the result when k contains a subfield L with qs
2

elements.
Indeed, let k → K be a finite extension of fields and let τ : k-Mod→ K-Mod be
the extension of scalars. By [44, Section 2] there is an exact k-linear base change
functor

−K : ΓPk-Mod→ ΓPK-Mod

such that for all strict polynomial functors F ′ over k there are canonical isomor-
phisms of functors τ∗F ′K ' τ ◦ F ′. Moreover this base change functor induces an
isomorphism on the level of Ext (See [44, cor 2.7] for the case of functors with
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finite-dimensional values. The proof extends to arbitrary functors when k → K is
a finite extension of fields). There is a commutative square

Ext∗gen(F
(r,s)
K , G

(rs,s)
K ) Ext∗K [PFq ](t

∗τ∗FK , t
∗τ∗GK)

K ⊗ Ext∗gen(F (r,s), G(rs,s)) K ⊗ Ext∗K [PFq ](t
∗F, t∗G)

ΞK

K⊗Ξk

' '

in which the vertical isomorphism on the left hand side is induced by the base
change functor −K and the vertical isomorphism on the right hand side is induced
by τ (see the map (16) in section 6) and by the isomorphisms HK ◦ τ ◦ t ' τ ◦H ◦ t,
for H = F or G. Therefore Ξk is an isomorphism if an only if ΞK is an isomorphism.

So we assume that k contains a subfield L with qs
2

elements. We denote by
t′ : PL → Pk the extension of scalars associated to the extension of fields L ⊂ k.
In this case Ξk is an isomorphism because we can rewrite it as the composition of
three isomorphisms:

Ext∗gen(F (r,s), G(rs,s)) Ext∗k[PFq ](t
∗F, t∗G)

Ext∗k[PL](t
′∗(F (r,s)), t′

∗
(G(rs,s))) Ext∗k[PL]((t

′∗F )(r,s), (t′
∗
G)(rs,s))

Ξk

'

'

' .

To be more specific, the vertical map on the left hand side is the strong compari-
son map (20) relative to the finite field L. By our assumptions on s, the weights
of F (r,s) and G(rs,s) are less or equal to the cardinal of L, hence this map is an
isomorphism by theorem 7.12. The lower horizontal map is induced by the canon-
ical isomorphisms t′∗(F (r,s)) ' (t′

∗
F )(r,s) and t′∗(G(rs,s)) ' (t′

∗
G)(rs,s). And the

vertical map on the right hand side is the isomorphism provided by lemma 7.16. �

Now we introduce a variant of the map Ξk which will be better adapted to our
later purposes. With this new map Ξ′k, direct sums of Frobenius twists only appear
inside F in the generic extensions. To be more specific, we let

Ξ′k : Ext∗gen(F (r,s2), G(rs2−rs))→ Ext∗k[PFq ](t
∗F, t∗G) .(30)

be the graded k-linear map induced by the strong comparison map (20), with F

and G respectively replaced by F (r,s2) and G(rs2−rs), and the following morphisms:

t∗F
F (diag)−−−−−→ (t⊕s

2

)∗F ' F (r,s2) , t∗(G(rs2−rs)) ' t∗G .

Next theorem subsumes the strong comparison theorem 7.12. To be more specific,
on recovers theorem 7.12 by taking s = 1 in the statement.

Theorem 7.20. Let k be a perfect field containing a finite subfield with q = pr

elements, and let s be a positive integer. Assume that F and G are two strict
polynomial functors with weights less or equal to qs. Then the map (30) is a graded
isomorphism.

Proof. We shall use strict polynomial multifunctors, as in [44, Section 3], [48, Sec-
tion 2] or [51, Section 3.2]. To be more specific, we consider the category of strict
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polynomial multifunctors of n variables:

Γ(P×nk )-Mod =
⊕
d≥0

Γd(P×nk )-Mod .

The operation of precomposition by Frobenius twist extends to the multivari-
able setting, namely given a strict polynomial multifunctors F and an n-tuple of
non-negative integers r = (r1, . . . , rn) we let F (r) denote the strict polynomial
multifunctor such that

F (r)(v1, . . . , vn) = F ((r1)v1, . . . ,
(rn)vn) .

Precomposition by Frobenius twists yield a morphism on Ext:

− ◦ I(m) : Exti
Γ(P×nk )

(F (r), G(r))→ Exti
Γ(P×nk )

(F (r+m), G(r+m))

which is an isomorphism provided that all the integers ri are big enough (with
respect to i, F and G). Indeed, by a spectral sequence argument, it suffices to
check the result when F is a standard projective and G is a standard injective.
In this case, F (v1, . . . , vn) = F1(v1) ⊗ · · · ⊗ Fn(vn) for some standard projective
strict polynomial functors Fi, and G(v1, . . . , vn) = G1(v1)⊗ · · · ⊗Gn(vn) for some
standard injective strict polynomial functors Gi, hence the isomorphism follows
from the Ext-isomorphism for functors with one variable and the Künneth formula.

There is a forgetful functor γ∗ : Γ(P×nk )-Mod → k[P×nk ]-Mod and the sum-
diagonal adjunction lifts to the setting of strict polynomial functors.

Now in order to prove theorem 7.20, we observe that we may choose strict poly-
nomial multifunctors F ′, G′, F ′′ and G′′ such that there is a commutative diagram,
with n� 0:

Exti
ΓPs

2

k

(F ′, G′) ExtiΓPk

(
(F (r,s2))(nr), (G(rs−r))(nr)

)

Exti
ΓPs

2

k

(F ′′, G′′)

ExtiΓPk

(
(F (r,s))(nr), (G(rs,s))(nr)

)
Extik[PFq ](t

∗F, t∗G)

'
(∗)

Ξ′k

'(∗∗)

'−◦I(m)

Ξk

To be more specific, the strict polynomial multifunctors F ′, G′, F ′′ and G′′ of the
s2 variables vij , 0 ≤ i, j < s, are respectively given by

F ′(. . . , vij , . . . ) = F
( ⊕

0≤i,j<s

(nr+ri+rsj)vij

)
,

G′(. . . , vij , . . . ) = G
( ⊕

0≤i,j<s

(nr+rs2−rs)vij

)
,

F ′′(. . . , vij , . . . ) = F
( ⊕

0≤i,j<s

(nr+ri)vij

)
,

G′′(. . . , vij , . . . ) = G
( ⊕

0≤i,j<s

(nr+rsj)vij

)
.
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The s2-tuple m is given by mij = rs2 − rs − rsj and − ◦ I(m) is an isomorphism
because n is big enough. The maps (∗) and (∗∗) are given by sum-diagonal ad-
junction. To be more explicit, the map (∗) is given by setting vij = v for all i and
j, and by composing the resulting extensions of strict polynomial functors of the
variable v by the morphism G(sum′), where

sum′ : (rs2−rs+nr)v⊕s
2

→ (rs2−rs+nr)v

is the morphism which restricts to the identity of (rs2−rs+nr)v on each summand
of (rs2−rs+nr)v⊕s

2

. Similarly, the map (∗∗) is given by setting vij = v for all i and
j, and by composing the resulting extensions of strict polynomial functors of the
variable v by the morphisms F (diag′′) and G(sum′′) where each of the morphisms

diag′′ :
⊕

0≤i<s

(ri+nr)v →
⊕

0≤i<s

(ri+nr)v⊕s

sum′′ :
⊕

0≤j<s

(rsj+nr)v⊕s →
⊕

0≤j<s

(rsj+nr)v

restricts to identity morphisms between any two summands with the same number
of Frobenius twists.

Under the hypotheses of theorem 7.20 the map Ξk is an isomorphism by proposi-
tion 7.19, hence Ξ′k is an isomorphism by commutativity of the above diagram. �

Let us give the analogue of theorem 7.20 for Tor. Let F and G be two strict
polynomial functors, with F contravariant. The strong comparison map (21) for
Tor and the morphisms

t∗F
F (sum)−−−−−→ (t⊕s

2

)∗F ' F (r,s2) , t∗G ' t∗(G(rs2−rs)) ,

(where sum : t⊕s
2 → t is the morphism whose restriction to each direct summand

t of t⊕s
2

equals the identity of t) induce a graded k-linear map:

Tor
k[PFq ]
∗ (t∗F, t∗G)→ Torgen

∗ (F (r,s2), G(rs2−rs)) .(31)

Proposition 2.12 allows to dualize theorem 7.20, and we obtain the following result.

Corollary 7.21. Let k be a perfect field containing a finite subfield with q = pr

elements, and let s be a positive integer. Assume that F ans G are two strict
polynomial functors (respectively contravariant and covariant) with weights less or
equal to qs. Then the map (31) is a graded isomorphism.

8. The homology of additive functors

In this section, we prove theorem 1.5 from the introduction, which compares
functor homology over A with functor homology over k[A]. As we are going to
explain it now, we actually prove a more precise statement for the Ext-isomorphism.

Let k be an infinite perfect field of positive characteristic p. The self-extensions
of the strict polynomial functor I(r) were first computed in [18, Thm 4.5]. We know
that they are k-vector spaces of dimension 1 in all degrees 2i such that i < pr, and
zero in the other degrees. By [18, Cor 4.9] or by [14, Thm 2.6], we also know that
these non-zero k-vector spaces of self-extensions are equal to the k-vector spaces of
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generic self-extensions of I. Thus, for all even integers i ≥ 0, we may choose an
integer r ≥ logp(i/2) and a nonzero class

0 6= ei ∈ ExtiΓprPk(I(r), I(r)) = Extigen(I, I) ,

which is a basis vector of this one-dimensional vector space.

Notation 8.1. For all additive functors ρ : A → k-Mod and all integers j, we
denote by (j)ρ the additive functor such that ((j)ρ)(a) := (j)ρ(a).

Remark 8.2. The exponent (j) is written on the left to suggest that (j)ρ is postcom-
position by the (j)-th Frobenius twist. Compare with notation 7.2, in which F (j)

which indicates precomposition by the j-th Frobenius twist.

Recall from section 7.1 that I(r)((−r)v) = v. Thus, by lemma 6.2, evaluation of
ei on (−r)ρ yields an extension

e′i ∈ Extik[A](ρ, ρ) .

Now let E∗∞ be the k-vector space which equals k in even non-negative degrees and
which equals zero in the other degrees. For all even integers i and all integers j, we
denote by Υij the composition

Υij : Extj
kA(π, ρ)⊗ Ei∞ → Extjk[A](π, ρ)⊗ Ei∞ → Exti+jk[A](π, ρ)

where the first map is induced by the forgetful functor kA-Mod→ k[A]-Mod and
the second one sends e⊗ 1 to the Yoneda splice e′i ◦ e. The maps Υij assemble into
a graded k-linear map

Υ : Ext∗
kA(π, ρ)⊗ E∗∞ → Ext∗k[A](π, ρ) .(32)

The following result is the main result of this section, and our improved form of
the Ext-isomorphism of theorem 1.5.

Theorem 8.3. Let k be an infinite perfect field of positive characteristic p, and let
A be a small additive category, which we assume to be Fp-linear. For all additive
functors ρ, π : A → k-Mod, the map Υ defined in equation (32) is an isomorphism
of graded k-vector spaces.

Remark 8.4. Since Υ is constructed in a very natural way, one can easily check
that it is compatible with a variety of operations that we may consider on Ext. For
example, assume that ρ = π, and interpret E∗∞ as generic extensions. Then Yoneda
splices naturally endow the source and the target of Υ with k-algebra structures,
and Υ is a morphism of algebras.

Before proving theorem 8.3, we observe that theorem 8.3 implies not only the
Ext-isomorphism in theorem 1.5 but also the Tor-isomorphism therein. Hence the
whole of theorem 1.5 is actually a direct consequence of theorem 8.3.

Corollary 8.5. If T∞∗ denote the graded vector space which is k in even non-
negative degrees and 0 in the other degrees. There is a graded isomorphism, natural
with respect to π and ρ:

Tor kA∗ (π, ρ)⊗ T∞∗ ' Tork[A]
∗ (π, ρ) .
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Proof of corollary 8.5. The graded vector spaces Homk(TorK∗ (π, ρ),M) are natu-
rally isomorphic to Ext∗K(ρ,Homk(π,M)) for K = kA or K = k[A] and for all
vector spaces M . So theorem 8.3 yields an isomorphism, natural in π, ρ and M :

Homk(Tor kA∗ (π, ρ),M)⊗ E∗∞ ' Homk(Tork[A]
∗ (π, ρ),M)(33)

Note that E∗∞ is the k-linear graded dual of T∞∗ . Since E∞∗ is degreewise finite-
dimensional, there is a canonical isomorphism:

Homk(Tor kA∗ (π, ρ),M)⊗ E∗∞ ' Homk(Tor kA∗ (π, ρ)⊗ T∞∗ ,M) .(34)

Thus the right hand sides of (34) and (33) are naturally isomorphic, and we conclude
the proof by applying the Yoneda lemma. �

The remainder of section 8 is devoted to the proof of theorem 8.3. We first
establish two reduction lemmas.

Lemma 8.6. Fix ρ in kA-Mod. If the morphism (32) is an isomorphism for all
standard projectives π in kA-Mod then it is an isomorphism for all π in kA-Mod.

Proof. The source and the target of Υ, regarded as functors of the variable π,
turn direct sums into products. Since every projective of kA-Mod is a direct
summand of a direct sum of standard projectives, this implies that the map (32) is
an isomorphism whenever π is projective in kA-Mod.

Now let π be an arbitrary object of kA-Mod, let P be a projective resolution of
π in kA-Mod, and let Q be an injective resolution of ρ in k[A]-Mod. We consider
the bicomplexes:

Cpq = Hom
kA(Pp, ρ)⊗ Eq∞ , Dpq = Homk[A](Pp, Q

q) .

Here we consider E∗∞ as a complex with zero differential, hence the second differ-
ential of C is zero. We have two associated spectral sequences:

Epq1 (C) = Hom
kA(Pp, ρ)⊗ Eq∞ ⇒ (Ext

kA(π, ρ)⊗ E∞)p+q ,

Epq1 (D) = Extqk[A](Pp, ρ)⇒ Extp+qk[A](π, ρ) .

For all even integers q, we choose a cycle z′q representing e′q in the complex Homk[A](ρ,Q).
Then the morphism of bicomplexes Φpq : Cpq → Dpq such that Φpq(f ⊗eq) = z′q ◦f
induces a morphism of spectral sequences E(Φ). By construction, the morphisms

Ep,∗1 (Φ) : Hom
kA(Pp, ρ)⊗ E∗∞ → Ext∗k[A](Pp, ρ)

Tot (Φ) : Ext∗
kA(π, ρ)⊗ E∗∞ → Ext∗k[A](π, ρ)

are equal to Υ. Thus E1(Φ) is an isomorphism (since the morphism (32) is an
isomorphism on projective objects of kA-Mod), which implies that Tot (Φ) is an
isomorphism. �

Lemma 8.7. If theorem 8.3 holds for A = PFp then it holds for all small additive
categories A which are Fp-linear.

Proof. By lemma 8.6, it suffices to prove that the map (32) is an isomorphism when
π = k ⊗Z A(a,−).

Let ℵ be a cardinal larger than the cardinal of A(x, y) for all x and y, and
let Aℵ be the ℵ-additivization of the Fp-category A, as in definition 2.24. Let
π′ = k ⊗Z Aℵ(a,−) and let ρ′ : Aℵ → k-Mod be an arbitrary extension of ρ. We
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have a commutative diagram in which the vertical arrows are induced by restriction
along the inclusions A ↪→ Aℵ:

(35)

Ext∗
kAℵ(π′, ρ′)⊗ E∗∞ Ext∗k[Aℵ](π

′, ρ′)

Ext∗
kA(π, ρ)⊗ E∗∞ Ext∗k[A](π, ρ)

Υ

' '

Υ

.

The explicit formula for Kan extensions given in proposition 2.28 shows that π′ is
the left Kan extension of π (regarded as an object of kA-Mod or as an object of
k[A]-Mod), hence the vertical arrows are isomorphisms. Thus it suffices to check
that the upper Υ is an isomorphism.

Proposition 2.27 gives an adjoint pair Aℵ(a,−) : Aℵ � PℵFp : a ⊗ −. One can
write π′ as the composition of the functor Aℵ(a,−) with the functor I ′ : PℵFp → Pℵk
such that I ′(v) = k ⊗Fp v. Hence we have adjunction isomorphisms

Ext∗
kAℵ(π′, ρ′) ' Ext∗PℵFp

(I ′, ρ′(a⊗−)) ,

Ext∗k[Aℵ](π
′, ρ′) ' Ext∗k[PℵFp ](I

′, ρ′(a⊗−)) .

These adjunction isomorphisms are given by evaluation on a ⊗ − and restriction
along the unit of adjunction v → Aℵ(a, a ⊗ v) (see the beginning of section 2.4).
Thus they fit into a commutative square:

(36)

Ext∗
kAℵ(π′, ρ′)⊗ E∗∞ Ext∗k[Aℵ](π

′, ρ′)

Ext∗
kPℵFp

(I ′, ρ′(a⊗−))⊗ E∗∞ Ext∗k[PℵFp ](I
′, ρ′(a⊗−))

Υ

' '

Υ

.

Thus in order to prove lemma 8.7, it suffices to prove that the lower Υ in diagram
(36) is an isomorphism.

Finally, we observe that I ′ = k⊗ZHomFp(Fp,−) = k(PℵFp)(Fp,−), hence diagram
(35) with A, π′, ρ′ respectively taken as PFp , I ′, ρ′(a⊗−), shows that the lower Υ
in diagram (36) is an isomorphism as soon as we know that theorem 8.3 holds for
the additive category A = PFp , whence the result. �

Proof of theorem 8.3. By lemma 8.7 it suffices to prove theorem 8.3 when A = PFp .
The Eilenberg-Watts theorem yields and equivalence of categories

k-Mod ' k(PFp)-Mod

which sends a k-vector space u to the functor v 7→ v ⊗Fp u. In particular, the
category k(PFp)-Mod is semi-simple, with only simple object the functor t(v) =
v ⊗Fp k. Since both the source and the target of morphism (32) preserve finite
direct sum when they are viewed as a functor of π, we reduce ourselves further to
the case π = t. By using the fact that the source and the target of the morphism
(32) turn direct sums into products when they are viewed as functors of π, and that
they preserve products when they are viewed as functors of ρ, we reduce ourselves
to proving that (32) is an isomorphism when π = ρ = t.

Since the functor t is representable by Fp, the Yoneda lemma shows that the
k-vector space Hom

k(PFp )(t, t) has dimension 1, with basis the identity morphism
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of t. Thus, if we come back to the definition of Υ, we see that when π = ρ = t, it
coincides with the morphism induced by precomposition by t:

k ⊗ Ext∗gen(I, I) ' Ext∗gen(I, I)
t∗−→ Ext∗k[PFp ](t

∗I, t∗I) = Ext∗k[PFp ](t, t) .

But the latter is an isomorphism by the strong comparison theorem 7.7. This
concludes the proof of theorem 8.3. �

9. An auxiliary comparison map

Throughout this section k is a commutative ring, F is a field, A is a small additive
category, and we consider functors

F,G : PF → k-Mod , π : Aop → F-Mod , ρ : A → F-Mod ,

with ρ and π additive. In particular ρ and π may be considered as objects of the
F-categories Mod- FA and FA-Mod respectively, and for all vector spaces v over
F, we define a dual vector space Dπ,ρ(v) by

Dπ,ρ(v) = HomF(v, π ⊗ FA ρ) .

Recall from definition 6.1 that a notation such as π∗F refers to the composition
F ◦ π, where F is the left Kan extension of F to all F-vector spaces. The purpose
of this section is to introduce a comparison map:

ΘF : Tork[A]
∗ (π∗F, ρ∗G)→ Tork[PF]

∗ (D∗π,ρF,G) .

and to establish its main properties. We will use these properties (in the special
case where F = Fq and k is an overfield of Fq) in the proof of the generalized
comparison theorem in section 10.

In contrast with the other sections of the article, many constructions of this
section are performed over the ground field F (that is, we use F-linear categories,
tensor products over F. . . ) rather than over k.

9.1. Construction of ΘF. Taking K = FAop in the isomorphism (5) of section 2.2
yields a pair of adjoint F-functors −⊗ FA ρ : Mod- FA� F-Mod : HomF(ρ,−). We
denote by θF the unit of adjunction:

(37) θF : π → HomF(ρ, ρ⊗ FA π) = Dπ,ρ ◦ ρ .

Thus (θF)a sends an element x ∈ π(a) to the F-linear map y 7→ Jx ⊗ yK where
y ∈ ρ(a) and the brackets denote the image of the tensor in ρ ⊗ FA π. We choose
a cardinal ℵ such that the images of ρ and π are contained in the category PℵF of
vector spaces of dimension less or equal to ℵ, and we let ιℵ : PℵF ↪→ F-Mod be the
inclusion of categories. We define ΘF as the unique graded k-linear map fitting into
the commutative square (note that resι

ℵ
is an isomorphism by proposition 2.28):

(38)

Tork[A]
∗ (F ◦ π,G ◦ ρ) Tork[PF]

∗ (F ◦Dπ,ρ, G)

Tork[A]
∗ (F ◦Dπ,ρ ◦ ρ,G ◦ ρ) Tor

k[PℵF ]
∗ (F ◦Dπ,ρ, G)

ΘF

Tork[A]
∗ (F (θF),G◦ρ) resι

ℵ'

resρ

.

Lemma 9.1. The map ΘF does not depend on the choice of ℵ.
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Proof. This is a consequence of the fact that for a cardinal i greater than ℵ we
have a commutative diagram (where ιℵ,i is the inclusion of PℵF into Pi

F ):

Tork[PF]
∗ (F ◦Dπ,ρF,G)

Tork[A]
∗ (F ◦Dπ,ρ ◦ π,G ◦ ρ) Tor

k[PℵF ]
∗ (F ◦Dπ,ρ, G)

Tor
k[Pi

F ]
∗ (F ◦Dπ,ρ, G)

' resι
ℵ

'
resι

i

resρ

resρ

resι
ℵ,i

.

�

Lemma 9.2. The map ΘF is natural with respect to F , G, π and ρ.

Proof. It is equivalent to prove the naturality of resι
ℵ ◦ Θk with respect to F , G,

π and ρ. Naturality with respect to F , G and π is a straightforward verification.
We check naturality with respect to ρ, which is less straightforward since θF is
not natural with respect to ρ. Let f : ρ → ρ′ be a natural transformation, and
let Df : D := Dπ,ρ → D′ := Dπ,ρ′ be the natural transformation induced by f .
We consider the following diagram of graded k-modules, in which the composition
operator for functors is omitted, e.g. ‘Fπ’ means F ◦π, and the arrows are labelled
by the natural transformations which induce them.

Tork[A]
∗ (Fπ,Gρ) Tork[A]

∗ (Fπ,Gρ′)

Tork[A]
∗ (FDρ,Gρ) Tork[A]

∗ (FD′ρ′, Gρ)

Tork[A]
∗ (FD′ρ,Gρ) Tork[A]

∗ (FD′ρ′, Gρ′)

Tor
k[PℵF ]
∗ (FD,G) Tor

k[PℵF ]
∗ (FD′, G)

Gf

FθF
FθF

FθF

resρ

FDfρ

Gf
FD′f

resρ
resρ
′

FDf

The upper right triangle and the lower left triangle of the diagram are obviously
commutative. The upper left parallelogram is commutative because of the dinatu-
rality of θF, i.e. because the following square commutes:

π D′ρ′ = HomF(ρ′, π ⊗ FA ρ
′)

Dρ = HomF(ρ, π ⊗ FA ρ) D′ρ = HomF(ρ, π ⊗ FA ρ
′)

θF

θF HomF(f,π⊗ FAρ
′)

HomF(ρ,π⊗ FAf)

.

Finally, the lower right parallelogram commutes by dinaturality of restriction maps
between Tor-modules (which comes from the fact that tensor products are defined
by a coend formula). Thus the outer square is commutative, which shows that
resι

ℵ ◦ΘF, hence ΘF, is natural with respect to π. �
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9.2. Base change. We fix a field morphism F → K, and we let t : F-Mod →
K-Mod denote the extension of scalars t(v) = K⊗F v. The canonical isomorphisms
t(π(a))⊗K t(ρ(a)) ' t(π(a)⊗F ρ(a)) induce a canonical isomorphism:

t(π ⊗ FA ρ) ' (t ◦ π)⊗ KA (t ◦ ρ) .(39)

Thus, extension of scalars induces a K-linear morphism:

K⊗F HomF(v, π ⊗ FA ρ)
(f⊗λ7→f⊗λ)−−−−−−−−−→HomK(t(v), t(π ⊗ FA ρ))

' HomK(t(v), (t ◦ π)⊗ KA (t ◦ ρ))(40)

which is an isomorphism when v has finite dimension. If we let Dπ,ρ and Dt◦π,t◦ρ
be the duality functors respectively defined by:

Dπ,ρ(v) = HomF(v, π ⊗ FA ρ)

Dt◦π,t◦ρ(w) = HomK(w, (t ◦ π)⊗ KA (t ◦ ρ))

then the morphism (40) can be written as a canonical morphism of functors

(41) t ◦Dπ,ρ
can−−→ Dt◦π,t◦ρ ◦ t

whose component at every finite-dimensional F-vector space v is an isomorphism.

Proposition 9.3. Let F → K be a field morphism. For all additive functors π :
Aop → F-Mod and ρ : A → F-Mod, and for all objects F and G in k[PK]-Mod, we
have a commutative diagram in which the lower horizontal isomorphism is induced
by the isomorphism F (can):

Tork[A]
∗ (F ◦ t ◦ π,G ◦ t ◦ ρ) Tork[PK]

∗ (F ◦Dt◦π,t◦ρ, G)

Tork[PF]
∗ (F ◦ t ◦Dπ,ρ, G ◦ t) Tork[PF]

∗ (F ◦Dt◦π,t◦ρ ◦ t, G ◦ t)

ΘK

ΘF

'

rest .

Proof. Let us denote D = Dt◦π,t◦ρ and D′ = Dπ,ρ for short and let ℵ be a big
enough cardinal. We have a diagram of graded k-modules, in which the composition
symbol for functors has been omitted and the arrows are labelled by the name of
the morphisms which induce them.

Tork[A]
∗ (Ftπ,Gtρ) Tork[A]

∗ (FDtρ,Gtρ) Tor
k[PℵK ]
∗ (FD,G)

Tork[A]
∗ (FtD′ρ,Gtρ) Tor

k[PℵF ]
∗ (FDt,Gt) Tork[PK]

∗ (FD,G)

Tor
k[PℵF ]
∗ (FtD′, Gt) Tork[PF]

∗ (FtD′, Gt) Tor
k[PℵF ]
∗ (FDt,Gt)

FθK

FtθF resρ

restρ

F canρ

resρ

rest
res'

F can

res
' F can

rest
res

'

One readily checks from the explicit expressions of θK, θF and of the canonical
morphism can : tD′ → Dt that θK = (can ρ) ◦ (tθF), hence the upper left triangle
of the diagram commutes. The other cells of the diagram obviously commute. The
commutativity of the outer square proves proposition 9.3. �
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9.3. Isomorphism conditions. We now investigate some conditions which ensure
that our comparison map ΘF is an isomorphism. The next proposition provides the
base case.

Proposition 9.4. If A is F-linear and if π = A(−, a) and ρ = A(b,−), then ΘF
is an isomorphism.

Proof. By lemma 9.1, we may assume ℵ as big as we want in the definition of ΘF,
so that the functor ρℵ := Aℵ(b,−) : Aℵ → PℵF has a left adjoint τ := b ⊗F − by
proposition 2.27. We also let πℵ := Aℵ(−, a) : Aℵ → F-Mod.

Let us first reinterpret θF in the situation of proposition 9.4. We have an iso-
morphism

φ : π ⊗ FA ρ
'−→ A(b, a)

which sends the class of f ⊗ g ∈ A(x, a)⊗F A(b, x) to f ◦ g ∈ A(b, a). (The inverse
of φ sends an element f ∈ A(a, b) to the class of ida ⊗ f ∈ A(a, a) ⊗F A(b, a)).
From the explicit expressions of θF and φ, one sees that the lower left triangle of
the following diagram commutes.

(42)
A(x, a) Aℵ(b⊗F A(b, x), a)

HomF(A(b, x), π ⊗ FA ρ) HomF(A(b, x),A(b, a))

A(εx,a)

(θF)x A(b,−)
α'

HomF(A(b,x),φ)

'

The upper right triangle of diagram (42) also commutes: here α is an adjunction
isomorphism for the adjunction between τ and ρℵ, and εx is the associated counit
of adjunction. Diagram (42) is our new interpretation of θF.

Next we prove that resι
ℵ ◦ ΘF is an isomorphism. We let D := Dπ,ρ for short,

and we let χ : D ' πℵ ◦ τ be the isomorphism whose component at v is given by
the composition:

HomF(v, π ⊗ FA ρ)
HomF(v,φ)−−−−−−−→
'

HomF(v,A(a, b))
α−1

−−→
'
Aℵ(b⊗F v, a) .

We consider the following diagram of graded k-modules, in which the composition
operator for functors is omitted and the arrows are labelled by the natural trans-
formations which induce them. The vertical maps resj are induced by restriction
along the canonical inclusion j : A ↪→ Aℵ.

Tork[Aℵ]
∗ (Fπℵ, Gρℵ) Tork[Aℵ]

∗ (Fπℵτρℵ, Gρℵ) Tor
k[PℵF ]
∗ (Fπℵτ,G)

Tork[A]
∗ (Fπℵ, Gρℵ) Tork[A]

∗ (Fπℵτρ,Gρ) Tor
k[PℵF ]
∗ (Fπℵτ,G)

Tork[A]
∗ (Fπ,Gρ) Tork[A]

∗ (FDρ,Gρ) Tor
k[PℵF ]
∗ (FD,G)

Fπℵε resρ

resj'

Fπℵε

resj'

resρ

FθF resρ

Fχρ' Fχ'

All the squares of the diagram are obviously commutative, but the lower left square
which commutes by commutativity of diagram (42). The maps resj are isomor-
phisms by proposition 2.28 because Gρℵ is the left Kan extension of Gρ along j.
(To see this, use that ρℵ = Aℵ(b,−) : Aℵ → F-Mod is ℵ-additive by proposition
2.25, hence it is the left Kan extension of ρ and G is already a left Kan extension.)
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The composite in the top row is the Tor-map induced by the adjunction between
τ and ρℵ, hence it is an isomorphism by proposition 2.18. We deduce that the
composite in the bottom row, which is nothing but resι

ℵ ◦ ΘF, is an isomorphism.
Hence ΘF is an isomorphism. �

Corollary 9.5. If A is F-linear, and if

π =
⊕
i∈I
A(−, ai) , ρ =

⊕
j∈J
A(bj ,−)

for some possibly infinite indexing sets I and J , then ΘF is an isomorphism.

Proof. If I and J are finite, then π ' A(−, a) and ρ ' A(b,−) for a =
⊕
ai and

b =
⊕
bj , hence ΘF is an isomorphism by proposition 9.4. For arbitrary I and J ,

the functors π and ρ are filtered colimits of monomorphisms of functors of the form
A(−, a) and A(b,−). So the result follows from the fact that the target and the
source of ΘF both preserve filtered colimits of monomorphisms of functors, when
viewed as functors of the variables π and ρ. (Indeed Tor∗, F ◦π, G◦ρ and F ◦Dπ,ρ

preserve filtered colimits of monomorphisms – for F ◦ π, G ◦ ρ, this follows from
the fact that F and G are left Kan extensions of F and G, and for F ◦Dπ,ρ, one
uses in addition the isomorphism Dπ,ρ(v) ' HomF(v,F)⊗F (π ⊗ FA ρ), which holds
because we view Dπ,ρ as a functor from PF to F-Mod.) �

We are going to extend corollary 9.5 to more general F-linear functors π and ρ
by taking simplicial resolutions. We refer the reader to section 3 for recollections
of simplicial techniques.

If X is a simplicial object in k[PF]-Mod, and µ is a simplicial object in the
category of additive functors A → F-Mod, we let µ∗X be the diagonal simplicial
object Xn ◦µn. Thus µ∗X is a simplicial object in k[A]-Mod natural with respect
to µ and X. The next two lemmas are our main tools to contruct convenient
simplicial resolutions.

Lemma 9.6. If X1 → X2 and µ1 → µ2 are e-connected morphisms, the induced
morphism µ∗1X1 → µ∗2X2 is e-connected.

Proof. We have to show that for all a in A the morphism of simplicial k-modules
X1(µ1(a)) → X2(µ2(a)) is e-connected. The morphism X1 → X2 is e-connected
because it is defined as a filtered colimit and homotopy groups commute with filtered
colimits. Hence the result follows from proposition 3.8. �

Lemma 9.7 (linearization of projective additive functors). Let ρ : A → F-Mod be
an additive functor, and let P be a projective object in k[PF]-Mod. If ρ is projective
as an additive functor from A to abelian groups, then ρ∗P is a projective over k[A].

Proof. It suffices to prove the result when P = k[HomF(Fn,−)]. As ρ, seen as an
object of A-Mod, is a direct summand of a direct sum of representable functors,
it is enough to see that k[

⊕
i∈E A(ai,−)] is projective over k[A] for every family

(ai)i∈E of objects of A. The result follows from the cross-effect type decomposition

k[
⊕
i∈E
A(ai,−)] '

⊕
I∈Pf (E)

⊗
i∈I

k[A(ai,−)]red

where red refers to the reduced part of a functor (see lemma 4.9 in section 4) and
Pf (E) denotes the set of finite subsets of E, as each functor

⊗
i∈I k[A(ai,−)]red is

a direct summand of the projective functor k[A(
⊕

i∈I ai,−)]. �
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Theorem 9.8. Let k be a commutative ring and let A be a small additive F-
category for a field F. Assume that π and ρ are F-linear, consider them as objects
of the F-categories Mod-A and A-Mod, and let e be a positive integer such that
TorAi (π, ρ) = 0 for 0 < i < e. Then for all objects F , G of k[PF]-Mod, the map

ΘF : Tork[A]
∗ (π∗F, ρ∗G)→ Tork[PF]

∗ (D∗π,ρF,G)

defined by diagram (38) is e-connected.

Proof. Let G → G, $ → π and % → ρ be simplicial resolutions by direct sums
of standard projectives in the categories k[PF]-Mod, Mod-A and A-Mod respec-
tively. We have a commutative diagram of simplicial k-modules, in which the maps
(†) are induced by the morphisms $ → π and %→ ρ, and the maps Θ̃F are degree-
wise equal to the degree zero component of ΘF, hence they are isomorphisms by
corollary 9.5:

$∗F ⊗k[A] %
∗G ρ∗D∗$,ρF ⊗k[A] %

∗G ρ∗D∗π,ρF ⊗k[A] ρ
∗G

π∗F ⊗k[A] ρ
∗G

D∗$,%F ⊗k[Pk] G D∗π,ρF ⊗k[Pk] G

' Θ̃F

(†)

F (θF)⊗id (†)

resρ

'
Θ̃F

F (θF)⊗id

(†)

.

The homotopy groups of D∗π,ρF ⊗k[PF] G compute Tork[PF]
∗ (D∗π,ρF,G) because G →

G is a projective simplicial resolution. The homotopy groups of $∗F ⊗k[A] %
∗G

compute Tork[A]
∗ (π∗F, ρ∗G) because %∗G → ρ∗G is a simplicial projective resolution

by lemmas 9.6 and 9.7. And the map induced on the level of homotopy groups by
the top right corner of the diagram is ΘF. Thus, to prove the theorem, it remains
to prove that the bottom horizontal map (†) is e-connected.

In order to do this, we first observe that the F-category A-Mod of F-functors
from A to F-Mod is a full subcategory of the F-category FA-Mod of additive
functors from A to F-Mod. Hence for all F-functors π and ρ, restriction along
the functor FA → A, f ⊗ λ 7→ λf induces an isomorphism π ⊗ FA ρ ' π ⊗A ρ by
corollary 2.15. Thus the Tor-condition in the theorem ensures that$⊗A%→ π⊗Aρ
is e-connected. Thus D$,% → Dπ,ρ is e-connected, hence D∗$,%F → D∗π,ρF is
e-connected by lemma 9.6. This implies that the bottom horizontal map is e-
connected by a standard spectral sequence argument (use the spectral sequence of
a bisimplicial k-module as in [19, IV section 2.2]). �

10. The generalized comparison theorem

Throughout this section, k is an infinite perfect field of positive characteristic p,
π : Aop → k-Mod and ρ : A → k-Mod are two additive functors and F and G are
two strict polynomial functors over k (possibly non-homogeneous, cf. section 7.3).
We also fix two positive integers r and s, and for 0 ≤ i < s2 we let Ti denote the
k-vector space:

Ti = ((−ri)π)⊗
kA ((rs−rs2)ρ)(43)

where a notation such as (−ri)π refers to the additive functor obtained as the com-
position of the functor π and the Frobenius twist (−ri)− as in notation 8.1. We
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define a functor F ′ in Mod-k[Pk] by

F ′(v) = F
( ⊕

0≤i<s2

(ri)Homk(v, Ti)
)

(44)

where as in definition 6.1, the notation F refers to the left Kan extension of F
to all vector spaces. Then F ′ is actually a (non-homogeneous) strict polynomial
functor of the variable v. In this section, we will first construct a certain morphism
of graded vector spaces, natural with respect to F , G, π and ρ:

Tork[A]
∗ (π∗F, ρ∗G)→ Torgen

∗ (F ′, G(rs2−rs)) .(45)

We will refer to morphism (45) as the generalized comparison map in the remainder
of the article. Then we will prove the following theorem, and spell out some special
cases and consequences.

Theorem 10.1 (generalized comparison). Let k be an infinite perfect field of char-
acteristic p, containing a finite field Fq of cardinal q = pr. Let A be a small additive
category, let π : Aop → k-Mod and ρ : A → k-Mod be two additive functors. As-
sume that there are positive integers s and e such that

Tor kAj

(
(−ri)π, (rs−rs

2)ρ
)

= 0

for 0 < j < e and 0 ≤ i < s2. Assume further that A is Fq-linear and that ρ and
π are Fq-linear. Then for all strict polynomial functors F and G of weights less or
equal to qs, the generalized comparison map (45) is e-connected.

Remark 10.2. If π and ρ are Fq-linear, so are (ri)π and (rs−rs2)ρ, and we can consider
them as objects of k ⊗Fq A-Mod and Mod-k ⊗Fq A. Hence it is natural to ask
about the relation between the Tor hypothesis in theorem 10.1 and the vanishing of
Tor

k⊗FqA
j ((ri)π, (rs−rs

2)ρ). These two conditions are actually equivalent as we shall
see it in lemma 10.8.

Remark 10.3. In theorem 10.1 the target category of π and ρ is the category k-Mod
though these functors are Fq-linear. This is in contrast with theorem 9.8, and this
explains why the Tor hypotheses of these two theorems are different.

10.1. Construction of the generalized comparison map. We define the gen-
eralized comparison map (45) as the composition of three maps Λk, Θ′k and Φk:

Tork[A]
∗ (π∗F, ρ∗G) Tork[A]

∗ ((π⊕s
2

)∗F, ρ∗G)

Torgen
∗ (F ′, G(rs2−rs)) Tork[Pk]

∗ (F ′, G(rs2−rs))

(45)

Λk

Θ′k

Φk

.

The map Λk is induced by the morphism of additive functors diag : π → π⊕s
2

whose components all equal the identity morphism of π.
The map Φk is an immediate generalization of the strong comparison map (21)

over an infinite perfect field k. Namely, the additive functor (n)− : Pk → Pk has a
quasi-inverse (−n)− for all positive integers n. Restriction along this quasi-inverse
yields an isomorphism of graded vector spaces, natural in the functors H and K:

Tork[Pk]
∗ (H,K)

'−→ Tork[Pk]
∗ (H(n),K(n)) ,
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where a notation such as H(n) denotes the precomposition of H by (n)−. Since k
is infinite, the category ΓPk-Mod of strict polynomial functors identifies with a
full subcategory of k[Pk]-Mod (see section 7.3). If H and K are strict polynomial
functors, we let Φk be the unique morphism of graded k-vector spaces fitting in the
commutative diagrams for all i ≥ 0 and all r � 0:

(46)
Tor

k[Pk]
i (H,K) Torgen

i (H,K)

Tor
k[Pk]
i (H(n),K(n)) TorΓPk

i (H(n),K(n))

res
(−n)−'

Φk

'

res

.

In order to apply Φk to H = F ′ and K = G(rs2−rs), we have to prove that these
functors are actually strict polynomial functors. This is obvious for H, and for K
this is proved in the following lemma.

Lemma 10.4. The functor F ′π,ρ defined by (44) is a strict polynomial functor.

Proof. The vector spaces Ti can be written as a filtered colimit of finite-dimensional
subspaces Ti,α. Hence for all finite-dimensional vector spaces v, F ′(v) is the filtered
colimit of F (

⊕
0≤i<s2

(ri)Homk(v, Ti,α)). The latter are strict polynomial functors
of the variable v, all having the same weight as F . But

⊕
d≤w(F ) ΓdPk-Mod is a

full subcategory of k[Pk]-Mod stable under colimits, hence F ′ is a strict polynomial
functor. �

It remains to define Θ′k. The latter is a generalization of the comparison map
Θk constructed in section 9. In order to avoid heavy notations, we set:

πi := (−ri)π , σ := (rs−rs2)ρ .

We use the morphisms θk defined by equation (37) in section 9 to construct a
morphism θ′k of additive functors:

θ′k : π⊕s
2

=
⊕

0≤i<s2

(ri)πi

⊕ (ri)θk−−−−−→
⊕

0≤i<s2

(ri)Dπi,σ ◦ σ .(47)

Observe that F ′ = F ◦
(⊕

0≤i<s2
(ri)Dπi,σ

)
, whence a morphism in Mod-k[A]:

F (θ′k) : F ◦ (π⊕s
2

)→ F ′ ◦ σ .

Furthermore, we have ρ∗G = G ◦ ρ = G
(rs2−rs) ◦ σ. Thus, if we choose a cardinal

ℵ greater than the dimension of σ(a) for all objects a of A, then we can define our
map Θ′k as the unique map making the following square commute:

(48)

Tork[A]
∗ (F ◦ (π⊕s

2

), G ◦ ρ) Tork[Pk]
∗ (F ′, G(rs2−rs))

Tork[A]
∗ (F ′ ◦ σ,G(rs2−rs) ◦ σ) Tor

k[Pℵk ]
∗ (F ′, G

(rs2−rs)
)

Θ′k

Tork[A]
∗ (F (θ′k),G◦ρ) resι

ℵ'

resσ

.

Note that the map resι
ℵ
in this diagram is an isomorphism as a consequence of

proposition 2.28 and of the fact that G(rs2−rs) is the left Kan extension of G(rs2−rs)

to all vector spaces (because −(rs2−rs) is an autoequivalence of the category of k-
vector spaces, hence it preserves filtered colimits).
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The following lemma is proved exactly in the same way as lemmas 9.1 and 9.2.

Lemma 10.5. The map Θ′k does not depend on the cardinal ℵ. Moreover, it is
natural with respect to F , G, π and ρ.

Next, we clarify the relation between Θ′k and the comparison map Θk from
section 9. Assume that we are given isomorphisms of additive functors π ' (−ri)π

and ρ ' (rs−rs2)ρ. Then these isomorphisms induce isomorphisms (where F (r,s2)

stands for the strict polynomial functor v 7→ F (
⊕

0≤i<s2
(ri)v) as in notation 7.17):

(π⊕s
2

)∗F ' π∗(F (r,s2)) , ρ∗G ' ρ∗(G(rs2−rs)) , F ′ ' D∗π,ρ(F (r,s2)) ,

and the next lemma is a straightforward verification.

Lemma 10.6. There is a commutative square, whose vertical isomorphisms are
induced by the above isomorphisms of functors:

Tork[A]
∗ ((π⊕s

2

)∗F, ρ∗G) Tork[Pk]
∗ (F ′, G(rs2−rs))

Tork[A]
∗ (π∗(F (r,s2)), ρ∗G(rs2−rs)) Tork[Pk]

∗ (D∗π,ρ(F
(r,s2)), G(rs2−rs))

Θ′k

' '

Θk

.

10.2. Proof of the generalized comparison theorem 10.1. The proof of the
generalized comparison theorem follows the same strategy as the proof of theorem
9.8. Namely we first give a proof of a base case relying on adjunctions (the homo-
logical algebra part of the proof), and then we deduce the general case by taking
simplicial resolutions (the homotopical algebra part of the proof).

Throughout this section, we assume that the hypotheses of theorem 10.1 are
satisfied, in particular A is Fq-linear over some finite subfield Fq of k, and π and ρ
are Fq-linear. Next proposition is the base case of the proof.

Proposition 10.7. Assume that

π =
⊕
i∈I

k ⊗Fq A(−, ai) , ρ =
⊕
j∈J

k ⊗Fq A(bj ,−)

for some possibly infinite indexing sets I and J . Then the generalized comparison
map (45) is a graded isomorphism.

Proof. If t(v) = k ⊗Fq v denotes the extension of scalars from Fq to k, then we
have π ' t ◦ µ and ρ ' t ◦ ν for some additive functors µ : Aop → Fq-Mod

and ν : A → Fq-Mod. The canonical isomorphisms of functors t ' (ri)t induce
isomorphisms π ' (ri)π and ρ ' (rs−rs2)ρ, so by lemma 10.6 and by naturality of
Φk with respect to the isomorphism F ′

'−→ F (r,s2) ◦Dπ,ρ, we have a commutative
square (in which the composition operator of functors is omitted):

Tork[A]
∗ (Fπ,Gρ) Tork[A]

∗ (F
(r,s2)

π,G
(rs2−rs)

ρ)

Tork[Pk]
∗ (F

(r,s2)
Dπ,ρ, G

(rs2−rs))

Torgen
∗ (F ′, G(rs2−rs)) Torgen

∗ (F
(r,s2)

Dπ,ρ, G
(rs2−rs))

(45)

Λ′k

Θk

Φk

'
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in which Λ′k is induced by the canonical isomorphism t ' (rs2−rs)t and by the
morphism of additive functors:

d : t
diag−−−→ t⊕s

2

'
⊕

0≤i<s2

(ri)t .

Therefore in order to prove proposition 10.7 it suffices to prove that the composition
Φk ◦Θk ◦ Λ′k in top right corner of the diagram is an isomorphism.

Next, since π = t ◦ µ and ρ = t ◦ ν, the base change property of proposition 9.3
gives a commutative square:

Tork[A]
∗ (F

(r,s2)
π,G

(rs2−rs)
ρ) Tor

k[PFq ]
∗ (F

(r,s2)
tDµ,ν , G

(rs2−rs)
t)

Tork[Pk]
∗ (F

(r,s2)
Dπ,ρ, G

(rs2−rs)) Tor
k[PFq ]
∗ (F

(r,s2)
Dπ,ρt, G

(rs2−rs)
t)

Θk

ΘFq

'

rest

.

Hence, by naturality of ΘFq with respect to the isomorphism Gt ' G(rs2−rs)t and
the morphism F (d) : Ft→ F (r,s2), we obtain a commutative square:

Tork[A]
∗ (Fπ,Gρ) Tor

k[PFq ]
∗ (FtDµ,ν , Gt)

Tork[Pk]
∗ (F

(r,s2)
Dπ,ρ, G

(rs2−rs)) Tor
k[PFq ]
∗ (F

(r,s2)
Dπ,ρt, G

(rs2−rs)
t)

Θk◦Λ′k

ΘFq

Λ′′k

rest

where Λ′′Fq is induced by d, by the isomorphism t ' (rs2−rs)t and by the canonical
isomorphism can : t ◦Dµ,ν ' Dπ,ρ ◦ t. The map ΘFq on the top row of this square
is an isomorphism by corollary 9.5. Hence, to prove proposition 10.7 it remains to
prove that the composition Φk ◦ rest ◦ Λ′′k is an isomorphism.

For this purpose, we are going to rewrite the composition Φk ◦ rest ◦Λ′′k into yet
another form. We claim that there is a k-linear isomorphism, natural with respect
to v, µ and ν:

ψv : (r,s2)Dtµ,tν(v)→ Dtµ,tν((r,s2)v) ,

Indeed, we have isomorphisms of vector spaces, natural with respect to µ and ν:

φi : (ri) (tµ⊗
kA tν)

'−→ tµ⊗
kA tν

which send the class J(α ⊗ x)⊗ (β ⊗ y)K where α, β ∈ k, x ∈ µ(a) and y ∈ ν(a) to
the class J(αp

ri⊗x)⊗ (βp
ri⊗y)K. We define ψv as the following composition, where

T stands for tµ⊗
kA tν, the first and last isomorphisms are the canonical ones and

the second morphism is induced by the φi:

(r,s2)Dtµ,tν(v) =
⊕

0≤i<s2

(ri)Homk(v, T )
'−→

⊕
0≤i<s2

Homk((ri)v, (ri)T )

'−→
⊕

0≤i<s2
Homk((ri)v, T )

'−→ Homk(
⊕

0≤i<s2

(ri)v, T ) = Dtµ,tν((r,s2)v) .
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Moreover, one readily checks that ψ fits into a commutative diagram in the category
of functors from PFq to k-Mod:

(49)
tDµ,ν

(r,s2)tDµ,ν
(r,s2)Dπ,ρt

Dπ,ρt Dπ,ρ
(r,s2)t

can'

d(Dµ,ν) (r,s2)can
'

ψ(t)'

Dπ,ρ(s)

where s denotes the composition (r,s2)t ' t⊕s2 sum−−→ t.
Finally, diagram (49) and naturality of Φk and rest with respect to the map F (ψ)

yield a commutative square, in which the horizontal isomorphisms are induced by
the isomorphisms F (can) and F (ψ) and the map Λ′′′k is induced by F (Dπ,ρ(s)):

Tor
k[PFq ]
∗ (FtDµ,ν , Gt) Tor

k[PFq ]
∗ (FDπ,ρt, Gt)

Torgen
∗ (F (r,s2)Dπ,ρ, G

(rs2−rs)) Torgen
∗ (FDπ,ρ

(r,s2), G(rs2−rs))

'

Φk◦rest◦Λ′′k Φk◦rest◦Λ′′′k

'

.

We observe that Φk ◦ rest ◦Λ′′′k equals the comparison map of equation (31), hence
it is an isomorphism by corollary 7.21. This concludes the proof. �

We are going to extend the isomorphism of proposition 10.7 to more general
Fq-linear functors π : Aop → k-Mod and ρ : A → k-Mod by taking simplicial
resolutions. We first need an elementary lemma regarding the computation of Tor
between Fq-linear functors. The functor ρ is an object of the k-category of all
additive functors from A to k-Mod, which identifies with kA-Mod. But ρ is also
an object an object of the category of all Fq-linear functors from A to k-Mod,
which identifies with (k ⊗Fq A)-Mod. Similarly, π can be viewed as an object of
Mod- kA or Mod-(k ⊗Fq A).

Lemma 10.8. For all Fq-linear functors π and ρ, there is an isomorphism, natural
in π and ρ:

Tor
k⊗FqA
∗ (π, ρ) ' Tor kA∗ (π, ρ) .

Proof. Let φ : k ⊗Fp Fq → k denote the surjective morphism of (k,Fq)-bimodules
such that φ(x ⊗ y) = xy. Restriction along the functor φ ⊗Fq A : kA → k ⊗Fq A
yields a fully faithful functor (k ⊗Fq A)-Mod → kA-Mod hence an isomorphism
π⊗k⊗FqAρ ' π⊗ kAρ for all Fq-linear functors π and ρ by corollary 2.15. Moreover,
φ admits a section (as a morphism of (k,Fq)-bimodules) because Fq is a finite
separable extension of Fp. Hence for all objects a in A, the additive functor k ⊗Fq
A(a,−) is a direct summand of the additive functor k ⊗Fp A(a,−). Thus, every
projective resolution P of ρ in the category of Fq-linear functors may be regarded
as a projective resolution of ρ in the category of additive functors. As a result we
have

Tor
k⊗FqA
∗ (π, ρ) = H∗(π ⊗k⊗FqA P ) ' H∗(π ⊗ kA P ) = Tor kA∗ (π, ρ) .

where the middle isomorphism is given by restriction along φ⊗Fq A. �

We are now ready to prove the generalized comparison theorem.
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Proof of theorem 10.1. We set σ := (rs−rs2)ρ and H = G(rs2−rs) for the sake of
concision. Thus, ρ∗G = σ∗H. We also emphasize the dependence of F ′ on π and σ
by setting:

F ′π,σ(v) := F
( ⊕

0≤i<s2

(ri)Homk

(
v, ((−ri)π)⊗

kA σ
) )

.

We fix an integer n� 0 (n > logp(e/2) suffices) such that the canonical map

Torgen
∗ (F ′π,σ, H)→ TorΓPk

∗ ((F ′π,σ)(n), H(n))(50)

is e-connected. Let

Ψk : Tork[Pk]
∗ (F ′π,σ, H)→ TorΓPk

∗ ((F ′π,σ)(n), H(n))

be the morphism given by restriction along (−n)− and by the restriction from
ordinary functors to strict polynomial functors. Then Ψk is the composition of
the canonical map (50) with Φk, so that it suffices to prove that the composition
Ψk ◦Θ′k ◦ Λk is e-connected.

We consider simplicial resolutions by direct sums of standard projectives

H → H , H′ → H(n) , $ → π , %→ ρ ,

respectively in the categories

k[Pk]-Mod , ΓPk-Mod , Mod-(k ⊗Fq A) , (k ⊗Fq A)-Mod .

Standard projectives in (k ⊗Fq A)-Mod are of the form t ◦ A(a,−), and we have
(rs−rs2)(t ◦ A(a,−)) ' t ◦ A(a,−), hence

ς := (rs−rs2)%→ (rs−rs2)ρ = σ

is also a simplicial resolution in (k ⊗Fq A)-Mod. Then it follows from lemmas 9.6
and 9.7 that ς∗H is a simplicial projective resolution of σ∗H in k[A]-Mod, and
that ($⊕i)∗F is a simplicial (not projective) resolution of (π⊕i)∗F in Mod-k[A]
for all positive integers i. Therefore we have identifications of homotopy groups:

π∗
(
$∗F ⊗k[A] ς

∗H
)

= Tork[A]
∗ (π∗F, σ∗H) ,

π∗

(
($⊕s

2

)∗F ⊗k[A] ς
∗H
)

= Tork[A]
∗ ((π⊕s

2

)∗F, σ∗H) ,

π∗
(
F ′π,σ ⊗k[A] H

)
= Tork[Pk]

∗ (F ′π,σ, H) ,

π∗

(
(F ′π,σ)(n) ⊗ΓPk H′

)
= Tork[Pk]

∗ ((F ′π,σ)(n), H(n)) .

Moreover, let f : H → H′(−n) be a simplicial morphism in k[Pk]-Mod lifting the
identity morphism of H. Then the maps Λk, Θ′k and Ψk are respectively induced
by the morphisms of simplicial k-vector spaces:

$∗F ⊗k[A] ς
∗H Λ̃k−−→ ($⊕s

2

)∗F ⊗k[A] ς
∗H ,

($⊕s
2

)∗F ⊗k[A] ς
∗H

Θ̃′k−−→ F ′$,ς ⊗k[Pk] H → F ′π,σ ⊗k[Pk] H ,

F ′π,σ ⊗k[Pk] H
id⊗f−−−→ (F ′π,σ)(n)(−n) ⊗k[Pk] H′

(−n) Ψ̃k−−→ (F ′π,σ)(n) ⊗ΓPk H′ .

Here, the unadorned simplicial morphism is induced by the simplicial morphisms
$ → π and ς → σ. The simplicial morphisms Λ̃k, Θ̃′k and Ψ̃k are degreewise equal
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to the degree zero component of Λk, Θ′k and Ψk, for example the component of Λ̃k
in simplicial degree i is equal to

Tor
k[A]
0 ($∗i F, ς

∗
i Hi)

Λk−−→ Tor
k[A]
0 (($⊕s

2

i )∗F, ς∗i Hi) .
(That these simplicial morphisms induce our maps Λk, Θ′k and Ψk is obvious for
the first one and the last one. For Θ′k, this follows by the same reasoning as in the
proof of theorem 9.8). We deduce that the comparison map Ψk ◦Θ′k ◦Λk equals the
map induced on homotopy groups by the composition of the simplicial morphism:(

Ψ̃k ◦ (id⊗ f) ◦ Θ̃′k ◦ Λ̃′k

)
: $∗F ⊗k[A] ς

∗H → (F ′$,ς)
(n) ⊗ΓPk H′(51)

together with the simplicial morphism induced by $ → π and ς → σ:

(F ′$,ς)
(n) ⊗ΓPk H′ → (F ′π,σ)(n) ⊗ΓPk H′(52)

Let us regard the source and the target of (51) as the diagonal of bisimplicial
objects $∗i F ⊗k[A] ς

∗
i Hj and (F ′$i,ςi)

(n) ⊗ΓPk H′j with bisimplicial degrees (i, j).
Then the simplicial morphism (51) actually comes from a bisimplicial morphism.
Spectral sequences of bisimplicial k-modules as in [19, IV section 2.2] yield two
spectral sequences:

I1
ij = Tor

k[A]
j ($∗i F, ς

∗
i H) =⇒ πi+j

(
$∗F ⊗k[A] ς

∗H
)
,

II1
ij = TorΓPk

j (F ′$i,ςi , H) =⇒ πi+j

(
(F ′$,ς)

(n) ⊗ΓPk H′
)
,

And there is a morphism of spectral sequences I → II which coincides with the
morphism (51) on the abutment, and with the map Ψk ◦Θ′k ◦Λk on the first page.
By proposition 10.7, the map Φk ◦ Θ′k ◦ Λk is an isomorphism when π and ρ are
direct sums of standard projectives, hence by our choice of n, the morphism of
spectral sequences is e-connected on the first page. Hence the simplicial morphism
(51) is e-connected.

Thus, it remains to prove that the simplicial morphism (52) is e-connected. The
Tor-vanishing hypothesis of theorem 10.1 and lemma 7.16 imply that the maps
((−ri)$) ⊗

kA ς → ((−ri)π) ⊗
kA σ are e-connected. Hence the map F ′$,ς → F ′π,σ is

e-connected by lemma 9.6, hence the simplicial morphism (52) is e-connected by
the usual bisimplicial spectral sequence argument. �

10.3. Consequences of the generalized comparison theorem. We first prove
theorem 1.7 from the introduction. We consider a simplification of the general-
ized comparison map (45), namely for all strict polynomial functors F and G and
all additive functors π : Aop → k-Mod and ρ : A → k-Mod we consider the
composition:

Tork[A]
∗ (π∗F, ρ∗G)

Θk−−→ Tork[Pk]
∗ (D∗π,ρF,G)

Φk−−→ Torgen
∗ (D∗π,ρF,G) ,(53)

where Θk is the auxiliary comparison map of section 9. Theorem 1.7 is a direct
consequence of the following result.

Theorem 10.9. Let k be an infinite perfect field of positive characteristic, con-
taining a subfield F and let A be an additive F-linear category. Let π and ρ be two
F-linear functors from A to k-modules, respectively contravariant and covariant,
and let F and G be two strict polynomial functors with weights less or equal to the
cardinal of F. Assume furthermore that

Tor kAi (π, ρ) = 0 for 0 < i < e.
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Then the comparison map (53) is e-connected.

Proof. There are two cases. Assume first that F is a finite field. Then we can apply
theorem 10.1 with s = 1. If s = 1 the generalized comparison map (45) is equal to
the simplified comparison map (53) and the result follows.

Now assume that F is infinite. We claim that for all F-linear functors α, β : A →
k-Mod, we have Ext∗

kA((i)α, (j)β) = 0 for i 6= j. Indeed, this can be proved by
repeating the argument of the vanishing lemma 7.13 in the case of the k-category
kA, or alternatively by combining this vanishing lemma 7.13 with theorem 8.3. By
lemma 2.7, this implies that

Tor kA∗ ((i)π, (j)ρ) = 0 for i 6= j.(54)

Thus we may apply the generalized comparison theorem 10.1 with q = p (i.e. Fq
is the prime field), and with an integer s such that ps is greater or equal to the
weights of F and G. In this situation, the expression of F ′ simplifies because of
equation (54). Namely if we let α = (s−s2)π and β = (s−s2)ρ then we have:

F ′ = F
(s2−s) ◦Dα,β .

Moreover one readily checks that the composite map

Θ′k ◦ Λk : Tork[A]
∗ (π∗F, ρ∗G)→ Tork[Pk]

∗ (D∗α,β(F (s2−s)), G(s2−s))

is equal to the map Θk relative to α and β.
Now we consider the following diagram, in which the composition of functors

is omitted, T∗ stands for Tor, and we use the following notations x := s2 − s,
D = Dπ,ρ, D′ = Dα,β . The Frobenius twist functor (x)− : k-Mod → k-Mod is
isomorphic to the extension of scalars along the morphism of fields k → k, λ 7→ λp

x

,
hence we have a canonical isomorphism can : (x)D′ ' D(x), and the isomorphisms
(∗) in this diagram are induced by this canonical isomorphism.

T
k[A]
∗ (Fπ,Gρ) T

k[Pk]
∗ (F

(x)
D′, G(x)) T gen

∗ (F (x)D′, G(x))

T
k[Pk]
∗ (FD,G) T

k[Pk]
∗ (F (x)D′(−x), G) T gen

∗ (F (x)D′(−x), G)

T gen
∗ (FD,G)

Θk

Θk

Φk

res
(x)−' res

(x)−'

'
(∗)

Φk

Φk

'
(∗)

The diagram is commutative. To be more specific, the upper left square of the
diagram commutes by the base change property of proposition 9.3, the upper right
square and the triangle commute by naturality of Φk. As explained above, the
composite map corresponding to the upper row is e-connected by theorem 10.1.
Therefore, the composite given by the first column is also e-connected. But this
composite is nothing but the simplified comparison map (53). This finishes the
proof of the theorem. �

Corollary 10.10. Let k be an infinite perfect field of positive characteristic, let
∨− : Pop

k → Pk denote the k-linear duality functor ∨− = Homk(−, k), and let F∨
denote the composition F ◦ ∨−. The map

Φk : Tork[Pk]
∗ (F∨, G)→ Torgen

∗ (F∨, G)
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is an isomorphism for all strict polynomial functors F and G.

Proof. The Eilenberg-Watts theorem gives an equivalence of categories between the
category of additive functors PR → k-Mod and the category of (R, k)-bimodules.
Under this equivalence, an (R, k)-bimodule M corresponds to the functor −⊗RM .
Therefore, if we let R = k, π(v) = v∨ and ρ(v) = v, we obtain:

Tor k(Pk)
∗ (π, ρ) ' Tork⊗Zk

∗ (k, k) = HH∗(k) .

But k ⊗Z k = k ⊗Fp k and every field extension of Fp is a filtered colimit of Fp-
subalgebras which are smooth and essentially of finite type. Thus HH∗(k) is an ex-
terior algebra over the k-vector space of Kähler forms Ω1(k/Fp) by the Hochschild-
Kostant-Rosenberg theorem [21, Cor 2.13]. Since k is perfect, Ω1(k/Fp) is zero, so
that HHi(k) = k for i = 0, and zero otherwise. Hence Dπ,ρ ' ∨−, and Φk ◦ Θk is
an isomorphism by theorem 10.9.

Furthermore, the categories of k-linear functors Mod-Pk and Pk-Mod are re-
spectively equivalent toMod-k and k-Mod. Under these equivalences of categories,
the functors π and ρ correspond to k. Hence TorPki (π, ρ) equals k if i = 0 and zero
otherwise. Thus Θk is an isomorphism by theorem 9.8.

Since Φk ◦Θk and Θk are both isomorphisms, so is Φk. �

10.4. Comparison of Ext. We now indicate how the results of the previous section
can be dualized to compare Ext. Let G and K be two strict polynomial functors.
We let Φk be the unique map making the following diagrams commute for all i and
all n � 0, where the vertical isomorphism on the left hand side is the canonical
isomorphism, and the one on the right hand side is given by restriction along the
Frobenius twist (−n)−:

ExtiΓPk
(G(n),K(n)) Extik[Pk](G

(n),K(n))

Extigen(G,K) Extik[Pk](G,K)

' '

Φk

.

Corollary 10.11. Let k be an infinite perfect field of positive characteristic. For
all strict polynomial functors G and K the comparison map

Φk : Extigen(G,K)→ Extik[Pk](G,K)

is a graded isomorphism.

Proof. By a standard spectral sequence argument, the proof reduces to the case
where K is a standard injective, hence when K = Homk(F∨, k), where F∨ is the
precomposition of a standard projective F in ΓPk-Mod by the duality functor
∨− = Homk(−, k). In this latter case, Φk is an isomorphism because proposition
2.12 shows that it is dual to the isomorphism Φk of corollary 10.10. �

Similarly, one can dualize theorem 10.9. To be more specific, given two additive
functors ρ, σ : A → k-Mod and a k-vector space v, we let

Tρ,σ(v) = Hom
kA(ρ, σ)⊗ v .

Then for all strict polynomial functors G and K we have a map

Θk : Ext∗k[Pk](G,T
∗
ρ,σK)→ Ext∗k[A](ρ

∗G, σ∗K)
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induced by restriction along ρ and by the canonical evaluation morphism ev :
Hom

kA(ρ, σ)⊗ ρ→ σ.

Corollary 10.12. Let k be an infinite perfect field of positive characteristic, con-
taining a subfield F and let A be an additive F-linear category. Let ρ, σ : A → Pk
be two F-linear functors such that Hom

kA(ρ, σ) is finite-dimensional. Assume that

Exti
kA(ρ, σ) = 0 for 0 < i < e.

Then for all strict polynomial functors G and K with weights less or equal to the
cardinal of F, the graded map

Θk ◦ Φk : Ext∗gen(G,T ∗ρ,σK)→ Ext∗k[A](ρ
∗G, σ∗K)

is e-connected.

Proof. In this proof, we let ∨− = Homk(−, k) and we omit the composition operator
for functors, e.g. if F is a strict polynomial functor, ∨F∨ stands for (∨−)◦F ◦(∨−).

We first prove the result whenK = ∨F∨ for some F in ΓPk-Mod and σ = ∨π for
some additive functor π : Aop → k-Mod. Let ξ : Tσ,ρ → ∨Dπ,ρ be the morphism
of functors whose component ξv at a vector space v is given by the composition

ξv : v ⊗Hom
kA(ρ, ∨π)

'−→ v ⊗ ∨(π ⊗
kA ρ)→ ∨Homk(v, π ⊗

kA ρ)

where the first map is provided by lemma 2.7 and the second map is the canonical
map can : v⊗ ∨w → ∨Homk(v, w) such that can(x⊗ f)(φ) = f(φ(x)), and which is
an isomorphism if v is finite dimensional. One readily checks that the composition

Tρ,σρ
ξρ−→ ∨Dπ,ρρ

∨θF−−→ ∨π = σ

equals the canonical evaluation map ev. The finite dimensionality hypotheses on
the values of ρ and σ and on Hom

kA(ρ, σ) respectively imply that:
i) ξ : Tσ,ρ → ∨Dπ,ρ is an isomorphism,
ii) σ∗(F∨) = F∨σ = Fπ = π∗F ,
iii) ∨∨Dπ,ρ identifies with Dπ,ρ.

Hence we have a commutative diagram

Ext∗k[Pk](G,
∨F∨Tρ,σ) Ext∗k[A](Gρ,

∨F∨Tρ,σρ) Ext∗k[A](Gρ,
∨F∨σ)

∨Tork[Pk]
∗ (F∨Tρ,σ, G) ∨Tork[A]

∗ (F∨Tρ,σρ,Gρ) ∨Tork[A]
∗ (F∨σ,Gρ)

∨Tork[Pk]
∗ (FDπ,ρ, G) ∨Tork[A]

∗ (FDπ,ρρ,Gρ) ∨Tork[A]
∗ (Fπ,Gρ)

ρ∗ ∨F∨(ev)

α'
∨resρ

F∨(ξ)'

α'

F∨(ev)

F∨(ξρ)'

α'

∨resρ F (θF)

from which we deduce that the graded map Θk ◦Φk fits into a commutative square

(55)

Ext∗gen(G,T ∗ρ,σ(∨F∨)) Ext∗k[A](ρ
∗G, σ∗(∨F∨))

∨Torgen
∗ (D∗π,ρF,G) ∨Tork[A]

∗ (π∗F, ρ∗G)

Θk◦Φk

' '

where the bottom arrow is dual to the comparison map (53) of theorem 10.9. Since
Ext∗

kA(ρ, σ) ' ∨Tor kA∗ (π, ρ), we deduce from the latter theorem that this bottom
map is e-connected, hence Θk ◦ Φk is e-connected.
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The case K = ∨F∨ proves corollary 10.12 for all strict polynomial functors K
with finite dimensional values, in particular for the standard injectives. For an
arbitrary K one can consider an injective resolution and the result follows by a
standard spectral sequence argument. �

With the same strategy, one can also dualize theorem 10.1. Given a strict poly-
nomial functor K, we denote by K ′ the strict polynomial functor such that

K ′′(v) = K

 ⊕
0≤i<s2

(ri)
(
v ⊗Hom

kA
((rs−rs2)ρ, (−ri)σ)

) .

One defines a comparison map in the same fashion as the map of corollary 10.12:

Ext∗gen(G(rs2−rs),K ′′)→ Ext∗k[A](ρ
∗G, σ∗K) .(56)

The proof of the following corollary is similar to the proof of corollary 10.12 and is
left to the reader.

Corollary 10.13. Let k be an infinite perfect field of characteristic p, containing a
finite field Fq of cardinal q = pr. Let A be a small additive category, let ρ, σ : A →
Pk be two additive functors such that Hom

kA(ρ, σ) is finite dimensional. Assume
that there are positive integers s and e such that

Extj
kA

(
(rs−rs2)ρ, (ri)σ

)
= 0

for 0 < j < e and 0 ≤ i < s2. Assume further that A is Fq-linear, that ρ and σ are
Fq-linear. Then for all strict polynomial functors G and K of weights less or equal
to qs, the map (56) is e-connected.

Remark 10.14. The finite dimensionality hypotheses on the values of ρ, σ and
on Hom

kA(ρ, σ) are necessary in the proof of corollary 10.12 in order that i), ii)
and iii) are satisfied. Without them, we would not obtain a commutative square
(55) with vertical isomorphisms. Similarly, the finite dimensionality hypotheses are
needed for the proof of corollary 10.13. Instead of dualizing, one could try to prove
corollaries 10.12 and 10.13 by a direct approach, following the same strategy as the
proofs of theorems 10.1 and 10.9. However, such a direct approach seems to raise
inextricable problems with (co)limits.

11. Applications of corollary 10.11

The goal of this section is to prove applications of the generalized comparison
theorem, or to be more specific, of the corollaries 10.10 and 10.11 which deal with
the very specific case A = Pk. We first generalize the computations of [14] over an
infinite perfect field. We also generalize some results of [13] to infinite perfect fields.
Finally, the most important applications are probably theorems 11.13 and 11.15.
These theorems are the analogues for classical groups over infinite perfect fields of
the main result of Cline Parshall Scott and van der Kallen [6] which compares the
cohomology of and algebraic group with the cohomology of its underlying discrete
group. Throughout the section, k is a field of positive characteristic p.
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11.1. A sample of functor homology computations. Many computations of
generic Ext can be found in the literature. Thus, the isomorphism of corollary 10.11
provides many concrete Ext-computations in k[Pk]-Mod over an infinite field. We
briefly illustrate this fact here.

We first point out that computations of generic Ext between strict polynomial
functors are insensitive to field extensions. To be more specific, if k → L is any
field extension, the base change formula [44, Section 2.7] yields an isomorphism

Ext∗gen,k(F,G)⊗ L ' Ext∗gen,L(FL, GL)

where the generic extensions on the left hand side are computed in the k-category
ΓPk-Mod, while the generic extensions on the right hand side are computed in the
L-category ΓL(PL)-Mod. The functors FL and GL obtained by base change from
F and G are usually easy to compute, e.g. if F is the d-th symmetric power over
k then FL is the d-th symmetric power over L. In particular, all the computations
of generic Ext over finite fields actually hold over arbitrary fields k of positive
characteristic, and can therefore be converted into computations in k[Pk]-Mod by
corollary 10.11 when k is infinite and perfect. This is the case of the computations
of generic Ext given in [14, Thm 5.8] (which are established in [50] by different
methods, without spectral sequences). To be more specific, let C∗ be a graded
coalgebra in k[Pk]-Mod and let A∗ be a graded algebra in k[Pk]-Mod. We consider
the trigraded vector space

E∗(C∗, A∗) :=
⊕

i,d,e≥0

Extik[Pk](C
d, Ae)

equipped with the algebra structure given by convolution:

Ei(Cd, Ae)⊗ Ej(Cf , Ag)
∪−→ Ei+j(Cd ⊗ Cf , Ae ⊗Ag)→ Ei+j(Cd+f , Ae+g) .

By letting s → ∞ in [50, Thm 15.1] and by applying corollary 10.11 one obtains
the following infinite field version of the computations of [14, Thm 6.3].

Corollary 11.1. Let k be an infinite perfect field of positive characteristic p, and
let r be a nonnegative integer. Let Vs,r denote the trigraded vector space with ho-
mogeneous basis (ei)i≥0 where each ei is placed in tridegree (2ipr + spr − s, 1, pr).
Then we have isomorphisms of trigraded algebras:

E∗(Γ∗(r), S∗) ' S(V0,r) , E∗(Γ∗(r),Λ∗) ' Λ(V1,r) ,

E∗(Λ∗(r), S∗) ' Λ(V0,r) , E∗(Λ∗(r),Λ∗) ' Γ(V1,r) ,

E∗(S∗(r), S∗) ' Γ(V0,r) , E∗(Γ∗(r),Γ∗) ' Γ(V2,r) .

The approach of [50] relies on a formula computing extensions between twisted
strict polynomial functors, see [5], [46] and [52]. Namely, if v is a finite-dimensional
vector space and G is a strict polynomial functor, we let Gv be the strict polynomial
functor ‘with parameter v’ defined by Gv(−) := G(v ⊗−). If v is graded, then Gv
inherits a grading. It is the unique grading natural with respect to G and v, which
coincides with the usual grading on symmetric powers of a graded vector space see
[49, Section 2.5] and [52, Section 4.2]. Let Er denote the finite-dimensional graded
vector space Er = Ext∗ΓprPk(I(r), I(r)) which equals k in degrees 2i for 0 ≤ i < pr

and which is zero in the other degrees. Then we have a graded isomorphism, where
the degree on the right hand side is obtained by totalizing the Ext-degree with the
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degree of the functor GEr (that is, if GjEr is the component of degree j then the
summand ExtiΓPk

(F,GjEr ) is placed in degree i+ j):

Ext∗ΓPk
(F (r), G(r)) ' Ext∗ΓPk

(F,GEr ) .

We can extend the parametrization of a strict polynomial functor G to infinite-
dimensional graded vector spaces v by letting Gv := colimGu, where the colimit
is taken over the poset of all finite-dimensional graded vector spaces u ⊂ v. By
taking the colimit over r in the previous isomorphism, and by using corollary 10.11
we obtain the following result (in which no Frobenius twist appear in the Ext of
the right hand side).

Corollary 11.2. Let k be an infinite perfect field of positive characteristic. Let E∞
be the graded vector space equal to k in even degrees and to 0 in odd degrees. There
is a graded isomorphism, natural with respect to the strict polynomial functors F
and G, and where the degree on the right hand side is computed by totalizing the
Ext-degree with the degree of the functor GE∞ :

Ext∗k[Pk](F,G) ' Ext∗ΓPk
(F,GE∞) .

11.2. Bifunctor cohomology. The words ‘bifunctor cohomology’ are sometimes
used [13, 53] to denote the Hochschild cohomology of k[Pk] or ΓdPk. The study of
bifunctor cohomology was initiated in [13] for a finite field k. Here we extend two
of the main results of [13] to infinite perfect fields of positive characteristic.

Let K denote either k[Pk] or ΓdPk. The bifunctor cohomology of B ∈ Kop ⊗
K-Mod is defined as the extensions

HH∗(K, B) := Ext∗Kop⊗K(K, B)

where the first argument in the Ext is the bifunctor given by homomorphisms in K.
Thus, if gl(v, w) := Homk(v, w), then K(v, w) = k[gl(v, w)] in the case of ordinary
functors and K(v, w) = Γd(gl(v, w)) in the case of strict polynomial functors. If B
has separable type, that is, if B(v, w) = Homk(F (v), G(w)) for some functors F and
G, we have isomorphisms natural with respect to F and G [13, Prop 2.2]:

HH∗(K, B) ' Ext∗K(F,G) .(57)

These isomorphisms can often be used to reduce questions regarding bifunctor coho-
mology to questions regarding functor cohomology, especially for strict polynomial
bifunctors since the standard injectives of the category have separable type.

Just like for functors of one variable, we have a forgetful functor

k[Pop
k ]⊗ k[Pk]→ ΓdPop

k ⊗ ΓdPk

induced by restriction along the functor γd⊗γd, where γd is defined in example 2.11.
If k is infinite, this forgetful functor is fully faithful. By restricting extensions along
γd ⊗ γd and by pulling back along the morphism of functors γd(gl) : k[gl] → Γdgl
we obtain a restriction map:

HH∗(ΓdPk, B)→ HH∗(k[Pk], B) .

For all r ≥ 0, we let Φ′k denote the composition of this restriction map together
with the isomorphism induced by restriction along the (−r)-th Frobenius twist and
by the canonical isomorphism k[gl](−r) = k[gl(−r)] ' k[(−r)gl] = k[gl]:

Φ′k : HH∗(Γdp
r

Pk, B
(r))→ HH∗(k[Pk], B(r))

'−→ HH∗(k[Pk], B).(58)
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The next proposition is the analogue of [13, Thm 7.6] for infinite perfect fields.

Proposition 11.3. Let k be an infinite perfect field of positive characteristic p and
let B be a strict polynomial bifunctor in ΓdPop

k ⊗ ΓdPk-Mod. Then the map (58)
is 2pr-connected.

Proof. By considering a coresolution of B by products of standard injectives, we
reduce the proof to the case where B is a standard injective, hence when B =
Homk(F,G). In this case, the map Φ′k identifies with the composition

Ext∗ΓdprPk(F (r), G(r))→ Ext∗gen(F,G)
Φk−−→ Ext∗k[Pk](F,G)

where the first map is the canonical inclusion (which is 2pr-connected by proposition-
definition 7.5) and the isomorphism Φk of corollary 10.11. Whence the result. �

Proposition 11.3 should be seen as a way to obtain explicit bifunctor cohomology
over k[Pk], in the spirit of section 11.1. For example, we obtain the following
computation by letting r →∞ in [47, Thm 1] and applying proposition 11.3.

Corollary 11.4. Let E∞ denote the graded vector space which equals k in even
degrees and 0 in odd degrees and consider k[Sd] as a vector space placed in degree
zero. Let the symmetric group Sd act on E⊗d∞ by permuting the factors of the tensor
product, and by conjugation on k[Sd]. There is an isomorphism of graded vector
spaces

HH∗(k[Pk], Sdgl) ' (E⊗d∞ )⊗Sd k[Sd] .

We finish our section on bifunctor cohomology by describing its relation with the
cohomology of GLn(k). This relation provides a motivation for computing bifunctor
cohomology over k[Pk], and we will also need it in the prooof of theorem 11.13 in
section 11.4. We first need the following generalization of Quillen’s vanishing of the
mod p homology of GL∞(Fq).

Lemma 11.5. Let k be a perfect field of positive characteristic p. The mod p
homology of GL∞(k) is zero in positive degrees.

Proof. By the p-local Hurewicz theorem [32, Thm 1.8.1], it is equivalent to prove
that the mod p homotopy groups of BGL(k)+ are trivial, or equivalently that the
Quillen K-theory Kn(k) is uniquely p-divisible for all positive n. As a consequence
of the Geisser-Levine theorem [55, VI Thm 4.7], Kn(k) is uniquely p-divisible if
and only if the Milnor K-theory KM

n (k) is uniquely p-divisible. That the latter
is p-divisible follows from the fact that k× is p-divisible (because k is perfect),
hence that the abelian group (k×)⊗Zn is p-divisible. It is uniquely p-divisible as a
consequence of Izhboldin’s theorem [55, III Thm 7.8]. �

If B is an object of k[Pop
k ] ⊗ k[Pk]-Mod, then B(kn, kn) is endowed with an

action of GLn(k). Namely, an element g ∈ GLn(k) acts as B(g−1, g) on B(kn, kn).
For example GLn(k) acts by conjugation on gl(kn, kn) = Endk(kn). The identity
of kn is invariant under conjugation, hence we have a morphism of representations

fn : k → k[gl](kn, kn) = k[Endk(kn)]

defined by f(λ) = λf(idkn). Then evaluation on kn and pullback along fn yields a
graded map

HH∗(k[Pk], B)→ H∗(GLn(k), B(kn, kn)) .(59)
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The next proposition 11.6 and its corollary 11.7 generalize Suslin’s comparison
result [14, Thm A.1] and its extension to bifunctors [13, Thm 7.4] from finite fields
to arbitrary perfect fields of positive characteristic. It is a consequence of the
stable K-theory computations of Scorichenko [42], which are reformulated in terms
of stable homological calculations in [8], the homological stabilization result [37,
Thm 5.11], together with the vanishing lemma 11.5.

Proposition 11.6. Let k be a perfect field of characteristic p. Assume that B is
polynomial of degree d with finite-dimensional values. Then the comparison map
(59) is 1

2 (n− 1− d)-connected.

Proof. LetB] denote the Kuhn dual ofB, that is the bifunctor defined byB](v, w) =
∨B(∨v, ∨w) where ∨v refers to the dual of a k-vector space v. By using proposition
2.12, the symmetry of Tor (that is TorK∗ (F,G) ' TorK

op

∗ (G,F )) and the fact that
∨− : Pop

k → Pk is an equivalence of categories, the proof reduces to show that
evaluation on kn and restriction along fn yields a 1

2 (n− 1− d)-connected map:

H∗(GLn(k), B](kn, kn))→ Tork[Pk]
∗ (k[gl], B]) .

In order to achieve this, we compare the homology of GLn(k) with the homology
of GL∞(k). Namely we let B](k∞, k∞) denote representation of GL∞(k) obtained
by taking the colimit of the B](kn, kn). Let ρn denote the composition

H∗(GLn(k), B](kn, kn))→ H∗(GLn(k), B](k∞, k∞))→ H∗(GL∞(k), B](k∞, k∞))

where the first map is induced by the canonical inclusion B](kn, kn)→ B](k∞, k∞)
and the second one is given by restriction along GLn(k) ↪→ GL∞(k). We have a
commutative square, in which the vertical isomorphism on the right hand side is
the base change isomorphism of [31, Thm 14.2] and the bottom arrow (†) is induced
by the map f∞ : Z→ Z[Pk](k∞, k∞) and by evaluation on k∞.

H∗(GLn(k), B](kn, kn)) Tor
k[Pop

k ×Pk]
∗ (k[Pk], B])

H∗(GL∞(k), B](k∞, k∞)) Tor
Z[Pop

k ×Pk]
∗ (Z[Pk], B])

ρn '

(†)

.

The map (†) is an isomorphism by [8, Thm 5.6] and the vanishing lemma 11.5, and
ρn is 1

2 (n− 1− d)-connected by [37, Thm 5.11]. Whence the result. �

Corollary 11.7. Let k be a perfect field of characteristic p. Assume either that
(i) both F and G are polynomial functors of degree less or equal to d with finite-
dimensional values, or that (ii) both F and G are strict polynomial functors of
weight less or equal to d. Evaluation on kn yields a 1

2 (n− 1− 2d)-connected map

evn : Ext∗k[Pk](F,G)→ Ext∗GLn(k)(F (kn), G(kn)) .

Proof. Assume (ii). Take a resolution or F by direct sums of standard projectives in
ΓPk-Mod and a coresolution of G by products of standard injectives in ΓPk-Mod.
Then by a standard spectral sequence argument we can restrict ourselves to the case
where F is a standard projective and G is a standard injective, in particular to the
case where F and G have finite-dimensional values. Morover strict polynomial
functors of weight less or equal to d are polynomial of degree less or equal to d, see
remark 7.10. Hence it suffices to prove the corollary under hypothesis (i).
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Assume (i) and let B denote the bifunctor B(v, w) = Homk(F (v), G(w)). There
is a commutative diagram whose horizontal maps are the canonical isomorphisms

HH∗(k[Pk], B) Ext∗k[Pk](F,G)

H∗(GLn(k), B(kn, kn)) Ext∗GLn(k)(F (kn), G(kn))

'

(59) evn

'

.

Hence the result follows from proposition 11.6. (Note that B has degree less or
equal to 2d). �

11.3. Orthogonal and symplectic cohomology. Bifunctor cohomology and its
relation to the cohomology of general linear groups has an analogue for symplectic
and orthogonal groups that we now describe. Here we assume that k has odd
characteristic p.

Assume that G = On,n(k) or G = Sp2n(k). We associate to G a ‘characteristic
functor’ X : Pk → Pk, namely X = S2 in the orthogonal case X = Λ2 in the
symplectic case. We define an analogue of bifunctor cohomology as follows. Let F
be an object of k[Pk]-Mod or of ΓdPk-Mod, we set:

H∗X(k[Pk], F ) = Ext∗k[Pk](k[X], F ),

H∗X(ΓdPk, F ) =

{
Ext∗ΓdPk(Γd/2 ◦X,F ) if d is even,
0 if d is odd.

By restricting extensions along the functor γd : k[Pk]→ ΓdPk and by pulling back
along the morphism of functors γd/2(X) : k[X] → Γd/2X we obtain a restriction
map (which is the zero map if d is odd):

H∗X(ΓdPk, F )→ H∗X(k[Pk], F ) .

For all r ≥ 0, we let Φ′k,X denote the composition of this restriction map together
with the isomorphism induced by restriction along the (−r)-th Frobenius twist and
by the canonical isomorphism k[X](−r) = k[X(−r)] ' k[(−r)X] = k[X]:

Φ′k,X : H∗X(Γdp
r

Pk, F
(r))→ H∗X(k[Pk], F (r))

'−→ H∗X(k[Pk], F ).(60)

Proposition 11.8. Let k be an infinite perfect field of odd positive characteristic
p and let F be a d-homogeneous strict polynomial functor. The map (60) is 2pr-
connected.

Proof. Since p is odd, X is a direct summand of the second tensor power functor ⊗2,
hence Φ′k,X is a retract of Φ′k,⊗2 . Thus we have to show that Φ′k,⊗2 is 2pr-connected.
We achieve this by reformulating the problem in terms of bifunctor cohomology.
Let B be the object of Γd(Pop

k ×Pk)-Mod such that B(v, w) = F (∨v⊕w) where ∨v
denotes the dual of the k-vector space v. We have a finite direct sum decomposition

Γd(Pop
k ×Pk)-Mod =

⊕
i+j=d

ΓiPop
k ⊗ ΓjPk-Mod

henceB decomposes into a direct sum of homogeneous summandsB =
⊕

i+j=dB
i,j .

We claim that for any bifunctor Bi,j ∈ ΓiPop
k ⊗ ΓjPk-Mod, the bifunctor co-

homology HH∗(k[Pk], Bi,j) is zero if i 6= j. Indeed, by considering an injective
coresolution of B in ΓiPop

k ⊗ ΓjPk-Mod it suffices to prove the result when B is
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a standard injective, hence when B has separable type. In that case, the ques-
tion reduces to the vanishing of Ext in k[Pk]-Mod between a i-homogeneous strict
polynomial functor and a j-homogeneous strict polynomial functor hence the claim
follows from the vanishing lemma 7.13.

Sum-diagonal adjunction (as in example 2.19) and restriction along the equiv-
alence of categories k[Pop

k ] ⊗ k[Pk] ' k[Pk] ⊗ k[Pk] given by the duality functor
∨− : Pop

k → Pk yields an isomorphism

H∗⊗2(k[Pk], F ) ' HH∗(k[Pk], B)

Our claim implies that for d odd, the right hand side is zero, hence that the com-
parison map (60) is an isomorphism.

Assume now that d is even. We have a commutative diagram where the bottom
isomorphism is described above, and the top isomorphism is its analogue for strict
polynomial functors (induced by sum-diagonal adjunction, restriction along the
equivalence of categories Γdp

r

(Pop
k ×Pk) ' Γdp

r

(Pk ×Pk) provided by the duality
functor and projection onto the summand Bd,d of B):

H∗⊗2(Γdp
r

Pk, F
(r)) HH∗(k[Pk], Bd,d)

H∗⊗2(k[Pk], F ) HH∗(k[Pk], B) HH∗(k[Pk], Bd,d)

Φ′
k,⊗2

'

Φ′k

'

.

Hence Φ′k,⊗2 is 2pr-connected by proposition 11.3. �

Now we explain the relation between the cohomology groups H∗X(k[Pk], F ) and
the cohomology of the symplectic and orthogonal group. We first need the following
vanishing result. We gratefully thank Baptiste Calmès for helping us with the
literature relative to hermitian K-theory.

Lemma 11.9. Let k be a perfect field of odd characteristic p. Then the mod p
homology of the groups Sp∞(k) and O∞,∞(k) is zero in positive degrees.

Proof. Let G = Sp∞(k) or O∞,∞(k). By the universal coefficient theorem, it is
equivalent to prove that Hi(G,Z) is uniquely p-divisible for i > 0. If A is an
abelian group, we let A[1/2] denote the tensor product A⊗ZZ[1/2]. Since p is odd,
A is uniquely p-divisible if and only if A[1/2] is uniquely p-divisible. And since
Z[1/2] is flat we have H∗(G,Z)[1/2] = H∗(G,Z[1/2]). Thus the statement of the
lemma is equivalent to Hi(G,Z[1/2]) being uniquely p-divisible for i > 0.

Since k is a field of odd characteristic, the Witt groups W (k) are an F2-vector
space [40, Chap. 2, Thm 6.4]. Thus by [23, Thm 3.18] H∗(G,Z[1/2]) is equal to
T∗(k), that is, to the homology of a space C(k) which is a retract of the localized
classifying space (BP ′k

+
)(2), see [23, p. 253] for the latter point. Since the integral

homology of (BP ′k
+

)(2) is equal to H∗(BP ′k
+
,Z)[1/2], the lemma will be proved if

we can prove that BP ′k
+ has uniquely p-divisible positive integral homology groups.

But BP ′k
+ has the weak homotopy type ofK0(k)×BGL∞(k)+, hence its integral

homology is direct sum of copies of the integral homology of BGL∞(k)+. Since k is
perfect, these integral homology groups are uniquely p-divisible in positive degrees
by lemma 11.5 and by the universal coefficient theorem. �

Remark 11.10. Instead of relying on the results of [23], one could prove the lemma
by using the formula of [41, Rk 7.8], which says that after tensoring by Z[1/2],
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the hermitian K-theory (hence [41, App A] the homotopy groups of BG+ for G =
Sp∞(k) or O∞,∞(k)) is the direct sum of a term computed from the K-theory of k
and a term given by Balmer’s Witt groups of k tensored with Z[1/2].

For all functors F in k[Pk]-Mod, the vector space F (k2n) has a natural action
of G, where g ∈ G acts as F (g). The quadratic form on k2n used to define G yields
an invariant ω ∈ X(k2n) under the action of G, hence we have a G-equivariant map

f2n,X : k → k[X](k2n) = k[X(k2n)]

such that f2n,X(λ) = λ[ω]. Evaluation on k2n and pullback along f2n,X yields a
graded map

H∗X(k[Pk], F )→ H∗(G,F (k2n)).(61)

The following proposition and its corollary are proved exactly in the same fashion
as proposition 11.6 and corollary 11.7, relying on the stable homology computations
of [8, Cor 5.4], the homological stabilization result [37, Thm 5.15] and the vanishing
lemma 11.9.

Proposition 11.11. Let k be a perfect field of odd characteristic p. Assume that
F is polynomial of degree d with finite-dimensional values. Then the comparison
map (61) is 1

2 (n− 2− d)-connected.

Corollary 11.12. Let k be a perfect field of odd characteristic p. Assume that F is
a strict polynomial functor of weight less or equal to d. Then the comparison map
(61) is 1

2 (n− 2− d)-connected.

11.4. Rational and discrete cohomology of classical groups. Let G be an
algebraic group over k, let ModG denote the category of all representations of
the discrete group G, and let RatG denote the full subcategory of ModG on the
rational representations as in [22]. Extensions between two rational representations
V and W can be computed in RatG or ModG. In the sequel, we let

Ext∗G(V,W ) := Ext∗RatG(V,W ) , H∗(G, k) := Ext∗G(k, k) ,

ExtG(V,W ) := Ext∗ModG(V,W ) , H∗(G, k) := Ext∗G(k, k) .

There is a canonical morphism:

Ext∗G(V,W )→ Ext∗G(V,W )

which is far from being an isomorphism in general. An important difference between
the source and the target of the canonical morphism is the behaviour of Frobenius
morphisms. Namely assume that G is one of the classical groups GLn(k), Sp2n(k)
or On,n(k) (and if k has characteristic 6= 2 in the latter case), and let let φ : G→ G,
[aij ] 7→ [apij ], denote the morphism of algebraic groups induced by the Frobenius
endomorphism of k, and let V [r] denote the restriction of V along φr. We have a
commutative ladder whose horizontal arrows are induced by restriction along φ:

ExtiG(V,W ) · · · ExtiG(V [r],W [r]) ExtiG(V [r+1],W [r+1]) · · ·

ExtiG(V,W ) · · · ExtiG(V [r],W [r]) ExtiG(V [r+1],W [r+1]) · · · .

Assume that k is perfect. Then φ has an inverse φ−1([aij ]) = [a−pij ] so that the
morphisms in the bottom row are all isomorphisms. However φ has no inverse
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in the sense of algebraic groups, so this argument does not apply to the top row.
Instead, it is known [22, II 10.14] that the morphisms in the top row are all injective
(and that they are isomorphisms for r � 0 only). Hence, if k is perfect the ladder
yields canonical maps:

Φk,G : Ext∗G(V [r],W [r])→ Ext∗G(V,W ) .(62)

Embed G = GLn(k), Sp2n(k) or On,n(k) in the multiplicative monoïd of matrices
Mm(k) in the usual way (here m = n for GLn(k) and m = 2n for in the case of
the symplectic or orthogonal groups). Then a finite-dimensional representation V
of is called polynomial of degree less or equal to d if it is the restriction to G of a
representation of Mm(k), such that the coordinate maps of the action morphism

ρV : Mm(k)→ Endk(V ) 'MdimV (k)

are polynomials of degree less or equal to d of the m2 entries of [aij ] ∈Mm(k). An
infinite-dimensional representation V is polynomial of degree less or equal to d if
every element of V is contained in a finite-dimensional subrepresentation which is
polynomial of degree less or equal to d.

Theorem 11.13. Let k be an infinite perfect field of positive characteristic p, let
G = GLn(k), let V and W be two polynomial representations of degree less or equal
to d, and let r be a nonnegative integer. Assume that n ≥ max{dpr, 4pr + 2d+ 1}.
Then the comparison map in equation (62) is 2pr-connected.

Proof. Evaluation on kn yields an exact functor evn : k[Pk]-Mod →ModGLn(k),
which restricts to a exact functor evn : ΓPk-Mod → RatGLn(k). Since n ≥ d we
know from [18, Lm 3.4] that there exists two strict polynomial functors F and G
of weight less or equal to d such that V ' F (kn) and W = G(kn), hence such
that V [r] ' F (r)(kn) and W [r] ' G(r)(kn) for all r ≥ 0. We consider the following
commutative diagram:

Ext∗GLn(k)(V
[r],W [r]) Ext∗ΓPk

(F (r), G(r))

Ext∗GLn(k)(V,W ) Ext∗k[Pk](F,G)

Φk,GLn(k) Φ′k

evn

evn

.

in which Φ′k is the composition

ExtΓPk(F (r), G(r))→ Ext∗gen(F,G)
Φk−−→
'

Ext∗k[Pk](F,G)

where the second map is the isomorphism of corollary 10.11 and the first one is
the canonical inclusion. This canonical inclusion is 2pr-connected by proposition-
definition 7.5, hence Φ′k is 2pr-connected. Moreover, since n ≥ dpr the top horizon-
tal map is an isomorphism by [18, Cor 3.13]. Finally, the bottom horizontal map
is 2pr-connected by corollary 11.7. Thus Φk,GLn(k) is 2pr-connected. �

Remark 11.14 (Generic extensions of GLn(k)). Assume that V and W are finite
dimensional polynomial representations of degree d of GLn(k). It is known [22,
II.10.16] that the maps Ext∗GLn(k)(V

[r],W [r]) → Ext∗GLn(k)(V
[r+1],W [r+1]) are in-

jective, their colimit is called the generic extensions between V and W . We denote



FUNCTOR HOMOLOGY OVER AN ADDITIVE CATEGORY 73

it by Ext∗gen(V,W ). The comparison map Φk,GLn(k) factors through generic exten-
sions:

Ext∗gen(V,W )

Ext∗GLn(k)(V
[r],W [r]) Ext∗GLn(k)(V,W )

Φgen

Φk,GLn(k)

.

The main theorem of [6] or rather the general linear group version given in [18,
Thm 7.3] imply that the vertical arrow is ((p−1)r+ 2)-connected provided that (i)
V and W are defined over Fp and (ii) k is a big enough finite field (with respect to
r, V and W ). By base change [22, I.4.13], the vertical map is also an isomorphism
when condition (ii) is replaced by: (ii’) k is an infinite field. Moreover, every finite
dimensional polynomial representation has a filtration whose associated graded ob-
ject is defined over Fp, namely its Jordan-Hölder filtration. Hence, condition (i) can
be removed by inspecting the long exact sequences associated to the Jordan-Hölder
filtration. Thus we can state a version of theorem 11.13 in terms of generic coho-
mology, at the price of a worse connectivity bound. Namely, the comparison map
Φgen above is ((p− 1)r + 2)-connected provided that n ≥ max{dpr, 4pr + 2d+ 1}.

Theorem 11.13 has an analogue for orthogonal and symplectic groups. Here we
take V = k hence V [r] = k and the comparison map (62) can be rewritten as a map

Φk,G : H∗(G,W [r])→ H∗(G,W ) .(63)

Theorem 11.15. Let k be an infinite perfect field of odd characteristic p, let G =
Sp2n(k) or On,n(k) and let W be a polynomial representation of degree less or equal
to d. Assume that 2n ≥ max{dpr, 8pr + 4 + 2d}. Then the comparison map (63) is
2pr-connected.

Proof. We proceed in the same way as in the proof of theorem 11.15. We know
that W = F (k2n) for some strict polynomial functor of weight less or equal to d.
Furthermore, if Fi is the i-homogeneous component of F thenW =

⊕
0≤i≤d Fi(k

2n),
and since the source and the target of Φk,G are additive with respect toW , it suffices
to prove the isomorphism when F is homogeneous of weight (less or equal to) d.

We have a commutative diagram:

H∗(G,W [r]) H∗X(Γdp
r

Pk, F
(r))

H∗(G,W ) H∗X(k[Pk], F )

Φk,G Φ′k,X
.

To be more specific, the bottom horizontal map of the diagram is the comparison
map of corollary 11.12 hence it is 2pr-connected. The top horizontal map has a
similar definition, namely it is zero if d is odd, and if d is even it is induced by
evaluation on k2n and pullback along the G-equivariant morphism f ′2n,X : k →
Γd/2(X(k2n)) such that f2n,X′(λ) = λω⊗d/2, where ω ∈ X(k2n) is the invariant
element associated to the quadratic form defining G. This top horizontal arrow is
an isomorphism by [48, Thm 3.17] or [48, Thm 3.24]. Moreover Φ′k is 2pr-connected
by proposition 11.8. The connectivity of Φk,G follows. �

Remark 11.16. Theorem 11.15 can be reformulated in terms of generic cohomology
in the same fashion as we explained it for GLn(k) in remark 11.14.
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