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Abstract: Among marine sources, seaweeds and sea anemones are highly attractive for 

their diversity and complex composition, the major components being polysaccharides, 

proteins, pigments, phenolic compounds, vitamins and minerals. Seaweeds and sea 

anemones could be a source of different proteins and peptides with unique structures 

with interesting biological properties, such as antitumoral, antimicrobial, anti-

inflammatory, antidiabetic, antioxidant, among others. This chapter presents an 

overview on the marine algal and anemone bioactive proteins and peptides, their 

extraction and the development of novel carrier systems with potential interest for 

pharmaceutical applications. 
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Introduction 

The biodiversity of marine environment is a rich source of chemical structures with 

interesting biological properties for a potential development of alternative therapeutic 

products. Abundant research studies on drug discovery from natural sources explored 

the marine ecosystems for novel bioactive compounds. Particular attention was on 
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sedentary organisms, producing a variety of compounds with protecting and defending 

activities.  

Seaweeds show a complex composition, containing mainly polysaccharides, proteins, 

lipids and minerals. Although their commercial utilization is mainly based on the 

extraction of the saccharidic fraction for gelling purposes, the protein fraction also 

represents a sustainable source for the production of peptide-based drugs and functional 

foods.  

Sea anemones have an arsenal of molecules that helps them to capture prey or defend 

from predators. Their venoms are complex mixtures of peptides and small proteins that 

were explored for the development of new active principles against cancer and 

neurodegenerative diseases, based on their actions as ionic channel blockers, 

neurotoxins, protease inhibitors, and pore-forming toxins (Álvarez et al., 2009, Dutertre 

and Lewis, 2010, Thangaraj and Bragadeeswaran, 2012; Mac Rander et al., 2016a and 

b; Logashina et al 2017, Loret et al., 2018).  

This chapter presents an overview of the potential of proteins from anemones and 

seaweeds as a natural source of active compounds with potent pharmacological 

properties, the extraction technologies and their potential for developing novel products. 

 

Properties 

Seaweed protein properties 

In the past decades, novel compounds with antiobesity activity (Jin et al., 2018). 

Seaweeds are promising natural sources based on their wide distribution, rapid growth 

rate, high content of proteins, up to 30-40% of the dry weight, and diverse profile of 

bioactive compounds, such as phycobiliproteins, phycolectins and mycosporine-like 

amino acids (Cian et al., 2015; Admassu et al., 2018).  

Bioactive peptides, usually 2 to 20 amino acids, show activity when released by protein 

degradation by endogenous and exogenous enzymatic action, processing or 

gastrointestinal digestion show a variety of therapeutic actions, such as regulation of 

mucosal barrier function, prevention of hypertension, enhancing mineral absorption, 

lowering cholesterol, and showing antihypertensive, anti-inflammatory, 

immunomodulatory, antimicrobial, antithrombotic, antioxidant, antiobesity and 



antidiabetic activities (Qu et al., 2010; Holdt and Kraan, 2011; Cian et al., 2015; Hayes 

and Tiwari, 2015; Admassu et al., 2018). Short chain peptides, often carrying polar 

amino acid residues like proline and with hydrophobic amino acids at the C-terminal 

tripeptide sequence have the ability to inhibit Angiotensin-I-converting enzyme (ACE), 

which is a major therapeutic approach in the prevention of hypertension. 

Antihypertensive peptides are good therapeutic approaches in the management of 

hypertension (Wijesekara and Kim, 2010) without the side effects of other 

pharmacological drugs (Admassu et al., 2018). Peptides with 2 to 6 amino acids are 

absorbed more readily than proteins and free amino acids, although it has also been 

suggested that also larger peptides (10 to 50 amino acids) can cross intestinal barrier 

and show biological actions at the tissue level. The influence of the structure on the 

antioxidant properties has been studied by a number of groups the most active peptides 

were those with low molecular weights (Wang et al., 2010; Cian et al., 2015). 

Mycosporine-like amino acids (MAAs) are secondary metabolites of low molecular 

weight (< 400 Da) with ultraviolet-absorbing (λmax = 309–360 nm) protection (Cian et 

al., 2015; Wijesekara & Kim, 2015). They have a role in UV-protection, and have 

antioxidant activity capable of protecting against the cellular damage that high levels of 

reactive oxygen species (ROS).  

Lectins are carbohydrate binding proteins responsible for lectin involvement in 

numerous biological processes such as host-pathogen interactions, cell-cell 

communication, induction of apoptosis, cancer metastasis and cell differentiation (Cian 

et al., 2015). 

Phycobiliproteins, accounting for half of the total protein content of red seaweeds, are 

fluorescent proteins covalently linked to tetrapyrrole groups, and found in 

phycobilisomes. The major are phycoerythrin, phycocyanin, allophycocyanin, and 

phycoerythrocyanin, and they have applications based on their color and their biological 

properties, including antimicrobial, anti-inflammatory, neuroprotective, 

hepatoprotective, immunomodulating and anticarcinogenic activities (Aryee et al., 

2018; Mittal et al., 2018).  
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Sea anemones proteins and cancer treatments 

Sea anemones are the best known source of low molecular weight (< 5000 Da) 

active principles. They all have three disulfide bridges and share sequence homologies 

but point mutations can totally change their structures and their pharmacological 

properties. A wide variety of compounds with different activities was therefore 

identified, such as neurotoxicity, cytolytic (Oliveira et al., 2006; Pedrera et al., 2014), 

haemolytic, analgesic, anti-inflammatory (Oliveira et al., 2006; Thangaraj and 

Bragadeeswaran, 2012; Celedón et al., 2008; Stabili et al., 2015), anti-hyperglycemic 

and anti-diabetic (Lauritano 2016). Although most of these proteins were found in 

tentacles, the mucus appears also a promising alternative source of antimicrobial 

lysozyme-like antibacterial agents, which have different modes of action regarding 

conventional antibiotics (Subramanian et al., 2011; Stabili et al., 2015). Some of these 

proteins, such as sticholysins are exclusively found in sea anemones (Pedrera et al., 

2014), these cysteine-less proteins, with molecular weights around 20 kDa, high 

isoelectric points (>9.5), are water soluble and can interact with membranes and form a 

stable membrane pore (Álvarez et al., 2009). 

Mycosporine-like amino acids are also found in sea anemones, among them 

shinorine, porphyra-334, mycosporine-2 glycine, palythine-serine sulphate, stylophora-

sulphate, palythine, asterina-330, palythinol, mycosporine-taurine, and mycosporine-

sulphate ester. The highest concentration is often found in areas exposed to sunlight, 

they can also be of dietary origin, present in food or resulting from transformations of 

dietary MAAs by action of specific anemone enzymes or bacteria harbored in the 

anemones coelenteron or ectodermal tissue (Arbeloa et al., 2010). 

Regarding cancer research, sea anemone proteins showed recently interesting 

development (Loret et al., 2018). Cancer treatments are mainly based on anti-mitotic 

compounds that have side effects because they block both the division of cancer cells 

and healthy cells. Cancer cells need to be vascularized by endothelial cells to grow as a 

tumor and then to spread to metastasize and kill patients. Vascularization is called 

angiogenesis and it was proposed almost 50 years ago to block angiogenesis to fight 

against cancer because angiogenesis is no longer important after embryogenesis 

(Folkman 1971). Amazingly there are very few antiangiogenic compounds compared to 

antimitotic compounds and it is only since a decade that antiangiogenic compounds 

began to be tested in clinical trials. Moreover the antiangiogenic compounds showed a 



limited efficacy because they all binds on the Vascular Endothelial Growth Factor 

(VEGF) or the VEGF receptor and tumor cells can trigger different biological ways to 

have angiogenesis (Carmeliet & Jain 2011). Among antiangiogenic compounds binding 

on VEGF, the most used in clinical trial is the Bevacizumab (known as Avastin), which 

is a monoclonal antibody. Bevacizumab is costly due to its size and difficulties to have 

a germ free production as recombinant protein. Furthermore resistance to Bevacizumab 

is observed due to the upregulation of other redundant angiogenic factors different from 

VEGF (Kong 2017).  The other compounds binding on VEGF are also monoclonal 

antibodies or Fab fragments. Compounds binding on VEGF receptors that are not 

proteins have toxic effects that limit their use (Chu 2007). 

There is therefore a need to have compounds blocking angiogenesis that do not 

bind on VEGF or VEGF receptor, easy to produce and with no long term toxicity. Short 

size synthetic proteins (less than 50 residues) are suitable compounds for this goal. 

Anemonia viviridis (called also Anemonia sulcata) have been widely studied and proved 

to be a remarkable source of low molecular proteins with different pharmacological 

binding sites on ionic channel receptors (Diochot et al., 2003). Seven short size proteins 

(42 to 49 residues) binding on ionic channels were purified and characterized from 

Anemonia viviridis. Among them, BDS 1 is a blood depressing protein of 43 residues 

(4708 Da) binding on a specific potassium channel and is commercialized as a synthetic 

protein to treat heart disease (Diochot, 1998). The NMR structure of BDS 1 revealed 

that the main secondary structure is a triple-stranded antiparallel beta-sheet and no alpha 

helix (Driscoll, 1989). A partially purified extracts of Anemonia viviridis was reported 

to affect the growth and viability of selected tumor cell lines (Bulati 2016). 

Synthetic proteins < 50 residues are now affordable and have the great 

advantage to made possible a sterile production, which is not the case for monoclonal 

antibodies such as Avastin that required a biological production. The high cost of 

Avastin is not related to the production as recombinant protein but to the purification 

process to have a germ free pharmaceutical production. A very low molecular weight 

compounds (< 1000 Da) would be certainly less expensive to produce than a synthetic 

protein. However a new chemical family of active principle requires now very 

expensive toxicological studies to have a Drug Master File suitable for clinical studies. 

Moreover, it turns out that actual preclinical toxicity studies required for clinical studies 

are not sufficient to guaranty an absence of long term toxicities. This long term 

toxicities are often due to accumulation in tissues of chemical compounds that cannot be 



or are insufficiently degraded. Therefore a synthetic protein (with a molecular weight < 

5000 Da) represents a good compromise between coast of production and safety issues 

and sea anemones are a rich source of small proteins that could be potential active 

principles. 

 

Processing technologies 

Seaweed 

Among seaweeds, the highest protein levels, up to 50% of dry matter has been reported 

for red algae, compared to green (up to 25 %), and brown (under 15 %) (Cian et al., 

2015). Most seaweeds contain all the essential amino acids, show high contenty of 

aspartic and glutamic acid, and lower of threonine, lysine, tryptophan, cysteine, 

methionine and histidine. The carbohydrate fraction is the most abundant and its 

composition depends on the type of seaweed, other important constituents are minerals, 

whereas the lipid fraction is low. 

Seaweeds contain a highly structural complex algal cell wall, which makes difficult the 

efficient extraction and digestibility of protein fractions (Admassu et al., 2018). The 

classic extraction methods are limited by the high viscosity and anionic bonding of the 

cell-wall polysaccharides and glycoproteins. Grinding in liquid nitrogen was proposed, 

but this approach is costly at industrial scale and does not provide an efficient 

degradation of cell wall. The development of novel extraction methods is a key to 

facilitate the disruption of the cell wall, facilitate access to the seaweed bioactive 

peptides maintaining high yields and optimal functional properties. Physical, chemical 

and enzymatic treatments have been proposed to obtain high protein yields. Among the 

most efficient are those based on the intensification of the extraction process with 

ultrasound or pulsed electric fields, as well as the use of pressurized solvent extraction 

and enzyme-assisted extraction (Wijesinghe and Jeon, 2012; Flórez-Fernández et al., 

2017; Admassu et al., 2018).  

Ultrasound assisted processes can provide higher protein extraction yields in shorted 

processing times than conventional extraction with acid or with alkaline media (Kadam 

et al., 2016; Mittal et al. (2017)). Temperature requires adequate to avoid undesirable 

thermal and chemical effects adequate selection of frequency is recommended, and the 



use of different alternating frequencies could enhance protein extraction yields (Qu et 

al., 2013a). 

The type of enzyme influences the extraction yield, and also the composition and 

properties of the extracts. The use of carbohydrases alone, including those developed for 

terrestrial biomass, such as β-glucanases, cellulases, xylanases, could enhance the 

protein extraction yield (Fleurence, 1999; Wang et al., 2010) or would require the 

combined use with other polysaccharidase or with other specific enzymes, such as 

carrageenase or agarase (Fleurence et al., 1995; Denis et al., 2009; Mittal et al., 2018). 

Among the operational variables affecting he process are pH and temperature, which 

should be optimal for both enzyme action and protein recovery, liquid to solid ratio, 

time and the enzyme to substrate ratio, which should be carefully optimized, since the 

enzyme costs would be one of the major limitations of this technique. Enzyme assisted 

extraction can also be combined with other technologies, such as ultrasound for the 

extraction of R-phycoerythrin (Le Guillard et al., 2015). 

Pressurized hot water extraction of protein was proposed at 120-270 °C to enhance the 

yields and productivity in an environmentally friendly operatrion (Gereniu et al., 2017, 

Pangestuti et al., 2019). 

After the extraction process, additional hydrolysis stages are required to cause the 

release of functional peptides. One of the preferred method is enzymatic hydrolysis with 

a single activity or combinations of them, since it can be performed under milder 

conditions than chemical and physical treatments (Wang et al., 2010; Samarakoon and 

Jeon 2012). Admassu et al. (2018) compiled the enzymes, including pepsin, trypsin, 

papain, chymotrypsin, alcalase, fungal proteases have been used more commonly for 

hydrolysis of seaweed proteins in producing ACE inhibitory and antioxidant peptides. 

The released bioactive peptides are then concentrated and fractionated. Qu and others 

(2015) have reported a continuous enzymatic bioreactor with membrane separation in a 

multistep recycling system and fractionate the hydrolysates according to ranges of their 

molecular weight. Purification of this protein is performed by different techniques such 

as ammonium sulfate precipitation and chromatographic techniques (ion exchange, gel 

filtration, etc.). Usually a stage with ultrafiltration membranes is proposed for targeting 

a desirable molecular weigth range, and ion exchange, affinity chromatography and high 

performance liquid chromatography are used for purification and enrichment of 

bioactive components (Harnedy et al., 2017; Cheung and others 2015). Adequate 
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definition of downstream stages is required to develop cost effective processing (Hayes 

and Tiwari, 2015). 

 

Figure 1. Simplified flow diagram of the processes for the extraction of bioactive 

protein fractions from a) amemones abd b) seaweeds. 

 

Anemone 

In see anemones the venom system is decentralized in all parts of the animal body and 

is delivered by characteristic stinging organelles or nematocysts, located on body 

surfaces and in high concentration on tentacles, with functions related to defense against 

predators and prey captures. These organs possess a high concentration of a diverse 

range of sizes (12-200 kDa) and protein active principles (Oliveira et al., 2006; 

Subramanian et al., 2011; Stability et al., 2015), many of them could not be identified in 

other animals suggesting that they might be the products of taxonomically restricted 

genes (Moran et al., 2013). 

The mucus produced by the sea anemones is composed in more than 95% by water and 

the major components of the dry fraction are minerals, more than 60%, protein up to 

25%, carbohydrates 5-10% and less than 1% lipid (Stabili et al., 2015). 
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During stress condition the nematocysts can be released from the tentacles. The process 

can be repeated and the collected nematocysts containing toxins can be filtered, 

centrifugated and the supernantant collected for lyophilisation (Subramanian et al., 

2011). 

An easy and ecological method to extract bioactive compounds from sea anemones, 

consisted on maintaining and feeding the animals in aquarium, facilitating an increased 

milking frequency through electrical stimulation, avoiding to kill them and possibiliting 

to return to the sea (Oliveira et al., 2006). Most authors have proposed aqueous, 

methanol, dichloromethane and ethanol extracts (Subramanian et al., 2011; Thangaraj 

and Bragadeeswaran, 2012). The crude extracts have to be filtered, evaporated and 

lyophilized.  

Fractionation in C18 columns was proposed for partial purification of methanol extracts 

(Arbeloa et al., 2010), or for semipreparative chromatography of the selected fractions 

from Sephadex G-50 gel filtration (Oliveira et al., 2006). Membrane separation was also 

proposed for extract purification of anemone mucus extract components before 

chromatographic techniques (Stabili et al., 2015). 

 

Conclusions and future trends 

The molecules synthesized by sedentary marine microorganisms could have potential 

for novel products with pharmacological applications. Sea anemones contain a variety 

of bioactive compounds including some toxins, which could have potential for the 

production of bioactive compounds of high pharmaceutical and biotechnological 

interest, i.e., antihypertensive peptides and antimicrobial molecules or immunotoxins 

against tumoral cells. Further advances and improvement in extraction and isolation of 

peptides from seaweed and anemones are expected to comply with the growing demand 

for novel efficient side effects free natural derived drugs, as well as the development of 

cleaner efficient processes. 
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