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Piazzale Aldo Moro 5, 00185 Rome – Italy,

International Research Center M&MOCS, Università dell’Aquila, Italy,
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Abstract. We present and analyze two simple N -particle systems for the spread

of an infection, respectively with binary and with multi-body interactions. We

establish a convergence result, as N →∞, to a set of kinetic equations, providing

a mathematical justification of related numerical schemes. We analyze rigorously

the time asymptotics of these equations, and compare the models numerically.



1 Introduction

The mathematical models for epidemic spread describe the evolution of average

fractions for several species of interacting agents, as susceptible-infected-recovered

in the classical SIR model [7]; see for instance [1, 10, 6, 3]. It is hard to go far

beyond this description incorporating spatial patterns in a realistic way, although

this can play an important role in applications. A natural approach is based on

modelling equations inspired from the kinetic theory of rarefied gases, see e.g. [2]

and references therein. Of course, the main obstacle is the identification of the

assumptions characterizing the interaction. Think for instance of individual strate-

gies, which, if important, could lead to a rather different behaviour from that of

a particle system with local equilibrium [5]. On the other hand, the essential fea-

tures of the evolution have little dependence on microscopic details: even a naive

model based on a three-species Boltzmann equation can capture equally well the

qualitative behaviour of SIR-like equations [11, 4].

The present paper is devoted to a mathematical analysis of what could be

the simplest possible kinetic model. Agents move independently according to a

random flight. An infected and a susceptible particle can react into a pair of

infected particles, whenever they are sufficiently close. Furthermore each infected

particle decays into a recovered particle in a random time of order one (and cannot

be infected anymore, as in the SIR model).

We then consider two possibilities corresponding to two different scalings. In

the first one, the infection reaction of a pair happens in a random time of order

N , where N is the total number of agents. In the second one, in a random time of

order 1, the infection is instantaneously transmitted to all susceptible agents which

happen to be close enough (“crowd contagion”, or “superspread event”). As we

shall see, both models are conceived to give, formally, the same kinetic equations

in the limit N →∞. But the second one is mathematically more involved.

The plan of the paper is the following. In the next section we present the models

and the limiting kinetic equation. In Section 3 we study the time asymptotics of

these equations and compare it with the behaviour of the standard SIR. In Section

4 we discuss the convergence of the first particle model in the kinetic limit. Finally

in Section 5, we present some numerical simulation.
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2 Models

2.1 Model 1

2.1.1 Phase space, generators

Consider a set of N particles (agents) whose position and velocity are in the two-

dimensional torus Λ = (0, D)2, D > 0 and the unit circle S respectively. We

denote by |Λ| = D2 the measure of Λ. Particle i ∈ {1, · · · , N} has a label ai ∈
{S, I,R} =: L. We set ZN = (zi)

N
i=1 with zi = (xi, vi) ∈ Λ× S and AN = {ai}Ni=1.

A state of the system (ZN ;AN ) lives in the phase space (Γ×L)N , where Γ = Λ×S.

The time evolution is given by the generator

L = L0 + L1 + Ld + LNint (2.1)

where:

� L0 =
∑N
i=1 vi · ∇xi describes free motion.

� L1 describes velocity jumps

L1Φ(ZN ) =

N∑
i=1

1

2π

∫
S
dw [Φ(z1, . . . , xi, w, . . . , zN )− Φ(ZN )]

and, for a function Φ(ZN ) ≡ ϕ(z1),

L1Φ(ZN ) =
1

2π

∫
S
dw [ϕ(x1, w)− ϕ(z1)] .

Hence L0 + L1 generates N independent copies of a random flight. We do

not make explicit here the dependence on the labels, which are not involved.

� Ld describes the decay of infected (I) into recovered (R) particles

LdΦ(ZN ;AN ) = γ

N∑
i=1

[ Φ(ZN ; a1, . . . , ãi, . . . , aN )−Φ(ZN ; a1, . . . , ai, . . . , aN )]

where γ > 0 and the transition ai → ãi is defined by

ãi = R if ai = I; ãi = ai otherwise.

� The interaction or “infection”, acting over the labels of the agents, is de-

scribed by

LNintΦ(ZN ;AN ) =
λ

N

∑
i≤N,j≤N

i<j

[
Φ(ZN ; a1, . . . , a

′
i, . . . , a

′
j , . . . , aN )

−Φ(ZN ; a1, . . . , aN )
]
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where λ > 0 and the transition (ai, aj)→ (a′i, a
′
j) is defined bya′i = a′j = I if ai = I, aj = S or aj = I, ai = S and χi,j = 1,

a′i = ai, aj = a′j otherwise
,

with χi,j the characteristic function of two particles being at distance less

than R0 > 0

χi,j = 1{xi,xj | |xi−xj |<R0} .

Note that, to simplify notation, we dropped theN dependence on generators acting

as sums over single particle variables (describing independent particles).

In words, we have the following behaviour. N agents of type S (susceptible),

I (infected) or R (recovered) are moving in Λ via a random flight, with velocity

jumps in S taking place with rate 1 per agent. Each infected agent becomes

recovered according to a Poisson process of rate γ. The infection is also a Poisson

process: we choose a pair of agents i, j with uniform probability and, if the pair is

constituted by an infected and a susceptible and if their distance is smaller than

R0, both of agents become instantaneously infected (otherwise nothing happens).

The intensity of this process scales like λN .

2.1.2 Densities and marginal distributions

A statistical description is provided in terms of an initial probability density

WN
0 : (Γ× L)N → R+ ,

symmetric in the exchange of particles and normalized by∑
AN

∫
dZNW

N
0 (ZN ;AN ) = 1 .

The time evolved measure WN
t (ZN ;AN ), t > 0 is given by∑

AN

∫
dZNW

N
t (ZN ;AN )Φ(ZN ;AN ) =

∑
AN

∫
dZNW

N
0 (ZN ;AN )E[Φ(ZN (t);AN (t))] ,

where Φ is a test function, (ZN ;AN ) → (ZN (t);AN (t)) is the process and E =

E(ZN ,AN ) is the expectation conditioned to the initial value (ZN ;AN ). The j-
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particle marginal, j = 1, . . . , N , is defined by

fNj (Zj ;Aj ; t) =
∑

A′N−j∈LN−j

∫
dZ ′N−jW

N
t (Zj , Z

′
N−j ;Aj , A

′
N−j) ;

giving the probability density of finding j agents with labels Aj in the configuration

Zj .

We shall assume full independence at time zero:

WN
0 (ZN ;AN ) =

N∏
i=1

f0(xi, vi; ai) (2.2)

where f0 is a one-particle density distribution, with normalization∑
a∈L

∫
dzf0(z; a) = 1 . (2.3)

As usual in kinetic theory, the dynamics creates correlations and the measure is not

factorized anymore at positive times. One hopes to recover such independence in

the limit N →∞, thanks to the mean-field nature of the interaction (“propagation

of chaos”). Indeed the agents move independently and, given a pair of particles,

say 1 and 2, the probability that the label of 2 influences the label of 1 is O( 1
N );

therefore that any j-particle marginals factorize, if they do factorize at time zero

as guaranteed by (2.2) (“propagation of chaos”).

2.1.3 Kinetic limit

Let us derive formally the kinetic equations in the limit N →∞. We choose a test

function of type Φ(ZN ;AN ) = 1
N

∑N
i=1 φ(zi; ai). Then by using the symmetry

d

dt

∑
a

∫
dzfN1 φ(z; a) =

d

dt

∑
AN

∫
dZNW

NΦ(ZN ;AN )

=
∑
a

∫
dzfN1 (L0 + L1 + Ld)φ(z; a)

+
∑
AN

∫
dZNW

NLNintΦ(ZN ;AN ) ,

where the last term reads

λ

N2

∑
i,j
i<j

∑
AN

∫
dZNW

N (ZN ;AN )[φ(zi; a
′
i)− φ(zi; ai) + φ(zj ; a

′
j)− φ(zj ; aj)] =

λ
N − 1

2N

∑
a1,a2

∫
dz1dz2f

N
2 (z1, z2; a1, a2)[φ(z1; a′1)− φ(z1; a1) + φ(z2; a′2)− φ(z2; a2)] .
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If φ(z; a) = 0 for a 6= R, then the interaction term is vanishing. If instead φ(z; a) =

0 for a 6= S, the interaction term is close to

−λ
∫
dz1dz2f(z1;S)f(z2; I)χ1,2 φ(z1;S)

for N large, if the propagation of chaos holds: fN2 ≈ (fN1 )⊗2 and f := lim
N→∞

fN1 .

Similarly if φ(z; a) = 0 for a 6= I one gets

+λ

∫
dz1dz2f(z1; I)f(z2;S)χ1,2 φ(z2; I) .

We conclude that the triple (f(z;S; t), f(z; I; t), f(z;R; t)) satisfies the follow-

ing system of kinetic equations (z = (x, v)):
(∂t + v · ∇x) f(z;S) = L1f(z;S)− λf(z;S)

∫
f(z1; I)χ(|x− x1| < R0)dz1

(∂t + v · ∇x) f(z; I) = L1f(z; I)− γf(z; I)

+ λf(z;S)
∫
f(z1; I)χ(|x− x1| < R0)dz1

(∂t + v · ∇x) f(z;R) = L1f(z;R) + γf(z; I)

.

(2.4)

Note that the sum

f(z, t) :=
∑
a∈L

f(z; a; t)

satisfies the simple random flight equation

(∂t + v · ∇x) f(z, t) = L1f(z, t) . (2.5)

2.2 Model 2

With same setting and notations as above, we now consider the stochastic process

with generator

L̃ = L0 + L1 + Ld + L̃Nint

where

L̃NintΦ(ZN ;AN ) =
λ

N

N∑
i=1

[
Φ(ZN ;A′N )− Φ(ZN ;AN )

]
,

and A′N = A′N (i) =
(
a′j(i)

)N
j=1

is given bya′j = I if aj = S, ai = I and χi,j = 1

a′j = aj otherwise
.
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As before, N agents evolve via a random flight and each infected agent becomes

recovered according to a Poisson process of rate γ; but the spread of the infection

affects, with rate λ, all susceptible agents inside a ball of radius R0 around the

infected one.

Proceeding as in Subsection 2.1.3, we obtain a formal limit by computing∑∫
WN L̃NintΦ for a test function Φ(ZN ;AN ) = 1

N

∑N
s=1 φ(zs; as):∑∫

WN L̃NintΦ =

=
λ

N2

∑
i

∑
s6=i

∑
AN

∫
dZNW

N (ZN ;AN )χi,s[φ(zs; a
′
s(i))− φ(zs; as(i))]

= λ
N − 1

N

∑
a1,a2

∫
dz1dz2f

N
2 (z1, z2; a1, a2)χ1,2[φ(z2; a′2(1))− φ(z2; a2(1))]

= λ
N − 1

N

∫
dz1dz2f

N
2 (z1, z2; I, S)χ1,2[φ(z2; I)− φ(z2;S)] .

We see that we recover the same kinetic system obtained for the first model,

provided the propagation of chaos holds true. Actually this is not the case, at

least for a suitable choice of parameters. Indeed macroscopic correlations in areas

O(R2
0) could be created when the infected crowds do not have enough time to

mix. We will discuss in Section 5 some numerical simulations supporting this

observation.

We stress that having the same kinetic limit N →∞ for the two models intro-

duced is not surprising, due to the separation of scales. The infection mechanism

in the second model is much stronger as it involves a macroscopic portion of the

population (instead of a single pair), but the jumps in Model 1 have intensity

O(N) while in Model 2 they have intensity O(1).

2.3 SIR

It is natural to compare the kinetic equations (2.4) with the well known SIR model

for the evolution of the fraction of species S, I,R as a function of time:
Ṡ = −βIS

İ = βIS − γI

Ṙ = γI

(2.6)

for given γ > 0 and β > 0.
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Define

g(S; t) = M S(t), g(I; t) = M I(t), g(R; t) = M R(t),

where M = 1
2π|Λ| . Then g(A; t), A ∈ L solve (2.4) (as constant functions of z)

provided that β =
λπR2

0

|Λ| . Therefore at equilibrium, namely when the distribution

of each species is constant, the kinetic equations do not say more than the SIR

model. However integrating Eq.s (2.4) with respect to z, we do not find closed

equations for the fractions

A(t) :=

∫
dzf(z;A; t) ,

which means that in case of inhomogeneous data the kinetic equations do provide

a more detailed description.

A more accurate SIR model takes into account also the possibility that the

recovered agents may become susceptible after some time. The equations are:
Ṡ = −βIS + µR

İ = βIS − γI

Ṙ = γI − µR

. (2.7)

for µ > 0. The corresponding kinetic equations (2.4) modify slightly by joining

the term ±µf(z;R) in the first and third equations respectively.

3 Long time behaviour

Eq.s (2.6) have many stationary solutions, but a single one (S∞, I∞,R∞), which

is the limit for t→∞ of the solutions to (2.6). By the third equation of (2.6)∫ ∞
0

I(t) = δ < +∞. (3.1)

Setting now σ = S + I we have

σ̇ = −γI and σ(t) = σ0 − γ
∫ t

0

dτI(τ)

so that

σ∞ := lim
t→∞

σ(t) = σ0 − γδ.
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Setting A∞ := limt→∞A(t), since S(t) is decreasing, both I(t) and S(t) are

converging as t→∞ and, by (3.1), I∞ = 0. In conclusion
S∞ = σ0 − γδ = I0 + S0 − γδ

I∞ = 0

R∞ = R0 + γδ

. (3.2)

Note that the dependence of the stationary solution on β is hidden in δ.

A more precise determination of the asymptotic values is provided by the fol-

lowing well known argument. From

dS
dR

= −β
γ
S,

by using R∞ + S∞ = 1 and the assumption R0 = 0 one finds

e−
β
γ S∞ β

γ
S∞ = S0

β

γ
e−

β
γ .

Since max ye−y = 1
e , given β and γ one finds nonvanishing solutions for S∞.

3.1 Time asymptotics of (2.4)

We try now a similar analysis for the kinetic model.

We abbreviate by

Nf (z; t) = f(z;S)(χR0 ∗ f(·; I))(z; t)

the nonlinear terms in the r.h.s. of (2.4), where χR0
= χ(|x| < R0) is the indicator

of the set {|x| < R0}. We further set L := −v · ∇x + L1, the generator of the

random flight semigroup U(t) = eLt . Then we rewrite Eq. (2.4)
∂tf(S; t) = Lf(S; t)− λNf (t)

∂tf(I; t) = Lf(I; t) + λNf (t)− γf(I; t)

∂tf(R; t) = Lf(R; t) + γf(I; t)

(3.3)

and denote the initial data by f0(A).

We shall use that, for h a probability density and arbitrary t0 > 0,

‖U(t− t0)h−M‖L1 ≤ 2e−a(t−t0) (3.4)

(remind that M = 1
2π|Λ| ) for some a > 0.
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Estimate (3.4) is well known in the framework of the very extended literature

concerning the linear Boltzmann equation. Here, due to the simplicity of our

equation, we prefer to present a simple direct proof in Appendix for the reader’s

convenience.

From the the third equation of (3.3) we have that

f(R; t) = U(t)f0(R) + γ

∫ t

0

dτU(t− τ)f(I; τ) .

Integrating both sides with respect to z, recalling that A(t) =
∫
dzf(z;A; t) and

setting A0 = A(0), we obtain

R(t) = R0 + γ

∫ t

0

dτI(τ) .

Clearly ∫ ∞
0

dτI(τ) = δ̃ < +∞.

Then setting

f(S; t) + f(I; t) = Σ(t)

we find

∂tΣ(t) = LΣ(t)− γf(I; t)

so that
d

dt
(S + I) = −γI .

Denoting by A∞ the asymptotic value of A(t), proceeding as before we infer

(cf. (3.2)) 
S∞ = I0 + S0 − γδ̃

I∞ = 0

R∞ = R0 + γδ̃

. (3.5)

We cannot conclude that A(t) = A(t) even if A(0) = A(0) because, in general,

δ 6= δ̃.

Next, we study the asymptotic behaviour of the triple (f(z;A; t))A∈L as t→∞.

Denote by g∞(A) = A∞M the equilibrium state. Setting

∆(z;S) = f(z;S)− g∞(S) ,

∆(z; I) = f(z; I)− g∞(I) = f(z; I) ,

∆(z;R) = f(z;R)− g∞(R)
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we have, using that g∞ is a stationary solution to Eq. (3.3),
∂t∆(S; t) = L∆(S; t)− λ[Nf (t)−Ng∞(t)]

∂t∆(I; t) = L∆(I; t) + λ[Nf (t)−Ng∞(t)]− γ∆(I; t)

∂t∆(R; t) = L∆(R; t) + γ∆(I; t)

;

hence

σ(t) := ∆(S; t) + ∆(I; t) = ∆(S; t) + f(I; t)

satisfies (σ0 = σ(t0))

σ(t) = U(t− t0)σ0 + γ

∫ t

t0

dτU(t− τ)∆(I; τ)

for arbitrary t0 > 0.

The two terms in this equation are controlled by

γ

∥∥∥∥∫ t

t0

dτ U(t− τ)∆(I; τ)

∥∥∥∥
L1

≤ γ
∫ t

t0

dτI(τ)

and

‖U(t− t0)σ0‖L1 ≤ ‖U(t− t0)[f(S; t0)− S(t0)M ]‖L1 + |S∞ − S(t0)|+ I(t0) .

But, by (3.4) and
∫

(f(S; t0)− S(t0))Mdz = 0,

‖U(t− t0)[f(S; t0)− S(t0)M ]‖L1 ≤ 2S(t0)e−a(t−t0) ≤ 2e−a(t−t0) .

Furthermore for any ε > 0,

γ

∫ ∞
t0

dτI(τ) + |S∞ − S(t0)|+ I(t0) < ε

provided that t0 is sufficiently large. In conclusion

lim sup
t→∞

‖σ(t)‖L1 < ε ,

thus

lim
t→∞

∆(A; t) = 0 for A ∈ L,

in norm L1.

Note that existence and uniqueness of the solutions to the system (3.3) follows

by standard arguments, since the nonlinear term is Lipschitz continuous in L1.

Indeed by the identity

Nf −Nh = (f − h) (S)χR0 ∗ f(I) + h(S)χR0 ∗ (f − h)(I)
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and ‖f(A; t)‖L1 ≤ 1 it follows that

‖Nf −Nh‖L1 ≤ C‖f − h‖L1 , C > 0 .

We summarize the discussion in the following statement.

Proposition 3.1 Given an initial datum f0(z;A) ≥ 0, A ∈ L, z ∈ Γ, f0 ∈ L1
(x,v)

such that ∑
A∈L

∫
dzf0(z;A) = 1, (3.6)

there exists a unique solution f(z;A; t) ≥ 0 to the system (3.3) for any t > 0,

strongly differentiable in L1 and preserving the normalization condition (3.6).

Moreover

lim
t→∞

f(z;A; t) = g∞(A) in L1 (3.7)

where g∞(A) = MA∞, M is the uniform normalized distribution on Γ and A∞

solves (3.5).

4 Particle approximation

In this section we derive the kinetic equations (3.3) starting from Model 1. This

is a classical mean-field problem, which has been largely investigated in previous

literature. Observe that Model 1 is particularly simple because, once integrated

over labels, the probability measure factorizes

WN
t (ZN ; t) :=

∑
AN

WN
t (ZN ;AN ) = (f(t))⊗N (ZN )

and f satisfies Eq. (2.5). We recall that we are assuming (2.2) and (2.3) at time

zero. On the other hand the dynamics of labels generates correlations as

fN2 (z1, z2; a1, a2; t) 6= fN1 (z1; a1; t)fN1 (z2; a2; t) .

In order to show that such correlations are negligible as N → ∞, a straightfor-

ward method consists in establishing a hierarchy of equations for the marginals

fNj (Zj ;Aj ; t). This is a purely algebraic computation, leading to the following

result.

Theorem 4.1 For any t > 0 we have that the marginals of Model 1 are chaotic,

and

lim
N→∞

fNk (t) = f⊗k(t)
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in L1
Zk

and for any choice of Ak, where f = f(z; a; t) solves the kinetic system

(3.3).

Proof. We start by computing the adjoint of the generator (2.1)

L∗ = −L0 + L1 + L∗d + LN∗int .

The decay operator has adjoint

L∗dWN (ZN ;AN ) = γ

N∑
i=1

WN (ZN ; a1, . . . , ã
∗
i , . . . , aN )(δai,R − δai,I)

where

ã∗i = I if ai = R; ã∗i = ai otherwise .

The interacting generator is computed as follows. Denoting

Ai,jN (b, d) = {a1, . . . , ai−1, b, ai+1, . . . , aj−1, d, aj+1, . . . , aN} (i 6= j)

one has that∑
AN

∫
dZNW

N (ZN ;AN )LNintΦ(ZN ;AN )

=
λ

N

∑
i<j

∑
AN

∫
dZNW

N (ZN ;AN )[Φ(ZN , A
i,j
N (a′i, a

′
j))− Φ(ZN ;AN )]

=
λ

N

∑
i<j

∑
AN

∫
dZNW

N (ZN ;AN )χi,j [δai,Iδaj ,S + δai,Sδaj ,I ]

·[
∑
a′i,a

′
j

δa′i,Iδa′j ,IΦ(ZN , A
i,j
N (a′i, a

′
j))− Φ(ZN , AN )] ,

from which we obtain

LN∗intWN (ZN ;AN ) =
λ

N

∑
i<j

χi,j{(WN (ZN ;Ai,jN (I, S)) (4.1)

+WN (ZN ;Ai,jN (S, I)))δai,I δaj ,I

−WN (ZN ;AN )(δai,Iδaj ,S + δai,Sδaj ,I)} .

The hierarchical equation for marginals is obtained (as for the well known

BBGKY hierarchy) by computing the quantity∑
A′N−k

∫
dZ ′N−kLN∗intWN (Zk, Z

′
N−k;Ak, A

′
N−k) .

12



We split the sum
∑
i<j into three contributions. The first one for i < j ≤ k yields

k

N
Lk∗int fNk .

The second one for k < i < j is vanishing. The third one, for i ≤ k, j > k, gives,

using the symmetry of WN ,

λ
N − k
N

k∑
i=1

∫
dzk+1 χi,k+1

·
{
δai,I

(
fNk+1(Zk, zk+1;Ai,k+1

k+1 (I, S)) + fNk+1(Zk, zk+1;Ai,k+1
k+1 (S, I))

)
−(

δai,If
N
k+1(Zk, zk+1;Ak, S) + δai,Sf

N
k+1(Zk, zk+1;Ak, I)

)}
= λ

N − k
N

k∑
i=1

∫
dzk+1χi,k+1 (4.2)

· δai,S [fNk+1(Zk, zk+1;Ai,k+1
k+1 (I, I))− fNk+1(Zk, zk+1;Ak, I)]

=: λ
N − k
N

Ck+1f
N
k+1(Zk;Ak) .

Here the last identity defines the hierarchical collision operator Ck+1.

In conclusion we find

∂tf
N
k = LfNk + L∗dfNk +

k

N
Lk∗int fNk + λ

N − k
N

Ck+1f
N
k+1 (4.3)

for k < N . The last equation, for k = N , is nothing else than the equation for the

measure WN ≡ fNN , that is

∂tW
N = L∗WN .

Coming back to the kinetic system (3.3), we write it in the more compact form

of a single equation

∂tf(z; a; t) = Lf(z; a; t) + L∗d f(z; a; t) + λQ(f, f)(z; a; t)

where

Q(f, f)(z; a) :=

∫
dz1 χ(|x− x1| < R0) [f(z;S)f(z1; I)δa,I − f(z; a)f(z1; I)δa,S ] .

Consider now the sequence of products

fj(Zj ;Aj ; t) := f⊗j(Zj ;Aj ; t) .

13



By direct inspection, we obtain

∂tfk = Lfk + L∗d fk + λCk+1fk+1 (4.4)

for k ≥ 1.

We are now in position to conclude the proof following, for instance, the same

strategy as for the inhomogeneous Kac model (see e.g. [12]), which is inspired to

the seminal paper by Lanford on the validity of the Boltzmann equation for hard

sphere systems [9]. We remind the basic steps.

1. The operator Ck+1 is controlled by

‖Ck+1fk+1‖L1
A
≤ Ck‖fk+1‖L1

A

for some C > 0, where the norm ‖ · ‖L1
A

is defined as

‖fk‖L1
A

:=
∑
Ak

‖fk(Ak)‖L1
Zk

.

2. We can represent the solutions of both hierarchies (4.3) and (4.4) in terms of

two series expansions which are converging in L1
A for short times, uniformly

in N .

3. The Markov semigroup UNk (t) := e(L+ k
N L

k∗
int)t converges in L1

A in the limit

N →∞ to U(t) = eLt, indeed

k

N
Lk∗int = O

(
k2

N

)
.

Hence we have a term by term convergence of (4.3) to (4.4).

4. This allows us to achieve a short time convergence. But we have the a-priori

estimate ‖fNk (t)‖L1
A

= 1, which allows us to iterate the procedure and reach

arbitrary times.

�

5 Numerical simulations

We make use here of Monte Carlo method to simulate the behaviour of Model 1

and Model 2, and compare the evolution of the population fractions S(t), I(t) and

R(t) with the solution of the SIR equations (2.6).

14



Let us describe the setting of the particle simulation. The spatial domain is

the torus Λ = (0, D)2 with D = 500. At time 0 we consider N particles uniformly

distributed in space with uniformly distributed velocities in S, so that the gas

as a whole is at equilibrium. We focus on two different initial distributions of

labels. In the first case, a fraction I(0) of infected agents are labeled as I, and

these particles are chosen uniformly. In the second case, the I particles at time

0 are all the particles lying in a disk of area I(0)|Λ|. All the remaining agents

are susceptible, hence we fix R(0) = 0. In the following we will refer to these two

initial distributions as homogeneous and concentrated initial data, respectively. In

all the experiments reported below, we set I(0) = π
100 , S(0) = 1− I(0), R(0) = 0.

We recall here that the kinetic equations (2.4) reduce to the SIR–model (2.6)

for uniform data, with the corresponding parameter β to be chosen as β =
λπR2

0

|Λ| .

Also, the SIR–model asymptotics, once fixed the initial data, depends only on the

ratio β
γ . For fixed ratio β

γ , the actual values of β and γ influence only the time

scale of the evolution. As we shall see, inhomogeneous initial data can instead

modify considerably the evolution of the population fractions.

We consider first the dynamics of Model 1, with parameters λ = 20, R0 = 15,

γ = 1/30; see Fig. 1. The result verifies the correspondence between homoge-

neous particle model and SIR–model, and the different behaviour in the case of

concentrated initial data. In the latter case, the spread of infected particles is

much slower, implying that the infected population reaches a lower peak and in a

longer time. The asymptotic values S∞ and R∞ are also affected. The quantity δ̃

appearing in (3.5) is indeed different in the homogeneous and in the concentrated

case.

When considering Model 2 with the same parameters as in Figure 1, the evolu-

tion is very far from the SIR–model, even for homogeneous initial data, and only a

small fraction of susceptible agents is infected before the extinction of the infected

population. Note that the evolution of Model 2, as pointed out in Section 2.2,

only gives rise to the kinetic description when the propagation of chaos holds true

in the limit N →∞, which might not hold for this choice of parameters.

Let us now fix the ratio
λπR2

0

|Λ| /γ and the domain |Λ|, and let us initially fix also

the value of γ. We can choose different values for R0 and λ and try to identify

the regime for which the homogeneous particle system behaves as the SIR-ODE

model. We find that by decreasing R0 and increasing λ accordingly, keeping the

product λR2
0 fixed, the particle system approaches the SIR-ODE model behaviour,

while it is far from it for large R0. The rate of approach also depends on γ (for
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Figure 1: Parameters: λ = 20, R0 = 15, γ = 1/30.

Left panel: evolution of S, I, R fractions for a particle system evolving according

to Model 1. The solid and dashed lines represent, respectively, the case of homo-

geneous and concentrated initial data. N = 50000.

Right panel: numerical solution of (2.6) with β =
λπR2

0

|Λ| .

smaller γ, higher value of R0 is required). However, this is true up to a certain

threshold. Indeed, when the value for R0 is too large, no choice of γ and λ can

work (think of R0 > D).

The spread of infected particles is favoured when agents of type I are sur-

rounded by a large number of susceptible. This does not happen in general when

the labels have strongly non–homogeneous distribution. The dynamics in Model

2 produces such inhomogeneities in disks of radius R0. However, if the decay rate

γ is sufficiently small, infected particles have sufficient time to mix with other

agents in the surrounding space, before becoming recovered. Instead for R0 large,

the infected agents are unable to exit the shielded region.

We see in Fig. 2 a second set of simulations where the parameters are such that

Models 2 and SIR Equations match (keep the same ratio β
γ ). Now, since γ and λ are

small, particles have enough time to mix before being involved in a new infection.

Moreover for the same reason, the particles reach a homogeneous distribution

quickly, so that the difference homogeneous and concentrated initial datum is not

so significant in this case. In Fig. 3, we propose a last set of simulations, for an

intermediate regime (and same β
γ ).
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Figure 2: Parameters: λ = 2, R0 = 15/
√

10, γ = 1/3000.

Left panel: evolution of S, I, R fractions for a particle system evolving according

to Model 2. The solid and dashed lines represent, respectively, the case of homo-

geneous and concentrated initial population of I agents, N = 200000.

Right panel: numerical solution of (2.6) with β =
λπR2

0

|Λ| .
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Figure 3: Parameters: λ = 200, R0 = 15/10, γ = 1/300.

Left panel: evolution of S, I, R fractions for a particle system evolving according

to Model 1 (solid lines) and to Model 2 (dashed lines), for concentrated initial

population infected agents. N = 60000 and N = 200000 respectively.

Right panel: numerical solution of (2.6) with β =
λπR2

0

|Λ| .
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6 Appendix. Proof of estimate (3.4)

We fix t0 = 0 with no loss of generality. Consider the following equation for a

probability density f(x, v, t) with x ∈ Λ and v ∈ S:∂tf + v · ∇xf =
ρf
2π − f

f(x, v, 0) = f0(x, v)

where ρf (x) =
∫
S dwf(x,w) is the spatial density associated to f . We can write

the solution explicitly, by iteration of the Duhamel formula:

f(x, v, t) = e−t
∑
n≥0

(
1

2π

)n ∫ t

0

dt1 · · ·
∫ tn−1

0

dtn

∫
dw1 · · ·

∫
dwn

fp0 (x− v(t− t1)− w1(t1 − t2) · · · − wntn, wn) ,

where fp0 defined in the whole R2 × S, is the periodic extension of f0 from the

square Λ.

Let Pt(z0, z) be the transition probability from z0 = (x0, v0) to z = (x, v) in

time t > 0. For y ∈ R2 and z0 ∈ Λ, we introduce δp(z− z0) :=
∑
π δ(x− (x0)π, v−

v0) where δ is the Dirac delta, π = (k1, k2) is a pair of integers and

(x0)π = ((x0)1 + k1D, (x0)2 + k2D)

are periodic images of x0. We also denote abusively δp(x−x0) :=
∑
π δ(x−(x0)π).

Then

Pt(z0, z) = e−t δp(x− vt− x0, v − v0) + e−t
∑
n≥1

(
1

2π

)n ∫ t

0

dt1 · · ·
∫ tn−1

0

dtn∫
dw1 · · ·

∫
dwn−1 δ

p(x− v(t− t1)− w1(t1 − t2) · · · − v0tn − x0) .

Pt is not absolutely continuous and we are looking for a lower bound, uni-

form in z and z0. The above formula is a series of positive terms which we call

P
(n)
t (z0, z). They are absolutely continuous for n ≥ 2. We focus then on the

simplest contribution n = 2

P
(2)
t (z0, z) := e−t

(
1

2π

)2∫ t

0

dt1

∫ t1

0

dt2

∫
dw δp(x−v(t−t1)−w(t1−t2)−v0t2−x0) .
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Changing to the variable ξ = w(t1 − t2) one finds that P
(2)
t (z0, z) is equal to

e−t
(

1

2π

)2 ∫ t

0

dt2

∫
dξ χ(|ξ| ≤ t− t2)

1

|ξ|
δp(x− v(t− t2)− ξ + |ξ|v − v0t2 − x0)

≥ e−t
(

1

2π

)2∫ t
2

0

dt2

∫
dξ χ(|ξ| ≤ t

2
) δp(x− v(t− t2)− ξ + |ξ|v − v0t2 − x0)

2

t
.

If t is large enough, ξ spans at least a square in the two-dimensional lattice of side

D and hence the above integral is not vanishing. Moreover the Jacobian |∂η∂ξ | of

the transformation

ξ − |ξ|v → η

is

1− v2ξ2
|ξ|
− v1ξ1
|ξ|

with inverse bounded from below by

|ξ|
|ξ|+ |v1||ξ1|+ |v2||ξ2|

≥ 1

1 + |v1|+ |v2|
≥ 1

3
.

Therefore the last integral in dξ is bounded from below by 1, which implies

P act (z0, z) ≥ Ce−t (A.1)

for some C > 0 (independent of z, z0), provided that t is large enough. Here P act
is the absolutely continuous part of Pt.

From (A.1) we shall prove that

‖Pt(z0, ·)− Pt(z1, ·)‖TV ≤ 2ρ (A.2)

with ρ < 1 and this is enough (see e.g. [8]) to conclude that

‖Pnt(z0, ·)−M‖TV ≤ 2ρn

from which in turn we obtain for all t > 0

‖U(t)h−M‖L1 ≤ 2e−at ,

for some (certainly not optimal) a > 0.

To prove (A.2), we introduce the Wasserstein distance with the discrete metric

d(z, z′) = 1 if z 6= z′, d(z, z) = 0:

W(µ, ν) = inf
R∈C(µ,ν)

∫
Γ×Γ

d(z, z′)R(dz, dz′)
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where C(µ, ν) is the family of couplings between the probability measures µ and

ν (R is a measure on the product space having µ and ν as marginals). We have

that (see for instance [13] Eq. (13), p.7)

‖µ− ν‖TV = 2 W(µ; ν) .

To controlW(P0, P1) with Pi(dz) = Pt(zi, dz), i = 0, 1, we introduce the following

explicit R0 ∈ C(P0, P1):

R0(dz, dz′) = δ(z − z′)λ(z)dz dz′ +
(P0(dz)− λ(z)dz)(P1(dz′)− λ(z′)dz′)

1−
∫
dzλ(z)

where λ(z) = min(P ac0 (z), P ac1 (z)) and P aci is the density of the absolutely contin-

uous part of Pi. By (A.1) we obtain that

W(P1, P2) ≤
∫
d(z, z′)R0(dz; dz′) ≤ 1−

∫
dzλ(z) ≤ 1− Ce−t =: ρ.

This concludes the proof. �
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