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From exploration to control: learning object manipulation skills
through novelty search and local adaptation

Seungsu Kim, Alexandre Coninx, Stephane Doncieux

Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique, ISIR, F-75005 Paris, France

Abstract

Programming a robot to deal with open-ended tasks remains a challenge, in particular if the robot
has to manipulate objects. Launching, grasping, pushing or any other object interaction can be
simulated but the corresponding models are not reversible and the robot behavior thus cannot
be directly deduced. These behaviors are hard to learn without a demonstration as the search
space is large and the reward sparse. We propose a method to autonomously generate a diverse
repertoire of simple object interaction behaviors in simulation. Our goal is to bootstrap a robot
learning and development process with limited information about what the robot has to achieve
and how. This repertoire can be exploited to solve different tasks in reality thanks to a proposed
adaptation method or could be used as a training set for data-hungry algorithms.

The proposed approach relies on the definition of a goal space and generates a repertoire
of trajectories to reach attainable goals, thus allowing the robot to control this goal space. The
repertoire is built with an off-the-shelf simulation thanks to a quality diversity algorithm. The
result is a set of solutions tested in simulation only. It may result in two different problems: (1) as
the repertoire is discrete and finite, it may not contain the trajectory to deal with a given situation
or (2) some trajectories may lead to a behavior in reality that differs from simulation because of
a reality gap. We propose an approach to deal with both issues by using a local linearization of
the mapping between the motion parameters and the observed effects. Furthermore, we present
an approach to update the existing solutions repertoire with the tests done on the real robot. The
approach has been validated on two different experiments on the Baxter robot: a ball launching
and a joystick manipulation tasks.

Keywords: Quality-diversity search, evolutionary algorithm, long-life learning, robotics,
developmental robotics, behavior repertoire

1. Introduction

Open-ended learning refers to a process where an agent or robot must learn how to solve an
unbounded sequence of tasks that are not known in advance. It is a key challenge to efficiently
apply robotics to real world tasks [1]: real world environments are diverse and changing, robot
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users can define new tasks or modify existing tasks, and the robot capabilities themselves may
change due to damage, upgrades or wear and tear. As modifying the robot programming to
manually adapt it to new goals and situations is costly and unpractical, we strive to provide the
robot with a developmental system allowing it to autonomously acquire and adapt its perceptual,
cognitive and motor abilities in an iterative way. It has been proposed that this system can be im-
plemented by combining some exploration processes able to build datasets of motor, perceptual
and other relevant data about the world and the tasks at hand, and a representational redescription
process able to use this data to build and update markovian models of the tasks, which can then
be exploited [2].

End-to-end learning techniques, such as deep reinforcement learning algorithms, combine
both processes to directly build policies [3], and can theoretically be used to learn new tasks
and adapt to environmental variations in such open-ended scenarios. However, they require very
large learning datasets, which is not suited to real robotics tasks where evaluating the outcome of
actions or policies is slow and costly [4], except in the rare cases when many real robots can be
used in parallel [3]. They are also notably slow to converge when reward states are sparse, which
is often the case in tasks necessitating to reach some very specific goal states using only partial,
high-dimensional and noisy obervations of the world.

An approach to deal with this issue is to keep exploration and redescription separated and
to explore in a simulated environment. Evaluating actions in simulation is cheaper and faster
than with real robots. Sample-inefficient exploration algorithms, such as quality-diversity (QD)
algorithms [5, 6], can thus be used. Rather than a single policy, these techniques learn a repertoire
of actions covering a given behavioral space, i.e. a large dataset of diverse actions that reach
various goals in that space. Such repertoires of diverse actions can be exploited to solve different
tasks, and to adapt to new unplanned situations arising in open-ended scenarios, such as obstacles
in the environment, or the robot breaking down. They can also be used as a training dataset
for other machine learning algorithms, e.g. deep learning, to learn state representations [7] or
parameterized policies [8].

Most of the previously cited works, however, remain in the simulation domain. In order to
exploit these repertoires in the real world, we have to cross the reality gap [9], i.e. to adapt the be-
havior to the differences between the simulated and real environments and robots, and transfer it
to the physical system. A related issue arises from the discrete nature of the repertoires: although
a large number of actions are learnt, they can only imperfectly cover a continuous behavior space,
and depending on the accuracy required for the task, some points may remain unreachable. It
is therefore necessary to find an adequate adaptation process able to deal with those issues and
solve real world tasks. This adaptation process needs to rely on robot’s experience, but since
evaluating actions in the real world is costly and slow, it is important to use sample-efficient
techniques that minimize the number of trials and maximize the amount of information drawn
from each trial.

In this work, we propose such a process based on a modeling process of the mapping between
the action parameter space and the behavioral space in the real world. First, we use QD algo-
rithms to learn a large but discrete action repertoire in simulation, covering a given behavioral
space. Then, we define a goal in this behavioral space and try to reach it using the repertoire in
a real robotics setup. After an action has been tried on the real robot, in case of failure to reach
the goal, the nearest neighbors in the repertoire are used to build a local linear estimation of the
Jacobian matrix mapping the motion parameters to the observed effect. The Jacobian is then
used to determine the modifications to apply to the action parameters to reach the goal despite
the discretization error or the reality gap. We apply this approach two object manipulation tasks,
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a ball throwing task and a joystick manipulation task, on a Baxter robot arm with seven degrees
of freedom.

The contribution of this paper is therefore twofold: we show that QD algorithms can effi-
ciently be used to learn action repertoires in simulation for object-oriented tasks, and we propose
a method to exploit the repertoires in a real setup, dealing with the reality gap and the discretiza-
tion error. In section 2, we discuss related works and in particular approaches to deal with action
repertoire acquisition and with the reality gap problem. We then expose our methods, first the
QD search and then the adaptation process, in section 3.2. We present our experimental vali-
dations in section 4, describing the experimental setup and the results for the ball throwing and
the joystick manipulation tasks. Finally, we discuss the outcomes in section 5 and conclude with
future work.

2. Related works

Three notions are central in the literature about robot behavior acquisition and adaptation:
actions, policies and skills. Before entering in the details of related works, we will define them
to avoid any ambiguities. The definitions used here rely on the formalism of Markov Decision
Processes (MDP). An MDP is a tuple ă S , A, p,R ą, where S is a state space, A an action
space, p a (stochastic) transition function and R a reward. A policy π : S Ñ A is a function
that associates an action to a state. In a reinforcement learning setup, it is built by the learning
process so that the sequence of actions and the resulting states, when the system follows this
policy, maximizes the cumulated reward. The MDP formalism does not further specify what an
action is: it is part of the MDP definition and left to the system designer. As our focus here is
on how these actions could actually be built, we need to give more detail. Following the formal
framework for open-ended learning introduced in [2], we define an action as a policy defined in
a lower level action space A1, and a goal i.e. a target point in the state space. This is a recursive
definition, that suggests to start from low level actions (motor orders) and progressively build
more abstract actions. A skill (motor skill) is an action generator that associates an action to an
initial state and a goal state. Building a system able to deal with unforeseen object interactions
can be dealt with by using algorithms able to generate (1) a set of actions to dig into or (2) skills
to use on-the-fly. It is also possible to learn policies relying on known high-level actions, but we
will not focus on these approaches as these high level actions are difficult to design in practice
and limit reachable robot behaviors to combinations of these actions. See [10], for instance, for
a review. Section 3.2 introduces the formalization in more detail.

2.1. Goal exploration and skill learning
Several methods have been put forward to make robots autonomously explore their environ-

ment and learn new skills to reach various goals. An important part of this literature treats this
as a control problem, where the system learns an inverse model (or multiple inverse models) to
generate the motor commands in order to reach an arbitrary position in a given goal space. Fol-
lowing some works showing that human babies learn how to control their body through “body
babbling” [11], several methods use a similar motor babbling approach in robots with random
motor orders [12, 13]. The two main issues of these approaches are that (1) learning the inverse
model from collected samples is a challenging supervised machine learning problem for non-toy
problems and that (2) sampling the motor space - which may be large - in a sample-efficient way
is required and also difficult to achieve. Several approaches have been proposed to tackle these
issues.
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A proposal to make the sampling process more efficient is to sample in the goal space rather
than in the motor space, choosing points in the goal space and using the robot’s current inverse
model to attempt to reach them, thus generating new samples that allow to further train the inverse
model online. This “goal babbling” approach has been found to be more sample-efficient than
motor babbling when using a small set of simple predefined goal space targets [14], or random
goals that can be generated without any prior knowledge of the expected robot behavior [15].
Since an existing inverse model is required to generate motions at any time, this model has first
to be bootstrapped, for example with random initialization. Further developments of this goal
babbling approach improve the sampling efficiency through the use of intrinsic motivations that
choose goals maximizing the learning progress [16].

In order to simplify inverse model learning, it has been proposed to divide the goal space in
several regions according to a spatial segmentation [17, 18], or in several independant subspaces
corresponding to the state of different objects [19], and learn a different inverse model for each
subspace. Another alternative is to use unsupervised learning to learn a goal state representation
with which the goal babbling process is improved [20, 7].

These approaches have proved to be very efficient to learn to control a goal space. However,
as they focus on inverse model building, they create a unique mapping from the goal space to the
motor space. This implies that they can only learn a single way to reach a given goal, or at least
one per model. This may be a limitation in real world scenarios, as the solution found may not
be applicable, because of obstacles, for instance. This is especially relevant for highly redundant
robotic systems, such as multi-joint robot arms, for which different arm movements are possible
to reach a particular goal. Having several different trajectories instead of a single one opens the
way to more adaptive controllers that could select on-the-fly a trajectory that prevents the arm
from bumping into obstacles instead of requiring to start again exploring from scratch to adapt
to the current situation.

2.2. Learning a repertoire of actions
The previously mentioned methods follow a top-down appraoch where high-level goals are

set and the learning system strives to achieve them, learning increasingly better inverse models.
A different approach to building skills is to proceed in in a bottom-up way, by starting with low
level sensorimotor exploration and then restructuring the acquired knowledge to build higher
level actions and skills. This can be done by using direct policy search algorithms (such as
fitness-based evolutionary algorithms) to solve some specific low-level sensorimotor tasks, and
then to extract from those low-level policies some learning traces, i.e. sequences of sensorimotor
behavior that are correlated to goal-directed behavior [21]. Unsupervised learning algorithms can
then extract a small set of higher level actions (e.g. obstacle avoidance, goal approach behavior,
etc.) from those traces, which can then be used with a reinforcement learning algorithms to
generalize and reach arbitrary new goals. Although this approach works well for problems like
navigation where a policy can naturally be described as a sequence of lower level decisions and
actions, it is not straightforward to apply to problems such as object manipulation primitives,
which lack this structure.

Other approaches directly learn a repertoire of high-level actions through divergent evolu-
tionary algorithms such as novelty search [22]. Evolutionary algorithms (EAs; [23, 24, 25]) are a
class of gradient-free optimization algorithms [26] inspired from the principles of variation and
selection that structure the evolution of life. To solve an optimization problem, an EA will start
by generating a random set of candidate solutions (the initial population), and evaluate them us-
ing a fitness function assessing their performance for the stated problem. The worst performing
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solutions are then discarded whereas the best performing ones (the parent population) are du-
plicated and subjected to small random perturbations. This new set of candidates (the offspring
population) is then evaluated, and used to generate the parent population of the next iteration.
The process is iterated until a good enough solution to the problem is found.

Divergent evolutionary algorithms such as novelty search [22] are a variant of EAs where
the selection is not (or not only) driven by an explicit optimization objective: instead of a scalar
fitness function that must be maximized, the algorithm uses a behavior characterization function
which maps actions to points in a small- or medium-dimensional behavior space - such as a goal
space. For example, a behavior space for a mobile robotics scenario can be the final position of
the robot, or a discretized trajectory. The goal of a divergent EA such as novelty search is not
to reach a given point in this space but to learn a repertoire of actions covering the whole space.
Since those approaches do not explicitly build an inverse model, they explore in the motor space
and because they do not rely on a unique (or locally unique) inverse model, they can find multiple
actions to reach a goal in different ways.

Further works introduced quality-diversity algorithms [27, 28, 6], which combine the behav-
ior space exploration with a global or local quality metric, allowing to learn repertoire of diverse,
high-quality actions (under some given quality measure). They rely on the principle of local
competition: new actions are added to the repertoire if they are novel, but existing actions in the
repertoire can also be replaced by newer ones with similar behavior but higher quality as they
are found. Some of those algorithms, such as MAP-Elites [29], rely on discretizing the behavior
space into a set of bins (a behavioral map), and then filling the bins with increasingly higher
quality actions. This makes the algorithm simpler, allows for efficient data visualization, and
easily allows to exploit the discrete behavioral map through techniques such as bayesian optimi-
ation [30]. For high-dimensional behavior spaces, the number of bins for the MAP-Elites grows
exponentially with the number of additional dimensions. In order to handle high-dimensional
behavior space, Vassiliades et al. [31] propose an extension to replace the equal grid of the
MAP-Elites algorithm by an adaptive one using centroidal voronoi tessellations. It partitions the
behavior space into k homogeneous geometric regions, and prevents the number of bins from
growing exponentially for high-dimensional datasets.

Exploiting this repertoire raises challenges that differ from those of learning an inverse model.
Reaching a known goal for which an action is present in the repertoire [22, 28], is very simple
and inexpensive, as the correct action just needs to be selected and executed. Adapting to changes
in the problem domain (for example a slightly different environment, or a damaged robot, which
modifies the effect of actions) and finding the right action to reach an unknown goal can be done
in a sample-efficient way by discretizing the behavior space and using bayesian optimization
to quickly discover the best action [29, 30, 31]. Some recent works propose to use the reper-
toire as a training set for a conditional generative-adversarial network [32] in order to build a
goal-conditioned action generator [8]. Although the learnt model still has limited accuracy, this
approach is promising as it both allows generalization to arbitrary goal spaces positions (as for
inverse models) and can generate multiple, diverse actions for a given target position.

2.3. Crossing the reality gap
The previously described skill learning techniques are generally performed in a simulator,

which acts as a direct model of the robotic system and its environment. Simulation can be
much more practical than real robotics, being cheaper, safe from damaging the robot and its
environment during experiments, and much faster than real experiments as simulations can be
performed faster than real time and massively parallellized. However, the actions learnt in a
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simulator often do not transfer well to a real robot and environment, because the exact physical
properties of the robot body and its environment can never be perfectly modeled. The behavioral
differences between simulated and real experiments have been termed the reality gap [33].

Crossing the reality gap is therefore a key issue to a wider use of simulation-based methods.
Some existing methods focus on improving the simulation to make the policies more transferable,
for example by adding noise to the simulation to generate more robust behaviors [9], by co-
evolving the policy and the simulator [34, 35], or by updating the simulator’s forward model
thanks to real observations [36]. Those methods, however, are not sufficient yet to tackle high-
dimensional problems in open environments [37].

Other approaches rely on combining learning in the simulated domain with more limited
experimentations in the real domain. For methods learning inverse models or parameterized
policies, the reality gap is then a domain transfer problem: the learnt simulation controller must
be transferred to the real world. Using state of the art deep transfer learning methods, such
as learning domain-invariant features [38] is challenging due to an unbalanced dataset between
simulated and real data, and the lack of an exploratory process to efficiently sample real world
data. Other techniques have been proposed to learn a deep model of the reality gap itself and
apply it to the controller, either in action space [39] or in goal space [40]. Those approaches
are successful at crossing the reality gap for complex, high-dimensional problems; however they
require a relatively large number of real world experiments (tens to hundreds).

When relying on an acquired repertoire, the reality gap can be handled by a different ap-
proach: the simulation-generated repertoire contains a large set of diverse actions that can be
exploited to cross the gap. Using actions learned in simulation on a real robot is both a domain
transfer problem (from simulation to real world) and an intra-domain generalization problem,
since there is no guarantee that the repertoire contains an action that can reach a given specific
goal in the real world, because of the discretization error. The proposed approach addresses those
two problems simultaneously with a local adaptation of action and, in case of a failure of this
adaptation process, the diversity of the repertoire allows to find another candidate action to try.
In contrast, approaches such as promoting controllers that transfer well to the real world [41, 42]
only addresses the first problem and reduces sample efficiency as poorly transferable controllers
are not exploited at all. Other more general domain transfer methods have been proposed, al-
lowing to very efficiently explore the repertoire and find the adequate behavior with very few
real world trials [30, 43], but they still make the assumption that the repertoire does contain an
adequate behavior and do not address the intra-domain problem.

3. Method

3.1. Approach overview

This article presents an approach to control a given goal space with a real robot and with few
real world tests, by first creating a large repertoire of diverse, efficient behaviors in a simulated
environment, and then using this repertoire to reach an arbitrary goal in the real world with only
a few trials.

Experiments involve a robotic arm with simple, parameterized, open-loop control policies.
Actions are joint space trajectories defined by joint space position and velocity at the end of the
motion (which constitutes the search space of the QD algorithm). They are represented by a
third order polynomial. We first use a QD algorithm to build, in simulation, an actions repertoire,
i.e. a set of policy parameters associated to the goal they have reached. The action repertoire is
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structured by a behavior space suited to the task at hand (e.g. for a targeted ball throwing task, the
position of the ball when it crosses the target plane, see section 3.3). After building the repertoire,
we apply this repertoire to real world experiments, trying to reach a target in the behavior space.
If a suitable action is present in the repertoire generated in simulation, the behavior is attempted;
if the target is reached, the task is solved. If the target is not reached, the behavior space error
between the expected (simulated) position and the reached position is measured and a local linear
direct model is computed from the attempted action and its neighbors in the motor space from
the repertoire. This local linear model is inverted, and the resulting local inverse model is used to
adapt the action to remove the error, locally crossing the reality gap. This process is iterated until
the target is reached, which typically only takes a few trials (section 3.5). If no suitable action is
present in the simulation repertoire, a similar approach can be used to generalize from the existing
actions, starting from the closest known action (in the behavior space), computing a local inverse
model, and using it to reach the behavior space goal by gradient descent (section 3.4.1).

We validate the proposed approach in two different applications where the task is non-trivial,
the behavior space quite large and a highly accurate control is needed: throwing an object into
a basket, and controlling a joystick to reach specific angles. We assume that the robot does not
have any prior information about the skills beside its body kinematics. Furthermore, no feedback
nor demonstration is provided by humans at any stage, besides defining the environment and the
behavior spaces for exploration, and the target goal for exploitation.

3.2. Problem formalization and notations
The proposed method is summarized with an example in Figure 1. It aims at learning a skill

to generate a large range of effects from an initial state. The skill is a function ξ:

ξ : S ˆ S Ñ A

where A is the action space and S is a state space, or behavior space, defined by behavior
descriptors, which are features of the action effects we want to focus on. The proposed approach
aims at controlling this state space, i.e. defining a process ξpss, sdq that generates the action
to reach a destination state sd from a source state ss. To this end, it relies on two steps: (1)
generation of a large and diverse repertoire of actions and (2) exploitation and adaptation of the
repertoire: ξ “ ξ1 ˝ ξ2.

The first step aims at finding, for a given ss, the set of all reachable states with the corre-
sponding action. Let us call S Ass P SA a set of psi, aiq pairs where ai is the action to reach si

when starting from state ss:

ξ1 : S Ñ SA

ξ1pssq “ tpa1, s1q, pa2, s2q, . . . , pan, snqu

The method aims at covering, as well as possible, the space of reachable states when starting
from ss. n, the number of action-state pairs, is not fixed. It depends on a particular execution
and computational budget: the longer the algorithm is run, the larger n is. It should be noted that
this approach does not need any demonstration to bootstrap. It relies on an exploration method
based on a QD algorithm. As this algorithm requires a large number of action evaluations, they
are performed in simulation.

The second step ξ2 extracts from a S Ass an action to reach a desired destination state sd:

ξ2 : SAˆ S Ñ A
7



Source state
ss

Destination states

s4

s1

s2
s3
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s6

a1a2

a3

a4

a5
a6

Actions

Step 1 : Build repertoire

(a) (b)

Figure 1: General description of the proposed approach with a robot ball throwing scenario. Here, the state space
S is the ball position and the action space A is the parameter space of a parameterized motion primitive. The robot
initially holds the ball in a state ss. In a first step (Fig. 1a), an exploration method is used to build a repertoire ξ1pssq “

tpa1, s1q, pa2, s2q, . . . , pan, snqu of state-action pairs allowing to reach many points in S , i.e. to throw the ball at various
positions. Note that very similar states can be reached by different actions, as illustrated by state-action pairs pa1, s1q and
pa2, s2q. In the second step (Fig. 1b), the repertoire is used to learn how to reach arbitrary target states sd from ss, using
an action a1

d . a1
d can directly be drawn from the repertoire if sd is close enough to a destination state in the repertoire,

or can be computed from a set of neighbors in A using the jacobian linearization method described in section 3.4.1. The
whole process constitutes a motor skill, allowing to efficiently control the given state space S .

ξ2pS Ass , sdq “ a1d
sd may not be in S Ass or the execution of ad, the action associated to sd in S Ass , may lead

to an error, because of the reality gap. For both reasons, ξ2 includes an adaptation part and
generates an action a1d, that may be different from ad. Details of these two steps are provided in
the following sections.

3.3. Step 1: Offline QD search

The goal of this step is to generate S Ass , a repertoire of action-state pairs that is as diverse
as possible, so that it contains any relevant action for the robot to deal with the situations it will
be faced with. This repertoire acquisition process relies on a QD algorithm. QD algorithms
are evolutionary algorithms that use the Darwinian principles of variation and selection to fill a
repertoire of actions [28]. Instead of being driven by performance, they are mainly driven by a
novelty score that rewards actions that have led to a new and original effect, as measured by the
distance to other effects in the behavior space. A task-specific quality score is also used at a local
scale, to keep the best performing actions among those generating a similar behavior.

A robot action is described by a vector of real parameters g P Rn, which constitutes our action
space (A “ Rn). For the purpose of the QD algorithm, the parameter vectors g are also called
genotypes, as those are the elements on which the genetic algorithm operates. The QD algorithm
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explores in parallel a set of genotypes that are initially randomly generated. Each action is
evaluated using a robot simulator, represented by an action evaluation function f, to determine to
which behavior it leads: fpgq “ b, where b P Rm is the behavior descriptor associated to g, and
S “ Rm is the behavior space. The descriptor can include any observable states of a robot and/or
its environment. It is predefined and structures the repertoire of actions. It should be noted that
the mapping f between the action and the descriptor is highly non-linear and that no closed-form
expression is known for it.

Several different QD algorithms have historically been proposed [27, 28, 30], and many other
variants can be defined. Recent work by Cully & Demiris [6] proposed a modular framework
which defines the main features of a QD algorithm (the type of container used, the procedure to
create a parent population, and the procedure to add individuals to the container) and explores
the possible variants based on the existing literature and new ideas. We used this framework
to explore different QD algorithms in preliminary experiments and select the one to use for
exploration in this work.

The behavior spaces used for our scenarios tend to contain discretized robot arm trajectories:
they tend to be quite high-dimensional, and furthermore they are constrained by robot’s kine-
matics and dynamics: only a subset of high-dimensional space corresponds to trajectories that
can actually be achieved. For this reason, we eschewed the methods that rely on discretizing the
behavior space to fully cover it (as in MAP-Elites [29] and its developments [31]) and we chose
an algorithm using an unstructured archive (as in NSLC [27]) rather than a structured grid or
tessellation.

The algorithm we selected is the QD variant “arch novelty” proposed in [6]. This algorithm
performed well in preliminary testing experiments, it is shown in [6] to consistently be among
the top performing variants, and it is easily implementable as it only uses building blocks well
known to the QD community (novelty, local quality, novelty archive). It selects parent population
from the archive according to the novelty score, and insert new individuals in the archive if they
are novel or higher quality than their nearest neighbor (in which case the lower quality neighbor
is discarded). Algorithm 1 shows the corresponding pseudo-code.

Initially the repertoire is empty. The algorithm first evaluates a set of randomly generated
genotypes (TThe number of individuals is the same as the population size which is a user defined
parameter. See Appendix Appendix A). It repeats the random genotype evaluations until it finds
any valid actions. The valid actions are added into the initial repertoire. Here, valid actions mean
any actions where the quality can be computed without any failure. For example, in the ball
throwing experiment, if the robot reaches its joints’ position/velocity limits or is self collided for
performing its actions, the actions are considered invalid actions.

The novelty score of an action gc is computed by kernel density estimation in the behavior
space:

novpgcq “ 1.0´
1

Nh

N
ÿ

i“1

Φ

ˆ

distpfpgiq, fpgcqq

h

˙

(1)

where distp.q is a Euclidean distance; N is the number of actions in the archive; f is the evaluation
function that generates the behavior descriptor resulting from the evaluation of a genotype in a
given domain; Φ represents a Gaussian kernel function Φpxq “ expp´0.5x2q{

?
2π; h is a kernel

width which is computed by Silverman’s rule of thumb approach [44].
The parent population is the set of actions selected to generate new actions. They are selected

from the population and the archive on the basis of their novelty score. Following the principles
of novelty search [22], the actions that breed the new generation are then the most original ones.
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Algorithm 1 “arch novelty” QD algorithm

repertoireÐH

repeat Ź initialization
popÐ populate(random)
for all action g P pop do

g.qualityÐ evaluate(g)
if valid(g) == True then Ź if g is valid
add(g, repertoire)

end if
end for

until repertoire size ą“ 1
repeat Ź main loop

parentsÐ select(repertoire) Ź proportional to novelty score
popÐ populate(parents) Ź mutate and crossover
for all action g P pop do

g.qualityÐ evaluate(g)
if valid(g) == False then Ź if g is not valid
continue

end if
g.noveltyÐ novelty(g, repertoire Y pop)
nnÐ closest(g, repertoire) Ź the closest action
if dist(g, nn) ą lrepertoire then Ź distance between g and nn
add(g, repertoire)

else if nn.quality is significantly better than g.quality then
replace nn with g in the repertoire

end if
end for
update the novelties of all the actions of the repertoire

until total generation ą“ max-gen
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Figure 2: Overview of the proposed method. The offline repertoire generation technique (correpsonding to the blue part)
is described in section 3.3, the online adaptation and reality gap crossing technique (correpsonding to the red part) is
exposed in section 3.4.

The new population is created from the parent set of actions. Each parent is part of a pair that
generates two new actions through an SBX crossover operator [45]. A polynomial mutation is
then applied to the newly created actions [46].

Each action is evaluated in simulation. After evaluation, the behavior descriptor of a geno-
type is compared to its closest neighbor in the repertoire. If this distance is above a threshold
(lrepertoire), then it is added to the repertoire, otherwise, it replaces the closest neighbor if it is
better performing according to a predefined quality score function. This sequence is repeated for
a given number of generations.

The outcome of the process is a repertoire S Ass “ tpa1, s1q, . . . , pan, snqu containing actions
that allow the robot to reach, from state ss, a set of states that is as diverse as possible. This
step is the longest one and may require more than 10 hours of computation. It is done only once
before robot use.

3.4. Step 2: Online action choice and adaptation

The QD algorithm builds a repertoire of solutions in the continuous action and state spaces.
The repertoire contains a sampling of possible actions. When using it to perform an action to
reach a given goal in the behavior space, two different issues may arise: (1) the behavior in
simulation may differ from the behavior observed on the real robot (reality gap, i.e. inter-domain
generalization problem) or (2) the desired state may not be among the samples in the repertoire
(intra-domain generalization problem).

The reality gap may result from two different situations. The simulated behavior may be
completely unrealistic. In this case, the solution found is useless. A possibility to deal with this
issue would be to make some experiments on the real robot during the QD search to identify these
particular solutions and avoid them [42], but to keep the repertoire generation process as simple
as possible, we have not used this possibility. We have thus made the assumption that most
behaviors are realistic. The second situation occurs when the behavior in simulation is realistic,
but just slightly different from what occurs in reality. In this case, the action found is informative
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and can fit the needs with only a limited and local adaptation. We have focused on this second
case and describe in the following a method to perform this local adaptation. Furthermore, the
same approach also solves the sampling problem as soon as a solution in the repertoire is close
enough to the desired state. As the QD search generates, by construction, a repertoire that is
expected to cover the space of possible behaviors as completely as possible, we have considered
that this hypothesis holds.

The proposed method performs a local linearization of the mapping between the action and
the behavior state spaces around a particular action and modifies the action parameters accord-
ingly to reach the target behavior.

For a given desired target behavior, the most similar action, in terms of Euclidean distance in
the state space, is selected in the repertoire. The corresponding local Jacobian between the action
and state spaces is computed. Then, using a gradient descent approach based on this Jacobian,
a new action is built for a given desired target state. More details are provided in the following
subsections.

3.4.1. Local Linearization
As discussed in section 3.3, a state is described by the behavior effect b P Rm observed when

the robot controller is parameterized with a vector of real values g P Rn in a simulation or in
the real environment; f : Rn Ñ Rm, b “ fpgq. The mapping f “

“

f1 f2 ¨ ¨ ¨ fm
‰T is highly

non-linear and its closed-form expression is unknown. In order to estimate how the behavior will
be affected by local changes of the action parameters, f is locally linearized at a point of interest
gc.

∆bc “

»

—

—

–

B f1
Bg1

B f1
Bg2

... B f1
Bgn

. . .
B fm
Bg1

B fm
Bg2

... B fm
Bgn

fi

ffi

ffi

fl

∣∣∣∣∣∣∣∣∣∣∣
gc

∆gc “ Jpgcq∆gc (2)

where Jpgcq is the Jacobian matrix at g “ gc.
As we do not have an analytical form of f, we estimate the Jacobian using the samples in the

repertoire. A set of gc neighbors in the repertoire is collected: tgk, bku
K
k“1, where the distance of

each of these actions to gc is smaller than ε, ||gk ´ gc|| ă ε. To estimate Jpgcq, the Jacobian near
gc, a least squares method is used :

J̃pgcq “ BGT pGGT q´1 (3)

where G “ rg1, g2, ...gKs´gc is a derivative of action parameters matrix near gc; B “ rb1,b2, ...bKs´

bc is the corresponding derivative matrix in the behavior space.
The quality of the linearization depends on the local linearity of the mapping or on the reper-

toire sparsity. The confidence of the Jacobian, λ, is defined as the quality of the linearization:

η “ |J̃pgcqG ´ B| (4)

λ “

#

1´ η{ηthreshold, η ă ηthreshold

0, otherwise
(5)

where ηthreshold is a user defined positive constant that is related to the maximum allowed error in
the behavior space.
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If the repertoire is locally linearizable near gc, the behavioral estimation error η is near 0,
then λ “ 1.0. Otherwise, λ decreases proportionally to the behavioral estimation error η. This
value will be used later as a weight to adapt the action parameters.

3.4.2. Action parameters computation for an arbitrary behavior
Starting from a given desired target state bd, the corresponding action parameters vector is

computed with a gradient descent. The gradient descent is initialized with the nearest action
tbc, gcu from bd in the repertoire, tb j, g ju| j“0 “ tbc, gcu, where j is an iteration index for
gradient descent method.

g j`1 “ g j ` λJ̃pg jq
`pbd ´ b jq (6)

where J̃pg jq
` is the pseudo-inverse of J̃pg jq. λ is the Jacobian confidence coefficient.

We iteratively solve Equation 6 and evaluate g j`1 to get the corresponding behavior descrip-
tor b j`1. These computations are repeated until the behavioral difference is smaller than the
threshold or the number of iterations is greater than a predefined maximum value.

Note that the behavior descriptor used in QD may actually be larger than the state space to
control. In the following experiments, b is actually composed of two parts, one that corresponds
to the state to be controlled and another part aimed at obtaining a diversity in the actions to reach
it. For example in the ball throwing task, the behavior descriptors is made up with the ball contact
position on the ground and some intermediate positions of the robot end-effector. As the goal
is to reach a particular state (no matter how), this second part is not taken into account in the
proposed action computation process.

3.5. Crossing the reality gap

3.5.1. Single action adaptation
QD algorithms are easy to parallelize as evaluations can be performed simultaneously on

different cores or CPUs. Consequently, it is interesting to run QD algorithms in simulation. The
same experiment run on a real robot would require days of tests. As discussed, it is difficult, if not
impossible, to have a simulation that perfectly replicates all physical phenomena, in particular
for frictions or collisions. The behavior observed on the real robot may be different from the
behavior in simulation, creating a reality gap, which must be crossed to efficiently control a real
robot.

Our approach to cross the reality gap for our repertoire-based control system consists in
locally updating the genotypes in the repertoire generated in simulation, using tests on the real
robot to locally reduce the reality gap and finally cross it.

Each time an action (with action ga) is executed on the real robot and produces a real world
behavior (ba) that is far from the expected behavior (bd), a new action (gd) is computed to reduce
the behavior difference pbd ´ baq. gd is computed with a local linearization of the Jacobian, as
previously presented in section 3.4:

gd “ ga ` λJ̃pgaq
`pbd ´ baq (7)

3.5.2. Repertoire update
As long as the action ga is not in the repertoire, the trial is first added to the repertoire with

the behavior descriptor corresponding to the observation ba.
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At the same time, with the assumption that actions with similar parameter vectors would
be affected similarly by the observed reality gap, all other actions in the repertoire are updated
according to the observed reality gap. Let bi be the behavior associated to gi. b̃i,r is the expected
behavior after the updates associated to r observed reality gaps. It is computed from bi thanks to
a compensation term ηi,r evaluated iteratively after each observed reality gap:

b̃i,r “ bi ` ηi,r (8)

Initially, the compensation term for all actions is equal to zero: ηi,0 “ r0, ..., 0s. ηi,r is
computed iteratively, taking into account the new reality gap observation weighted by a term
taking into account the distance between the considered action’s parameter vector gi and that of
the action that leads to the reality gap observation ga:

ηi,r “ ηi,r´1 ` wi,r
`

b̃i,r´1 ´ ba
˘

(9)

wi,r “ expp´0.5 pgi ´ gaq
T Dr pgi ´ gaqq (10)

where Dr represents a distance metric that determines the shape of local linear validity near
the action ga. In this study, we set the kernel matrix as Dr “ λI, where λ is a local linearity
confidence. The amplitude of the correction is higher for actions that are close to ga, the action
that lead to the reality gap observation, in the action parameter space.

4. Experimental validation

Two different robot arm applications have been considered to test the proposed method: (1)
learning to throw a ball into a basket and (2) learning to control a joystick to a desired direction
with a desired angle.

The only differences between the setups associated to these two experiments are the objects
in the environment (ball or joystick on a table), the behavior descriptors and the quality functions.
The following sections describe each implementation in detail.

4.1. Setup

The following experiments were performed on a Baxter research robot with two arms, each
with 7 degrees of freedom (DOF) plus a 1-DOF gripper. For simplicity, only the right arm is
used. The simulator used during the QD search is DART1 with the FCL collision detector2. The
simulation time step is set to 0.002 s.

In both experiments, the motion planning used a simple open-loop controller: the robot al-
ways started from a fixed initial pose with zero velocity, each action is defined by the joint-space
position and velocity of the arm at the end of the motion, plus the duration of the motion, and a
smooth arm trajectory is generated by fitting a third order polynomial with those final and initial
states. Our action space is therefore continuous and 15-dimensional (final position and velocity
of each of the 7 DOF, plus motion duration). This 15-dimensional space also constitutes our
genotype space for the QD search. Note that the planned motion ends at the ball releasing instant

1http://dartsim.github.io/
2https://github.com/flexible-collision-library/fcl

14



for the ball throwing experiment. Hence, in order to stop its motion smoothly, an additional mo-
tion is followed right after the action. As the additional motion works after the ball is released,
it does not affect the QD result. This simple controller is used as it provides a very simple and
compact representation allowing a smooth motion generation and yet is sufficient to solve our
chosen tasks. But neither the QD-search nor the reality gap crossing technique depend on this
specific action representation; other more advanced action representations such as, for instance,
DMP [47], DS-GMR [48] or splines could be used.

4.2. Ball throwing experiment

The purpose of this experiment is to build a repertoire that contains diverse and energy-
efficient robot motions for throwing a ball into a basket placed at an arbitrary position on the
ground. In order to use the proposed QD algorithm, three main components have to be defined:
the parameter vector (or genotype) that defines the action, the behavior descriptors that describe
the behavior space to be explored, and the quality function.

The actions are defined by a 15-dimensional vector parameterizing the controller described
in section 4.1. The space we wish to explore is the space of ball contact points with the basket
plane, i.e. the possible intersection points of the ball trajectory with the plane containing the top
of the basket, which will be referred in the following as the target position. This is the space
that the proposed QD search will learn to control. To add more diversity in the generated actions
and generate several trajectories to reach the same target position, the behavior descriptor used in
QD search contains the target position, but also a rough sampling of the gripper trajectory during
the robot motion: three intermediate positions of the robot gripper are recorded and added to
the descriptor. The behavior descriptor is therefore 11-dimensional (the two-dimensional target
position of the ball in the basket plane, plus three three-dimensional samples of the gripper
position.)

The quality function is independent of the task and simply penalizes energy consumption
(sum of the torques applied to the robot joints during motion).

lpgiq “ ´
1
Ti

Ti
ÿ

t“1

||τpgiqt|| (11)

where t represents the time step index starting at 1 and ending at the motion duration Ti of an
action gi; ||τpgiqt|| represents a norm of the torques applied to the robot at time index t.

The QD search algorithm is run for 2000 generations. Indeed, larger number of generations
obviously provide better results in terms of quality and diversity both. In this experiment, how-
ever, we have limited the number of generations so as to complete the QD search within a day
using a machine in the lab. In each generation, the 240 actions with the highest novelty score are
selected in the repertoire to be the parents of the next generation. If the repertoire has less than
240 actions, the missing actions are randomly generated. Crossover (crossover rate: 0.10) and
mutation (mutation rate: 0.20) operators are applied to generate 240 offspring. Actions exhibiting
self-collisions and joint limits violations (in position, velocity and acceleration) are discarded.

A random motion generation method has been considered as a control experiment to show
the efficiency of the QD search. It follows the same process as QD search (as described in
Algorithm 1), but the evolutionary process of QD, including selection, mutation and crossover,
is replaced by a random genotype generation.
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4.2.1. Step 1 results: QD search performance
The QD search process was run 26 times. The median and interquartile range of the num-

ber of solutions are shown in Figure 3. The QD algorithm gradually finds actions to reach a
more diverse set of states and with a higher quality score than a random genotype generation.
After 2000 generations, the QD search finds 14 473˘ 1619 actions, whereas the random gen-
eration only finds 1085˘ 26. Furthermore, as shown in Figure 4, although randomly generated
genotypes are uniformly distributed in the feasible genotype space, they do not generate equally
distributed behaviors in the feasible behavior space. Figure 5 shows examples of diverse trajec-
tories to throw the ball at different locations.

(a) Repertoire size (b) Quality score

Figure 3: Number of solutions (a) and average quality of those solutions (b) found by QD search and uniform random
search on the ball throwing scenario. The median value and interquartile interval on the 26 runs are shown. The QD
search finds solutions much more efficiently, in terms of not only the amount of solutions (a) but also the average quality
(b).

The results in the next sections show the performance of the second step of the proposed
approach: a generated repertoire is exploited with a local adaptation of the actions it contains
to deal with the sampling and the reality gap problems. In the following, the repertoire used is
the one containing the median number of individuals among the runs. However, as illustrated
by Figure 6, all the generated repertoires satisfyingly cover the whole reachable goal space:
the choice of the individual repertoire used for control is therefore not sensitive, and any other
repertoire could hve be used.

4.2.2. Adaptation to arbitrary basket positions
To test the ability of the proposed approach to deal with the sampling problem, 1000 basket

positions are randomly generated and the ability of the robot to throw to these different target
positions is evaluated. The results presented in this section have been obtained in simulation
(experiments on the real robot are described in section 4.2.5).

As described in section 3.4, the actions throwing the ball to the closest positions to the target
are selected in the repertoire and they are used as initial starting points of the local linearization
approach. Figure 7 shows the average ball throwing error of the 5 closest actions in the reper-
toire before and after 4 iterations of the proposed gradient descent approach. After 4 iterations
of gradient descent adaptation, the new actions have reduced the error from 3.84˘ 1.63 cm to
0.52˘ 0.82 cm. The accuracy of the behavior can be further increased by adding iterations of
the gradient descent method. Two examples are shown in Figure 8.
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Figure 4: Solutions found during QD search (left) and with random parameter generation (right). Target positions in the
2D plane are shown. Dense area means that there are multiple diverse solutions to throw the ball at a given target basket
position. A video showing this process is available on https://youtu.be/NssH9ytU4Bs.
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Gripper trajectory
Initial gripper position

Target basket position

(0.0, -1.5) (1.0, -1.0)Target basket on (1.5, 0.0)

Ball trajectory

Figure 5: Example of diverse trajectories found by QD search for different basket positions.

Figure 6: Illustration of 5 of the 26 generated repertoires after 2000 generations of the QD algorithm. All generated
repertoires cover the whole goal space reachable by robot motions.

4.2.3. Crossing the reality gap
To test the method proposed to cross the reality gap, mis-configurations of the physics sim-

ulator have been introduced between step 1 and step 2. Two mis-configurations have been con-
sidered. The first one adds an offset to the robot joints: 0.05 rad (2.87°) were added on the two
joints of the robot shoulder. For the second mis-configuration, a 50 ms delay has been added to
the gripper control (the robot opens its gripper 50 ms after the desired releasing time).

The selected repertoire contained 11 600 actions that behave correctly in the original robot
configuration. After applying the artificial mis-configuration in the simulator, an average error of
11.3 cm on the ball contact position is observed, and 9331 (around 80 %) actions of the repertoire
launch the ball at a position that is at more than 5 cm from the expected contact point.

To test the method, actions are randomly selected in the repertoire and adapted to the mis-
configured simulator with the proposed process (without repertoire update). For each trial, the
method is iterated until the reality gap goes below a predefined threshold or exceeds the maxi-
mum iteration number; in this experiment, they were set, respectively, to 5 cm and 5 iterations.
These two values are task specific parameters that users should select. We selected 5 cm so that
the thrown ball would fall correctly into the basket with some margin. We limited maximum
number of iteration to 5 because most of the reality gaps are crossed with 4 iterations as we see
in Figure 9.

1000 actions were randomly selected in the repertoire and evaluated in the mis-configured
simulator. Among them, 189 actions did not require any adaptation as their behavior difference
was already below the threshold. 811 generated an error above the threshold. Most of them (719
actions) were adapted to the new configuration within 4 iterations of the proposed adaptation
process (Figure 9), and for 80 others, the behavior did approach the target basket position, but
did not go below the error threshold within 4 iterations.
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Figure 7: Average distance of the ball to the target position (in meters) when trying to throw the ball at an arbitrary
position. An average error of 3.84˘ 1.63 cm is observed if the robot simply uses the nearest actions in the repertoire
(left). If the proposed approach is used to compute a new action based on a local linear model (right), the error is reduced
to 0.52˘ 0.82 cm.
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Figure 8: Examples of action adaptations for two different desired behaviors. The blue dots represent the behaviors of
actions in the repertoire. For a given desired behavior (red star), the presented method iteratively computes new actions
to approach the target. The approach starts from an initial action (blue triange) and computes the local Jacobian on the
basis on the nearest actions in the action parameters space, which are the actions surrounded by pink circles. Uncircled
actions are close in the behavior space but not in the action parameters space (they reach a close position, but with a very
different trajectory) and are ignored. The local Jacobian is then use to compute a new action (pink path) closer to the
target position. This process is iterated until the target position is reached. The approach is tested on two different target
behavior space positions, and with two different starting actions for each target position, to show its robustness.
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12 actions did fail to approach the target behavior, for three different causes. For 9 ac-
tions, collisions occured between the robot and the ball, creating complex non-linearities that the
method was not able to deal with. For 2 others the local jacobian was not locally linear enough,
and in 1 case the robot motions for the new actions exceeded the joint position limits.
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Figure 9: Left: histogram of the number of required iterations to cross the reality gap in the ball throwing experiment.
Right: reality gap in the 1000 selected actions before and after applying the proposed adaptation approach.

4.2.4. Repertoire update
Whenever a reality gap is observed, the corresponding action and its surrounding neighbors

are updated (as described in section 3.5.2). This update process is evaluated in this section with
the mis-configured simulator used in the previous section.

To test the method, a set of actions are selected in the repertoire. They are evaluated, one
after the other, on the mis-configured simulator and their behavior is observed. If the behavior
error (i.e. “reality” gap) is greater than the threshold, a new action is computed to achieve the
desired behavior. At the same time, the tested action and its neighbors’ parameters are updated
using the proposed method.

Figure 10 illustrates the performance of the method. In order to measure the impact of reper-
toire updates, all actions are tested after each update. As can be seen in the figure, the ratio of
failing actions (left) and the average behavioral error (right) decreases monotonically with the
number of updates. Initially, 9331 of the 11 600 actions (80 %) generated an error greater than
5 cm in the artificially mis-configured simulator. After 140 trials with repertoire updates, the
total number of failing actions is reduced to 7995 (69 %). It means 1336 actions were corrected
to an acceptable precision by the 140 trials, a speedup factor of 9.5 over individual action adap-
tation. Moreover, the average reality gap on the whole repertoire is also reduced 11 cm to 8 cm
an improvement of around 25 %, whereas individual action adaptation only marginally improves
this metric.

4.2.5. Real robot experiment
The ball throwing experiment has also been tested on a real Baxter robot. For the target

position, a plastic basket with a diameter of 28cm is used. The ball and the basket positions are
detected by a marker-based motion tracking system (OptiTrack by NaturalPoint). Four markers
were attached to the basket in order to track its position. The ball has been covered with a
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Figure 10: Evolution of the reality gap error in the whole repertoire with action adaptations: (left) ratio of actions for
which the error is above the threshold (5cm) and (right) average behavioral error. The solid lines show that only running
the reality gap crossing process for a few actions and using the computed jacobians to update all the neighboring actions
in the action parameters space allows to quickly improve the accuracy of the whole repertoire of 11 600 actions. By
contrast, the dashed lines show the evolution of the same metrics if only the actions on which the reality gap crossing
process is run is updated.

reflective tape so that the motion capture system can track it. These objects are tracked at 240
Hz.

The ball throwing experiment is repeated 50 times with different basket positions that have
been randomly selected by the experimenter. The robot finds an action to throw the ball into each
selected basket position. Initially, the closest action in the repertoire is used; if it fails and the
ball falls outside of the basket, the method to cross the reality gap is applied.

92 % of the launched balls did fall into the basket without adaptation. All of the failed
attempts (8 %) did reach the basket after a single iteration of the adaptation algorithm. 100 % of
the tests were successful, either before or after adaptation.

Two sets of snapshots are presented in Figure 11. Videos of the experiments are available on:
https://youtu.be/OVOYIZWZ2R4.

4.3. Joystick manipulation
In order to illustrate the general nature of the proposed method, we also apply our method to

another task, to control a joystick with the baxter robot.
In this experiment, the robot is not restricted to control the joystick with its gripper. The QD

search actually discovers diverse ways of controlling the joystick with other robot body parts. A
table is placed in front of the robot, and a joystick is mounted on the table as seen in Figure 14.
The motion controller is the same as the one used in the previous ball throwing experiment and
described in section 4.1. However, the motion duration (the time instance to release the ball for
the ball throwing experiment) is set as constant (3 s) for this experiment.

The behavior space to control is the joystick position. As in the previous experiment, po-
sitions sampled from the gripper trajectories are added to the behavior descriptor used by the
QD search in order to generate a more diverse set of actions to reach each particular state. The
behavior descriptor is therefore composed of: (1) two three-dimensional intermediate gripper
positions during the motion, and (2) the joystick positions (roll and pitch angles) at the end of
the robot motion. This behavior space is therefore 8-dimensional.

To avoid actions that generate too fragile behaviors, i.e. actions that need to be applied with
an unrealistic accuracy to get the corresponding state, the quality function represents the robust-
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Figure 11: Two different throwing actions selected from the repertoire to throw a ball into a single, randomly selected
basket position. The full videos are available on https://youtu.be/OVOYIZWZ2R4

ness of the robot joystick control. It is the negative value of the average variance in the behavior
when the action parameters are affected by a small random uniform random noise (minimum
´0.01 and maximum 0.01 for each dimension). Ten noisy actions are generated and tested on
the simulator to evaluate a particular action, and the corresponding state variance (standard devi-
ation of the joystick positions for the noisy actions) is computed.

4.3.1. Step 1 results: QD search performance
The QD search is performed with the same parameters as the ones used for the ball throwing

experiment. It was run 12 times and again compared with actions generated by uniform sampling
in the action parameter space.The median and interquartile range of the number of actions are
shown in Figure 12a. The QD search discovers significantly more solutions than the random
sampling approach (16 360˘ 3688 solutions vs 40˘ 4). The variability of the solutions found
by the random sampling is better, but this difference is not significant as the variability of the
random sampling setup is evaluated on less than 50 points whereas the variability of the QD
repertoire is evaluated on more than 10000 points. The solutions found by the random sampling
also have slightly higher quality (Figure 12b), but again this is a direct consequence of the very
small number of those solutions: their quality is simply similar to that of the the first solutions
discovered by the QD search (during the first generations).

The evolution of a repertoire is shown in Figure 13. As the space of relevant actions for this
task is very small (only a small subset of possible actions interact with the joystick), the initial
random population generation is repeated until it finds at least one solution (it usually takes 1 to
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(a) Repertoire size (b) Quality score

Figure 12: Number of solutions (a) and average quality of those solutions (b) found by QD search and uniform random
search with the joystick scenario. The median value and interquartile interval on the 12 runs are shown. The uniform
random search in action parameter space fails to discover many solutions since only a small subset of the possible actions
engage the joystick.

4 generations). As can be seen on the figure, QD search gradually discovers solutions covering
the state space.

As with the ball throwing scenario, we will conduct the further work on reality gap crossing
on one of the generated repertoire, the one containing the median number of individuals among
the runs. As depicted in Figure 15, the final repertoires often miss a small part of the goal space
and are not as thorough as in the ball throwing scenario, but all of them densely cover most of
the goal space. Running the QD algorithm longer would likely allow the same consistency as for
the ball throwing scenario, but the generated repertoires are sufficient to apply our method.

4.3.2. Crossing the reality gap
As before, to test the ability of the proposed approach to cross the reality gap, mis-configurations

are introduced in the simulator: an offset of 0.01 rad (0.75°) is added to the two joints of the robot
shoulder. A smaller offset than for the previous ball throwing experiment is used as this setup
has a higher non-linearity. The repertoire used was the one containing the median number of
individual among the runs. We consider the reality gap crossed if the joystick is put within 10°
of the target position.

1000 actions were randomly selected in the repertoire and evaluated in the mis-configured
simulator. Among them, 280 did not require adaptation (the behavioral error was already smaller
than 10°) and 720 actions needed to be updated (error greater than 10°). The proposed adaptation
method allowed 226 actions to adapt to the new configuration within four iterations or less (see
Figure 16), and for 239 others the behavior did approach the desired joystick target angles, but
did not reach them with the required accuracy within four iterations.

The approach failed for 255 actions. For 200 of them, the mis-configurations induced a very
large initial behavioral error, that was too high for the proposed approach to cope with. The 55
others failed for various reasons specific to the experimental setup: for 33 actions, the robot arm
collided with the table or the joystick base; for 14 others the method did not work because the
local jacobian was not locally linear, and for 8 actions the robot motions for the new actions
exceeded the joint position limits.
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Figure 13: Solutions found by the QD search (left) and with random action parameters generation (right). The solutions
are shown on the two-dimensional joystick angles space. Dense area contain diverse solutions for controlling the joystick
with different robot motion.
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(a) (b) (c)

(d) (e) (f)

Figure 14: The robot controls the joystick using different body parts. Upper and lower figures illustrate various ways of
controlling the roll and pitch angles of the joystick for p0.15, 0.15qrad and p´0.15,´0.15qrad respectively.

Figure 15: Illustration of 5 of the 12 generated repertoires after 1000 generations of the QD algorithm. Although most
generated repertoires miss some small part of the goal space, they all densely cover most of the reachable goal space.
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Figure 16: Left: histogram of the number of required iteration to cross the reality-gap for the joystick control experiment;
“excessive initial error” refers to cases where the initial reality gap was so large that the approach could not build a useful
local linear model, “other causes” groups the other failure cases. Right: reality gap in the 1000 selected actions before
and after applying the proposed adaptation approach.
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Whenever an action is evaluated in reality, its behavior is observed and used to update both the
action and the other neighboring solutions, as described in section 3.5.2. Initially, around 70 % of
the actions generated an error greater than 10° in the artificially mis-configured simulator. After
some trials with repertoire updates, the total number of failing actions is reduced below 60 %,
and the average behavioral error also decreases (Figure 17).

Figure 18 illustrates the feasible actions that behave similarly to the expected behaviors (less
than 10°). The corresponding repertoire is less dense than the one generated in simulation, but
most areas of the behavior space are within reach. Furthermore, the less dense areas (pitch
between 0.5 rad and 1 rad and roll below ´0.8 rad or between 0 rad and 0.5 rad, for instance)
contain more points after the updates. Although the proposed update method does not allow to
update all points, it is enough to keep the control of the state space after the mis-configuration
and reach any part of it.
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Figure 17: Evolution of the reality gap error in the whole repertoire with action adaptations: (left) ratio of actions for
which the error is above the threshold (10°) and (right) average behavioral error. The solid lines show that only running
the reality gap crossing process for a few actions and using the computed jacobians to update all the neighboring actions
in the action parameters space allows to quickly improve the accuracy of the whole repertoire. By contrast, the dashed
lines show the evolution of the same metrics if only the actions on which the reality gap crossing process is run is updated.
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Figure 18: Reachable points in the 2D behavior space with the mis-configured simulator, initial (left) and after 18
iterations of updates (right).
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5. Discussion

Having a robot learn how to control a given goal space and solve tasks with no reversible
model or initial demonstrations remains a challenging problem as the space of possible robot
motions is large and continuous. Providing a limited set of primitive actions makes learning
simpler, but also limits the capacity of the robot to adapt to new situations. Giving the robot the
ability to build, on its own, a repertoire of actions according to its needs it thus a promising path
towards more adaptive robots. Our results show that this can efficiently be addressed by the use
of quality-diversity algorithms, which learn a repertoire of highly diverse actions able to cover
the whole goal space. This approach is significantly more efficient than uniform random search
in the action space, especially when only a very small proportion of the possible actions affect
the goal space, as it is the case with the joystick control experiment. Separating the exploration
process, which is slow but can be run in simulation in advance, and the exploitation of the reper-
toire, which is quick and requires little computation, makes sense in a life-long learning context
where a robotic system both interacts with its environment to perform tasks and collect data and
uses offline machine learning techniques to learn new skills and restructure its knowledge in an
iterative process [2].

Our approach does not build global task-specific inverse models. Instead, it relies on local
inverse models built from a close action and its immediate neighborhood in the action space. Our
results show that this approach efficiently reaches arbitrary points in the continuous goal space,
generalizing beyond the discrete set of actions provided in the repertoire. Another strength of this
approach, compared to using a single inverse model, is that, as shown in figures 8 and 14, it can
fully exploit the redundancy of the robotic system and generate multiple ways to reach a given
point in the goal space. This can be useful to address further transfer problems, for example if
the environment contains obstacles that make some actions impossible to apply.

The actions in the repertoire are generated in a simulator and may thus generate different
effects on the real robot. To deal with this issue, we have proposed to use the local linear in-
verse models defined by our method to gradually adapt the actions in the repertoire to the real
environment. This approach has revealed to be efficient on the ball launching task, but had a
more limited impact on the joystick manipulation, highlighting its non-linearity. As the local
linearity of the mapping is measured by the λ confidence value, those non-linearities could easily
be detected and several methods could be proposed to deal with them. First, this value could be
used to determine whether the system could be rapidly adapted by following the gradient sug-
gested by the Jacobian, or if it needs to switch to a different approach that would be adapted to
a non-linear mapping, for instance a stochastic hill-climbing or an evolutionary search method.
Another approach would be to use the repertoire to train a reversible model of the mapping that
would be used to deal with the non-linearities.

The proposed approach relies on an evolutionary algorithm and thus on a blind variation and
selection process. This property is interesting in an adaptation process, as it is very versatile and
does not require strong assumptions on the actions to be generated. It is furthermore hypothesized
to be at the roots of human creativity [49]. However, this flexibility has a price: the search process
needs to evaluate a large number of samples. This issue has been tackled here with an exploration
in simulation, that has no impact on real robot wear and tear and can easily be accelerated and
parallelized. In a life-long learning perspective, the sample efficiency of the proposed approach
could be enhanced by relying on previously built repertoires, for instance to seed a new repertoire
with the actions generated for a different but related behavior space. This would raise the question
of the identification of the relevance of a given repertoire to generate a new one, which is still a
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challenge in the transfer learning community.
A model of the mapping could actually be learned during the exploration and used to bias

the exploration and make the search more sample efficient, as done in Generative Adversarial
Networks [50, 8]. The advantage of an unbiased search as proposed here is that it may better
lead to serendipity and the discovery of non linearities that have not been captured yet in the
model. In a life long learning framework in which computational time is not the main issue, the
two approaches could thus be complementary: a model based approach could be used on the
real robot to get a first glance on the robot possibilities, then a deeper exploration based on the
approach proposed here could be performed to get a larger control over the state space before
using the generated data to train a more accurate model.

6. Conclusion

In this paper, we have introduced a novel framework for a robot to efficiently discover skills
to control a goal space by exploring in a simulated environment, with no demonstration, no prior
policy, and without building an explicit inverse model of the system. The proposed method
builds a large, diverse discrete action repertoire densely covering the goal space, and then builds
local models to generalize to other points in the goal space or to adapt to slightly different tasks
and environments, for exemple crossing a reality gap. Repertoire acquisition is done with a
Quality Diversity algorithm whose goal is to build a set of actions to reach a diverse set of
states in a space described by predefined behavior descriptors. The outcome of this process
is a set of up to tens of thousands of actions. The generalization and adaptation relies on a
local linearization of the mapping between the action parameters and the corresponding state.
The proposed framework has been validated in two different applications which make a robot
discover diverse robot arm motions for two different tasks: launching a ball into a basket and
controlling a joystick. In both cases, the method discovers a large number of diverse actions,
allows the robot to accurately control the goal space, and is used to cross the reality gap from the
simulator to a real environment.
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Appendix A. Parameters used for QD search

Population size 240
Number of generation 2000
Mutation rate 0.2
Cross over 0.1
action distance threshold in repertoire (ball throwing experiment) lrepertoire 0.01
action distance threshold in repertoire (joystick experiment) lrepertoire 0.05
number of neighbors to compute a Jacobian K 30
Jacobian confidence threshold ηthreshold 0.3
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