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Three-dimensional (3D) natural convection (NC) processes in heterogeneous porous media and associated energy losses and mixing processes are still poorly understood. Studies are limited to two-dimensional domains because of computational burden, worsened by heterogeneity, which may demand grid refinement at high permeability zones for accurate evaluation of buoyancy forces. We develop a meshless Fourier series (FS) solution of the natural convection problem in a porous enclosure driven by thermal or compositional variations. We derive the vector potential formulation of the governing equations for vertical and horizontal heterogeneity of hydraulic conductivity and implement an efficient method to solve the spectral system with an optimized number of Fourier modes. 3D effects are induced either by heterogeneity or variable boundary conditions. The developed FS solution is verified against a finite element solution obtained using COMSOL Multiphysics. We evaluate entropy generation (viscous dissipation and mixing) indicators using Fourier series expansions and assess how they are affected by heterogeneity. We define a large-scale Rayleigh number to account for heterogeneity by adopting an arithmetic average effective permeability. Results

show that increasing the Rayleigh number intensifies fluid flow, thus enhancing convective transfer, which causes a dramatic increase in total entropy generation. Both viscous dissipation and mixing (and thus chemical reactions in the solute transport case) increase. The third dimension effect, which also enhances flow and entropy indicators, is more pronounced at high Rayleigh numbers. Surprisingly, entropy variation indicators remain virtually unchanged in response to changes in heterogeneity, for fixed Rayleigh number, which we attribute to the arithmetic average permeability being indeed appropriate for NC in 3D. This study not only explores the effect of Rayleigh number and heterogeneity on natural convection processes and the associated entropy generation and mixing processes, but also provides a highly accurate solution that can be used for codes benchmarking.

Introduction

Natural convection (NC) takes place in porous media when the saturating fluid density changes due to the variation of temperature and/or composition. Because of its wide applications in environmental, industrial, and engineering fields, NC in porous enclosures caused by thermal effects has been intensively investigated in the past decades. These applications range from the small (micrometers) scale, such as blood flow in the pulmonary alveolar sheet and heating process in solid oxide fuel cells, to the large (meters or kilometers) scale, such as thermal insulation in buildings, CO2 sequestration, aquifers thermal energy storage, seawater intrusion and geothermal or oil reservoirs. Comprehensive surveys on NC in porous media and its industrial and environmental applications can be found in Nield and Simmons [2019], [START_REF] Nield | Convection in Porous Media[END_REF], [START_REF] Vafai | Porous media: applications in biological systems and biotechnology[END_REF], [START_REF] Vadász | Emerging topics in heat and mass transfer in porous media: from bioengineering and microelectronics to nanotechnology[END_REF], [START_REF] Ingham | Transport Phenomena in Porous Media III[END_REF] and [START_REF] Kimura | Conjugate natural convection in porous media[END_REF].

Energy losses due to the convective heat transfer, fluid friction, and diffusion effects occur in practical applications involving heat transfer in porous media [START_REF] Torabi | Challenges and progress on the modelling of entropy generation in porous media: A review[END_REF]. This energy loss or the process efficiency can be quantified in terms of entropy generation, based on simultaneous application of the first and second laws of thermodynamics. Entropy generation analysis is usually applied to distinguish between reversible and irreversible processes. By evaluating and minimizing the entropy generation, the overall efficiency of a thermal system can be improved, and losses can be optimized. Special attention has been paid to the study of entropy generation on NC in porous enclosures. The main addressed topics are the influence on entropy generation of enclosure's geometry and boundary conditions [Baytaş, 2000; Kaluri and Basak, 2011; Basak et al., 2012 a,b ; [START_REF] Datta | Heat Transfer and Entropy Generation in a Porous Square Enclosure in Presence of an Adiabatic Block[END_REF][START_REF] Chamkha | MHD Free Convection and Entropy Generation in a Corrugated Cavity Filled with a Porous Medium Saturated with Nanofluids[END_REF][START_REF] Chandra Pal | Numerical investigation of unsteady natural convection heat transfer and entropy generation from a pair of cylinders in a porous enclosure[END_REF], hydraulic and thermal parameters of the porous medium [START_REF] Bouabid | Entropy Generation at Natural Convection in an Inclined Rectangular Cavity[END_REF][START_REF] Chamkha | MHD Free Convection and Entropy Generation in a Corrugated Cavity Filled with a Porous Medium Saturated with Nanofluids[END_REF], different types of fluids under different rheological behaviors [START_REF] Khan | Entropy Generation in Non-Newtonian Fluids Along Horizontal Plate in Porous Media[END_REF]; Al-Zamily, 2017; [START_REF] Mansour | Entropy generation optimization for MHD natural convection of a nanofluid in porous media-filled enclosure with active parts and viscous dissipation[END_REF] or internal heat generation [Al-Zamily, 2017]. [START_REF] Mansour | Entropy generation optimization for MHD natural convection of a nanofluid in porous media-filled enclosure with active parts and viscous dissipation[END_REF] investigated the effect of viscous dissipation. [START_REF] Jbara | Entropy generation for unsteady natural convection and thermal radiation inside a porous enclosure[END_REF] studied entropy generation under unsteady conditions. While most studies assume thermal equilibrium between solid and liquid phases of the porous medium, [START_REF] Baytas | Entropy Generation for Thermal Nonequilibrium Natural Convection with a Non-Darcy Flow Model in a Porous Enclosure Filled with a Heat-Generating Solid Phase[END_REF] addressed entropy generation under non-equilibrium thermal conditions. Entropy generation in MHD nanofluid natural convection has been investigated in [START_REF] Ghasemi | MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios[END_REF]. [START_REF] Oztop | A review on entropy generation in natural and mixed convection heat transfer for energy systems[END_REF] presented a thorough review of entropy generation in natural and mixed convection. Several studies are concerned with the effect of coupled mass and heat transfer processes (i.e., double-diffusive convection) on entropy generation [START_REF] Mchirgui | Second law analysis in double diffusive convection through an inclined porous cavity[END_REF][START_REF] Gh | Simulation of double diffusive natural convection and entropy generation of power-law fluids in an inclined porous cavity with Soret and Dufour effects (Part I: Study of fluid flow, heat and mass transfer)[END_REF][START_REF] Hussain | Numerical simulation of double diffusive mixed convective nanofluid flow and entropy generation in a square porous enclosure[END_REF].

Two different kinds of processes drive entropy generation on NC problems: dissipation of mechanical energy by viscous forces and loss of variability by diffusion (conduction in thermal convection, or molecular diffusion in solute transport). The latter has received increased attention in the reactive transport literature, where it is termed mixing, because it drives chemical reactions [START_REF] Rezaei | Reactive transport modeling of calcite dissolution in the fresh-salt water mixing zone[END_REF][START_REF] Cirpka | Two-dimensional concentration distribution for mixingcontrolled bioreactive transport in steady state[END_REF]. In fact, the rates of fast reactions, driven by the rate at which reacting solutes mix, are proportional to the local entropy generation rate [de [START_REF] Simoni | A procedure for the solution of multicomponent reactive transport problems[END_REF].

Heterogeneity of porous media is known to play a significant role in flow and heat transfer processes. Industrial and natural porous media display spatial variability of thermal and, especially, hydraulic properties, such as permeability and thermal conductivity, which significantly affect water flow and heat transfer. The effect of heterogeneity on NC in porous media has been heavily scrutinized. A widely-discussed topic is the effect of heterogeneity on the onset of NC induced by a vertical density gradient (unstable configuration) [Nield and Simmons, 2007; Nield and Kuznetsov, 2007 a,b ,2008, 2011; Nield, 2008; Nield et al. 2009, 2016; Simmons et al., 2010]. The topic is especially relevant for geological CO 2 storage, where density changes when CO 2 is dissolved in native fluids, because dissolution controls the ultimate fate of CO 2 , so that the onset of NC controls whether dissolution is going to be relevant during CO 2 injection [START_REF] Riaz | Onset of convection in a gravitationally unstable diffusive boundary layer in porous media[END_REF][START_REF] Hidalgo | Effect of dispersion on the onset of convection during CO 2 sequestration[END_REF][START_REF] Hidalgo | Scaling of Convective Mixing in Porous Media[END_REF]. Impacts of heterogeneity on the onset of NC under local non-equilibrium conditions have been studied in [START_REF] Nield | Local thermal non-equilibrium and heterogeneity effects on the onset of convection in a layered porous medium with vertical throughflow[END_REF]. [START_REF] Nguyen | Free thermal convection in heterogeneous porous media[END_REF] studied the effects of heterogeneity on fingering phenomena induced by unstable NC. The influence of heterogeneity on stable configuration of NC (horizontal density gradient) has been the subject of several studies. [START_REF] Marvel | Natural Convection From a Porous Cavity With Sublayers of Nonuniform Thickness: A Lumped System Analysis[END_REF] investigated NC in layered porous cavity. [START_REF] Fahs | A Reference Benchmark Solution for Free Convection in A Square Cavity Filled with A Heterogeneous Porous Medium[END_REF] studied the effect of stratified heterogeneity on stable natural convection and provided a reference solution for code benchmarking. [START_REF] Fajraoui | Analyzing natural convection in porous enclosure with polynomial chaos expansions: Effect of thermal dispersion, anisotropic permeability and heterogeneity[END_REF] performed a global sensitivity analysis to evaluate the effects of uncertainties related to parameters controlling the heterogeneity on convective flow, temperature field, and heat transfer flux. Most of above-mentioned studies on NC in porous enclosures and related processes' irreversibility are limited to two-dimensional (2D) domains. This 2D assumption is commonly adopted to reduce the computational overheads of three-dimensional (3D) simulations.

However, NC processes are three-dimensional by nature. The 2D assumption is only applicable for configurations with specific geometry, boundary conditions, and heterogeneity, where the variations are negligible in the third dimension. With the advancement of computational technology, several 3D numerical studies have been conducted to investigate and understand the three-dimensional NC processes. [START_REF] Pau | Highresolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers[END_REF] demonstrated that the onset time is shorter and the convection rate is larger for 3D simulations than for 2D. Wang et al. [2010] investigated 3D NC in an inclined porous cubic box under time oscillating boundary conditions, where the 3D effect is related to box inclination. They found that the convective flow was quasi-two-dimensional if the box has a moderate inclination angle, while for seriously inclined cases, much more complicated three-dimensional convective flow patterns were observed. [START_REF] Voss | Three-dimensional benchmark for variabledensity flow and transport simulation: matching semi-analytic stability modes for steady unstable convection in an inclined porous box[END_REF] investigated an unstable configuration of NC in an inclined cubic box and showed the effect of 3D processes on the critical Rayleigh number for the onset of instability. Guerrero-Martínez et al. [2016] studied unstable configuration (vertical density gradient) of an inclined cubic box in both homogeneous and layered porous domains, respectively. This informal survey indicates evidence of the importance of heterogeneity in controlling NC processes and the significance of entropy generation associated with NC in porous enclosures.

It also reveals increasing interest in 3D studies for practical purposes. However, this review also shows that there are still several open research questions related to this topic. Indeed, due to high computational requirements, 3D studies on NC in porous enclosures are scarce. While different properties of domain and boundary conditions could lead to three-dimensional configurations, in the few existing studies, the 3D effects are only induced by box inclination or unstable flow configurations. Furthermore, to deal with computational overheads, existing studies have considered relatively low Rayleigh numbers. In addition, 3D studies on NC processes and associated entropy generation in heterogeneous domains are missing and corresponding processes are still not well-understood. To the best of our knowledge, the only existing work addressing this topic is [START_REF] Zhuang | Numerical study on combined buoyancy-Marangoni convection heat and mass transfer of power-law nanofluids in a cubic cavity filled with a heterogeneous porous medium[END_REF]. Nevertheless, that work does not account for real 3D effects as the problem under investigation can be simplified to 2D.

The main goal of this work is to address these gaps and to provide a new insight on NC and entropy generation in 3D heterogeneous porous enclosures.

Thus, we study NC and entropy generation in a cubic enclosure filled with a heterogeneous porous medium. This is a problem that has been widely studied in academic research and engineering applications to understand NC processes [START_REF] Zhao | Double diffusion-driven convective instability of three-dimensional fluid-saturated geological fault zones heated from below[END_REF][START_REF] Zhao | Fundamentals of computational geoscience: numerical methods and algorithms[END_REF]. It is also a typical problem that is commonly used as a benchmark to validate numerical codes. We consider two different configurations corresponding to vertical and horizontal heterogeneity, which are common in geological formations [START_REF] Jiang | Simultaneous rejuvenation and aging of groundwater in basins due to depth-decaying hydraulic conductivity and porosity[END_REF][START_REF] Miroshnichenko | Natural convection of alumina-water nanofluid in an open cavity having multiple porous layers[END_REF][START_REF] Fahs | A Reference Benchmark Solution for Free Convection in A Square Cavity Filled with A Heterogeneous Porous Medium[END_REF]. Both configurations are effective 3D cases that cannot be simplified to 2D.

The 3D effects are induced either by the heterogeneity of the porous domain or boundary conditions. Simulation of three-dimensional NC in porous media is a computationally challenging problem, particularly for high Rayleigh numbers. Heterogeneity compounds these challenges as it leads to locally high permeability zones where the accurate evaluation of buoyancy forces requires unpractical dense computational grids. Accurate evaluation of entropy generation is also a hard computational task because it involves fluxes and space derivatives of the temperature, which requires appropriate numerical techniques [START_REF] Younes | Mixed finite elements for solving 2-D diffusion-type equations[END_REF]. Thus, to avoid computational limitations and numerical artifacts of conventional methods, we develop an efficient and accurate meshless solution based on the Fourier series method (FS) applied to the vector potential formulation of the governing equation [START_REF] Peyret | Spectral Methods for Incompressible Viscous Flow[END_REF][START_REF] Shao | A 3-D Semianalytical Solution for Density-Driven Flow in Porous Media[END_REF]. We extend the vector potential formulation developed by Shao et al.

[2018] to the heterogeneous domain and we use an efficient technique to reduce the number of Fourier series modes. Contrarily to the homogeneous domain, heterogeneity leads to full non-zero vector potential. We use appropriate techniques to efficiently solve the spectral system. This includes a simplified evaluation of the nonlinear convective terms, the use of an efficient nonlinear solver, and parallel implementation of the FS method. Entropy generation is evaluated analytically based on the Fourier series expansion. The developed FS solution is verified by comparison against COMSOL Multiphysics. Taking advantage of the accuracy of the FS solution, we provide high-quality data that can be used as a reference for the validation of numerical codes dealing with NC and entropy generation. This represents an important feature of this work, as reference benchmark solutions for entropy generation are lacking. Due to its high performance, the FS solution is used to i) develop a parametric study, ii) to understand the effect of heterogeneity on metrics characterizing temperature, heat flux, convective flow, mixing, and entropy generation, and iii) to evaluate the significance of the 3D processes by comparing 3D and 2D simulations.

Problems description and governing equations

We consider a cubic saturated porous enclosure of size H, as shown in Fig. 1, where fluid flows in response to density variations caused by variations in temperature or concentration.

For simplicity, we adopt heat transfer nomenclature, but the problem is mathematically equivalent to solute mass transfer. All domain boundaries are assumed impermeable, that is, convective fluxes across the six sides are zero. Two different configurations of heterogeneity are investigated in this work (Fig. 1). In the first configuration (V-het), the enclosure is filled with vertically stratified porous media, so that its permeability varies along the y coordinate (i.e., k p = k p (y)). The enclosure is subject to constant but distinct temperatures on two opposite boundaries, i.e., T=T h at x=0 and T=T c at x=H, as shown in Fig. 1(a). In the second configuration (H-het), the enclosure is filled with horizontally stratified porous media, so that its permeability is a function of z. This configuration can be simplified to 2D. But, as our objective is to investigate effective 3D cases, we assume varying boundary temperature on one side (i.e., T=F(y) at x=0), and constant temperature on the opposite side (i.e., T=T c at x=H), as shown in Fig. 1(b). Variable temperature boundary conditions are common in the simulations of geothermal reservoirs. The two configurations allow us to investigate the 3D effects induced either by heterogeneity or from the varying temperature boundary conditions. The mathematical model describing the NC processes in saturated porous media is based on the mass conservation equation, Darcy's law, and the heat transfer equation. Adopting the Boussinesq approximation and steady-state fluid flow, these equations can be written as:

0   q (0)     cc p k p g T T        z qe (0) m f m T C C T T t           q (0)
where

q 1 LT 
  is water flux (Darcy velocity),    is the gravity acceleration,  

  m f s =1 C C C   (0)   m f s =1      (0)
Subscripts m, s, and f represent the porous medium, solid, and fluid, respectively. The density of the fluid is a linear function of temperature:

    cc 1 TT       (0) 
The boundary conditions of the two aforementioned configurations (V-het and H-het) are defined in Table 1, where

x q , y q , and z q are the water flux components in the x-, y-, and z- directions, respectively.

Table 1. Boundary conditions of the two configurations showing the variable prescribed temperature at the x=0 face.

Configuration

0 x  xH  0, yH  0, zH  V-het 0, x h q T T  c 0, x q T T  0, 0 y T q y    0, 0 z T q z    H-het   0, x q T F y 

Fourier series solution

The Fourier series method is used to solve the governing equations for both configurations Vhet (vertical heterogeneity) and H-het (horizontal heterogeneity). The solution procedure is as follows. First, governing equations are expressed in terms the vector potential. Second, a change of variables is made to ensure periodic-homogeneous boundary conditions for both flow and heat transfer. Third, the temperature and the components of the vector potential are expanded using Fourier series truncated at given orders, which are then substituted into the governing equations. After the Galerkin treatment, a system of nonlinear equations with the Fourier series coefficients as unknowns is generated. Eventually, solving the system of equations, one obtains the vector potential and the temperature field expressed analytically in terms of Fourier coefficients.

The vector potential formulation

At steady state, Darcy's velocity q admits a vector potential φ such that   q φ .

According to the continuity equation, the vector potential satisfies

  0      q φ .
Applying 
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Substituting the vector potential into Eq. (3), we simplify the steady-state heat transfer equation to:

  TT      φ (0)
where mf C   represents the effective thermal diffusivity. Then we define the following dimensionless variables:

c = , = , , , TT x y z X Y Z T H H H        φ ψ (0) 
where hc T T T    is the temperature difference between the hot and cold walls. Using the above non-dimensional variables, we obtain the dimensionless steady-state flow and heat transfer equations as follows:
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where

  c p Ra gk H T    
is the local thermal Rayleigh number that is dependent on the variation of permeability in heterogeneous porous media.

These equations are similar to those of [START_REF] Shao | A 3-D Semianalytical Solution for Density-Driven Flow in Porous Media[END_REF], except for the terms involving the zcomponent of the vector potential that can be dropped out in homogeneous domains. Here we show that, due to heterogeneity, all the components of the vector potential should be considered.

Homogeneous boundary conditions

The flow boundary conditions are derived in terms of vector potential. As it is shown in Guerrero-Martínez et al. [2016] and [START_REF] Shao | A 3-D Semianalytical Solution for Density-Driven Flow in Porous Media[END_REF], the flow boundary conditions can be written as follows:

0, at 0,1 0, at 0,1 0, at 0,1 X YZ Y XZ Z XZ X X Y Y Z Z                         (0)
Note that these homogeneous impervious boundary conditions for fluid flow are applicable for both configurations V-het and H-het. To derive homogeneous boundary conditions for heat transfer, we express the temperature boundary conditions in terms of dimensionless variables:

 , at 0 0, at 0,1 =0, at 0,1 0, at 1 f Y X YZ YZ X                (0)
where

  fY is a constant   1
fY for the V-het configuration, and defined as

        c h c f Y F y T T T   
for the H-het configuration. Further, we define the following change of variable:

    1 X f Y     (0)
Using the above equation, the boundary conditions in terms of the shifted dimensionless temperature  become:

    0, at 0,1 1 ' at 0,1 0 at 0,1 X X f Y Y Y Z Z             , , (0) 
These temperature boundary conditions are periodic when the function  

fY satisfies the condition     ' 0 ' 1 0 ff  . For the V-het configuration, as   1
fY , this condition is satisfied in nature. For the H-het configuration, to meet this requirement, we select a particular function such that:

    1 cos 2 Y fY    (0)
Note that the presented method is not limited to this particular function. Any other function that leads to periodic boundary conditions is applicable. Substituting Eq. ( 14) into Eqs. [START_REF] Cirpka | Two-dimensional concentration distribution for mixingcontrolled bioreactive transport in steady state[END_REF] and [START_REF] Datta | Heat Transfer and Entropy Generation in a Porous Square Enclosure in Presence of an Adiabatic Block[END_REF], one obtains the final system of governing equations in terms of the shifted temperature  and vector potential components:
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The spectral system

The components of the vector potential X  , Y  , and Z  , as well as the shifted temperature  are expanded using infinite triple Fourier series that are truncated at given orders:

        ,, 0 1 1 
, , cos sin sin
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, , sin cos sin
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, , sin sin cos 12) and [START_REF] Ghachem | Numerical simulation of three-dimensional double diffusive free convection flow and irreversibility studies in a solar distiller[END_REF].
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The Fourier series expansions are substituted into Eqs. ( 17)- [START_REF] Hussain | Numerical simulation of double diffusive mixed convective nanofluid flow and entropy generation in a square porous enclosure[END_REF], and followed by the Galerkin treatment, where the resulted equations are multiplied, respectively, by the following trial functions that use Fourier modes: 
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The resulted equations are then integrated over the cubic domain. To allow an analytical evaluation of all the triple integrations arising from the FS method, we assume that permeability depends on space by means of an exponential function [Jiang et 
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where 0 k is the permeability at 0 YZ , and  and  are the changing rate of   ln p K in the Y and Z direction, respectively. When 0  , permeability is homogeneous over the domain. With 0   and 0   , the porous medium is vertically stratified, and permeability varies in the Y direction, which is the case in the V-het configuration as shown in Fig. 1(a).

While with 0   and 0   , the porous medium is horizontally stratified, which is the case in the H-het configuration as shown in Fig. 1(b).

Eq. ( 25) allows us to integrate all Fourier integrals analytically, resulting in a system of nonlinear algebraic equations with the Fourier coefficients ,, , leading to the following residual equations:
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where RFX, RFY, RFZ, and RT are the residuals corresponding to the three flow components and heat transfer equations, respectively. 0 Ra in Eqs. ( 26) and ( 27) is the thermal Rayleigh number at Y=0 and Z=0, defined as:

c0 0 gk H T Ra     (30) 
For the V-het configuration, 0 Ra represents the Rayleigh number based on the permeability of the lower layer (Z=0), while for the H-het configuration it is the Rayleigh number based on the permeability of the vertical wall Y=0.

The residuals for the H-het configuration and the corresponding coefficients in these equations are given in the Section S1 of Supplemental Material. We solve the system of nonlinear equations using a nonlinear solver from the IMSL library based on the modified Powell hybrid algorithm (https://docs.roguewave.com/imsl/fortran/7.1/html/fnlmath/index.html), which is very efficient. We include analytical evaluation of the Jacobian matrix to improve the performance and convergence of the solver (see Supplemental Material Section S2). Besides, Eq. ( 29)

involves terms that have six overlapped summations, which are computationally expensive.

We simplify these terms from six to three nested summations, as in [START_REF] Shao | A 3-D Semianalytical Solution for Density-Driven Flow in Porous Media[END_REF], to reduce computations. Indeed, this reformulation reduces CPU-time by 2 to 3 orders of magnitude. Finally, parallel computing is implemented in these FG solutions to further reduce the CPU time.

Metrics for the assessment of convective flow, heat transfer and entropy generation

The convective flow is assessed using the dimensionless velocity defined as follows:

H   Qq (31) 
The heat transfer performance is evaluated by the average Nusselt number that assesses the heat diffusion across the boundary X=0 into the domain. The local Nusselt number is defined by 0 1

X surf Nu X       (32) 
where surf  is the imposed average temperature at the boundary X=0. For the V-het configuration, the average temperature at X=0 is ) cos( )
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And the average Nusselt number is computed as follows: 
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At Y=0 and Z=0, we have

      2 2 0 c m 0 T T k      . It is noted that the value of 0
 is dependent on the thermal Rayleigh number ( 0 Ra ). In this work, as in [START_REF] Baytaş | Entropy generation for natural convection in an inclined porous cavity[END_REF], we take:

0 0 10 Ra   (38) 
In Eq. ( 36), the appropriate averaging of permeability depends on the flow dimension. In 1D, the effective permeability is the harmonic average (k H ). In 2D, the effective permeability is the geometric average (k G ). In 3D, the effective permeability is the 1/3 power average (k 1/3 ). The arithmetic average adopted here (k A ) is only appropriate for mathematically ideal infinite dimensions.

When heterogeneity is large, these averages can be very different. unchanged when the heterogeneity rate is changed. However, they would increase dramatically if we had adopted any other average for effective permeability, because k 0 would have to be increased in order to maintain the large-scale Rayleigh number unchanged, Thus in all our simulations, we consider the large-scale Rayleigh number ( Ra ) and the rate of heterogeneity ( or  ) as primary parameters controlling physical processes. Based on these parameters, we evaluate the parameters such as the local Rayleigh number ( 0 Ra ) and the local irreversibility distribution ratio ( 0  ).

Verification of the FS solution

The number of Fourier modes may affect the accuracy of the FS solutions. We adopt the   , the maximum local Rayleigh number in the domain can reach more than 400. In convection-dominant problems, a large number of Fourier modes is usually required to avoid Gibbs phenomenon and to obtain oscillation-free results [START_REF] Peyret | Spectral Methods for Incompressible Viscous Flow[END_REF]. We should mention that the most important truncation order controlling oscillations is NX. Similar behaviours of the FS solution have been observed for the H-het configuration but they are not presented here for the sake of brevity.

Fig. 2.

Example of the convergence of the FS solutions: Variation of the average Nusselt number ( Nu ) versus the total number of Fourier modes for the V-het configuration (vertical heterogeneity) at 100 Ra  .

To further verify the FS solutions, a FE analysis is performed for some test cases using COMSOL Multiphysics. We checked relatively simple cases, dealing with 100 Ra  and low rates of heterogeneity ( 0   and 2 for the V-het configuration and 0   , 2 for the H-het configuration), in order to facilitate convergence and to avoid numerical artifacts in the FE solutions that could affect the comparisons. A grid dependence test is conducted for each case using different levels of grid refinement in COMSOL. The FE computations are challenging because the gridding effect is important. The mesh-independent solutions have been obtained with a computational mesh of about 80K nodes in the homogeneous cases ( 0

  or 0   )
and 310K nodes for the heterogeneous cases ( 2  or 2   ). The temperature field at the vertical slice Y=0.5 obtained from FS and FE solutions for these test cases are plotted in Fig. 2 lists the converged results of the average Nusselt number. From Fig. 3 and Table 2, it is observed that FS solutions show excellent agreement with FE solutions at various parameters, which indicates the correctness of the code developed for the FS solutions and gives confidence in the correctness of the developed COMSOL model. It is relevant to mention that while similar accuracy are obtained for these test cases with both solutions, the FS solution is significantly more efficient as it requires fewer degrees of freedom than the FE solution. For instance, in the V-het configuration ( 2   ), the FS solution is obtained with 8,640 Fourier modes while the FE solution requires a computational mesh of 310K nodes involving more than 620K degrees of freedom. 

Table

Reference solutions for code benchmarking: NC and entropy generation

The problem of NC in a porous enclosure is accepted as a common benchmark for numerical codes. Different solutions of this problem have been obtained based on a variety of numerical methods (see [START_REF] Fahs | A Reference Benchmark Solution for Free Convection in A Square Cavity Filled with A Heterogeneous Porous Medium[END_REF] and reference therein). Comparison between existing solutions is widely used to validate and assess new developed numerical schemes and to help modelers in handling codes interfaces and in data processing. Due to computation limitations, the existing solutions are restricted to 2D. Even in 2D, the numerical accuracy of the entropy generation is not well discussed, which can be significant because it requires a delicate post-processing procedure based on the reconstruction of thermal and fluid fluxes. Here, taking advantage of the accuracy and performance of the developed FS method, we provide reference solutions that could be useful for benchmarking codes dealing with NC in porous domains and associated entropy generation. The first set of solutions deal with low large-scale Rayleigh number ( 10 Ra  ) with different rates of heterogeneity ( 0   , 2 and 4 for the V- het configuration and 0   , 2 and 4 for the H-het configuration). These cases are relatively simple from the computational point of view as they deal with a low Rayleigh number. They are useful for codes validations but not appropriate for inter-codes comparison. A relevant benchmark problem for comparing numerical methods should be able to make clear distinctions between the compared methods. Thus, we present solutions for cases dealing with relatively high Rayleigh number and a high rate of heterogeneity. For such cases, it is wellknown that numerical schemes may lead to errors with clear grid-based artifacts. Accurate solutions of such cases represent a major challenge for finite-element simulations.

Heterogeneity compounds the challenge as an accurate velocity field in heterogenous porous media requires appropriate numerical schemes [START_REF] Younes | Monotonicity of the cell-centred triangular MPFA method for saturated and unsaturated flow in heterogeneous porous media[END_REF]]. Thus, we present a second set of solutions for cases dealing with 200 Ra  and 0   , 2 and 4 (for the V-het configuration) and 0   , 2 and 4 (for the H-het configuration).

We provide several quantitative indicators related to heat transfer and entropy generation. The quantitative indicators facilitate inter-code comparison as they are more for comparison than visual inspection of isotherms [START_REF] Prasad | Using quantitative indicators to evaluate results from variable-density groundwater flow models[END_REF]. We use the average Nusselt number as a metric of heat transfer processes, and the total entropy generation as well as the average Bejan numbers to assess entropy generation. All these metrics are calculated without any approximation based on the Fourier series. The results for all test cases are summarized in Table 3. This table provides high-quality data that could be used as references for benchmarking codes dealing with NC and related entropy generation. 

Effect of large-scale thermal Rayleigh number on NC and entropy generation in heterogeneous domains

The Rayleigh number is the main parameter controlling NC processes. In homogeneous domains, the effect of this number on convective flow, heat fluxes and processes irreversibility is a common topic in literature. In this work, we suggest the use of the largescale number ( Ra ) as the controlling parameter in heterogeneous domain. This section aims at investigating the effect of this new suggested Ra on NC and entropy generation in heterogeneous domain. To this end, we analyze the configurations V-het ( 2  ) and H-het ).

To understand the flow structure, we plot in Fig. 4 the stream-tubes highlighted with the Darcy's vertical velocity component ( Z Q ). For the V-het configuration (Figs. 4a-4c), one main convective vortex (torus-like convection cell) occurs in the domain around the central axis of symmetry parallel to the Y-axis. The vertical velocity component (color scale) indicates a clockwise rotating flow, as expected (hot water flows up the hot face, X=0, and down the cold face, X=1, with faster velocity near the back face, Y=1, where permeability is the largest). The shape and orientation of the vortex depend on the large-scale Rayleigh number. From this point of view, the latter has a similar effect as the local Rayleigh number in homogeneous domain. While the vortex is centric and axially symmetrical for 10 Ra  , it becomes diagonally-oriented and losses its central orientation when the large-scale Rayleigh number is increased. At a constant heterogeneity rate (  ), the increase of the large-scale Rayleigh number can be interpreted as an increase of permeability everywhere in the domain.

Thus, the convective flow becomes faster (notice the colour scale in Figs. 4a, b andc), the thermal boundary around the vertical hot and cold walls shrinks and the zone of high velocity moves down, as it can be observed in Figs. 4b and4c.

For the H-het configuration (Figs. 4d-4f), the flow structure is complex (recall Fig. 1b that temperature is prescribed as a variable at the X=0 face). The main flow structure has the shape of a convergent-divergent spiral vortex with a curved axis oriented from the vertical plane X=0 to the vertical plane Y=0. The vortex structure of the flow is related to both crossed temperature gradients occurring in the domain. The first gradient is generated by the temperature difference between the hot and cold walls (oriented along the X-axis), while the second gradient is related to the variable temperature imposed at the hot wall (oriented along the Y-axis). As for the V-het configuration, the large-scale Rayleigh number affects the flow structure and mainly the location of the vortex at the vertical plane Y=0. The location of the vortex at the vertical plane X=0 is slightly sensitive to Ra . This makes sense as the origin of the vortex shape at X=0 is the temperature gradient imposed as a boundary condition and independent on Ra . For both configurations V-het and H-het, the scales of Z Q shows a significant acceleration of the rotating flow with the increase of Ra . The variation of the average Nusselt number with respect to Ra is given in Fig. 6a. This figure indicates that Nu increases with Ra , as the buoyancy-induced flow enhances the diffusive heat transfer across the boundary. At the same level of large-scale Rayleigh number and heterogeneity rate, vertical heterogeneity leads to more heat transfer to the domain than horizontal heterogeneity. The space distribution of the heat flux through the hot wall is also investigated using the local Nusselt number as in Figs. 6b and6c. It is clear that, for the V-het configuration, at a low Rayleigh regime, the heat flux to the domain is uniformly distributed.

The increase of Ra enhances the heat flux locally in the bottom part of the hot wall (near Z=0), particularly in the high permeable zone. The heat flux at the upper part of the wall (near Z=1) is slightly sensitive to Ra . For the H-het configuration, we can observe negative local Nusselt numbers, indicating heat losses in some parts of the wall. This is due to the variable temperature imposed at the hot wall. In these parts, due to convective flow in the Y direction (caused by the variable temperature), the temperature of the fluid in the thermal boundary layer becomes higher than the imposed temperature, leading to a heat flux from the domain to the hot wall. The largest heat flux to the domain is observed at the bottom corner (Y=Z=0). . For the V-het configuration, in the case of low Ra (Fig. 7a), two zones of high entropy generation can be observed. The first one is located within the thermal boundary layer near the hot and cold walls, in the high permeable area (toward Y=1).

In this zone, the high permeability leads to a high fluid circulation, which causes irreversibility due to viscous dissipation. The fact that the geometry of this high entropy generation zone resembles the geometry of the high-velocity zone (red in Fig. 4) points that viscous dissipation, rather than mixing, is the main entropy generation process. Mixing only displays in enlarging the high entropy generation towards the bottom of the X=0 face, where temperature gradients are highest (see Fig. 5). For low Rayleigh number, a second zone of high entropy generation is located near the top (Z=1) where velocity is high due to the heterogeneity. This zone is displaced to the back (X=1) when Rayleigh number increases which causes a severe increase in temperature gradients and thus to mixing between hot and cold fluids. The temperature gradient in this zone is relatively high due to mixing. Thus entropy generation in this zone is mainly related to the conduction effect. When Ra is increased (Figs. 7b and7c), the thermal boundary layer shrinks, and the fluid circulation increases. But, overall, entropy generation due to flow dominates, and the maximum local entropy generation appears within the thermal boundary layer near the hot and cold walls at X=0 and X=1 and increases along the Y axis from Y=0 and Y=1, as the gradient of temperature and the velocity field are intensified locally due to the heterogeneity of porous medium. For the H-het configuration, the zone of high entropy generation is located just near the hot wall, in contrast to the V-het configuration where high entropy generation is observed near both hot and cold walls. This is related to the boundary conditions. Near the hot wall, there is a thermal gradient related to the imposed variable temperature and the temperature difference with the cold wall. Thus entropy generation due to heat transfer at the hot side (Y=0) of the hot wall (X=0) is more important than that at the cold wall. Note also that entropy generation is more pronounced at the top surface than at the bottom surface, where permeability is smallest. Fig. 8 depicts the variation of total entropy generation number ( tot N ), the total mixing rate ( T N ), and the average Bejan number ( Be ) as a function of the large-scale Rayleigh number.

For both configurations, V-het and H-het, the total entropy generation number increases significantly with Ra , as the higher Ra leads to an enhancement of fluid flow and convective heat transfer (Fig. 8a). Also in both configurations, all the average Bejan numbers are far below 0.5, indicating that the irreversibility due to fluid flow makes the major contribution on the total entropy generation. Besides, Be decreases with the increase of Ra .

This indicates that fluid flow irreversibility becomes more significant with the increase of Ra 

Influence of heterogeneity

To investigate the effect of varying heterogeneity on the 3D natural convection and entropy generation, we fix the large-scale Rayleigh number at 100 Ra 

, and vary the rate of heterogeneity from 0 to 4. Fig. 9 shows the stream-tubes highlighted with the Darcy's vertical velocity component ( Z Q ) for the rate of heterogeneity varying from 0 to 4. We recall that, at a constant large-scale Rayleigh number, the increase of the rate of heterogeneity, for the configuration V-het (resp. H-het) corresponds to higher permeability around the vertical plane Y=1 (resp. top surface) and lower permeability near the vertical wall Y=0 (resp. bottom surface), so that the arithmetic average of permeability is the same for the the three rates. For   (homogeneous case, when the flow structure is 2D) and 2   are quite similar, except for the increase of vertical flux near Y=1 at the front (X=0) face. However, for the high rate of heterogeneity, we can observe two vortices in the zone of low permeability.

For the H-het configuration (Figs. 9d-9f) the region of maximum velocity moves upward with the increase of the level of heterogeneity, as expected. However, the value of maximum velocity for this configuration is only slightly influenced by the variation of heterogeneity rate. In contrast to the V-het configuration, the flow structure is affected by the rate of heterogeneity, as it can be observed in Figs. 9d-9f, where the location of the vortices at the planes X=0 and Y=0 are moving towards the high permeable zones when the rate of heterogeneity is increased. The isothermal surfaces for both configurations are plotted in Fig. 10. For the V-het configuration, when the level of heterogeneity is 0   , the porous medium is homogeneous, resulting in a quasi 2D problem. The isothermal surfaces, shown in Fig. 10a, exhibit the 2D nature of heat transfer in the enclosure. As the rate of heterogeneity increases to 2

  and 4 (Figs. 10b and10c), the isothermal surfaces become increasingly distorted inside the enclosure. The transition zone becomes narrow close to the hot and cold boundaries near Y=1, and wide near Y=0. This is because although the three cases take the same large-scale Rayleigh number, the rising of the rate of heterogeneity leads to an increase of the local Rayleigh number near Y=1, and a decrease of that near Y=0. Basically, the higher local Rayleigh number intensifies the flow velocity and enhances the convective heat transfer in the vicinity of Y=1. The opposite effect is found near Y=0. Therefore, a correlation between the isothermal surfaces and the rate of heterogeneity is observed for this configuration: the higher the rate of heterogeneity, the more distorted the temperature iso-surfaces. Contrarily, for the -12f), a negative correlation between the heterogeneity rate and the maximum local entropy generation is found: the higher the rate of heterogeneity, the smaller the maximum value of local entropy generation (see the color scale). It should be noted that the effect of the heterogeneity rate on the maximum value of local entropy generation is not very evident for this configuration. This is because for the H-het configuration, neither the temperature gradient nor the maximum velocity change much with the variation of heterogeneity rate (see Figs. 9 and 10). In the vicinity of hot wall at X=0, the zone of maximum local entropy generation moves upward with the increase of heterogeneity rate, which is consistent with the velocity field (Fig. 9), as the higher heterogeneity rate increases the local Rayleigh number near Z=1 and decreases that near Z=0, which further influences the fluid flow and modifies the distribution of local entropy generation. It may be noticed, however, that the maximum entropy generation occurs slightly below the maximum velocity, which reflects that thermal gradients are highest in the lower part (Fig. 10) and contribute to the mixing term of entropy generation. The most important observation is that both total entropy generation and mixing rate are virtually insensitive to heterogeneity, which implies that the adopted effective permeability is indeed appropriate. The total entropy generation number decreases slightly as the heterogeneity level increases for both configurations, which is probably due to the shrink of the active zone for local entropy generation. This phenomenon is also observed in Fig. 9, where the flow velocity field shows similar profiles. tot N slightly decreases with the increase of the rate of heterogeneity. The average Bejan number demonstrates that the irreversibility due to fluid flow has a dominant influence on the total entropy generation in the domain.

Similar to the total entropy generation number, in the H-het configuration, Be decreases with the increase of the rate of heterogeneity. In the opposite, for the V-het configuration, Be significantly increases with the increase of the rate of heterogeneity. ).

Third dimension effect

The goal of this section is to evaluate the effect of the third dimension on the convective flow, heat transfer, and entropy generation. Thus, we compare the 3D results with those of equivalent 2D models. For the V-het configuration, the third dimension effects are caused by heterogeneity. Hence, in the equivalent 2D model, we consider a homogenous domain with equivalent permeability as defined in the large-scale Rayleigh number (Eq. ( 41)). Under this assumption, the 3D model can be simplified to 2D. For the H-het configuration, the third dimension effects are related to the variable boundary conditions. Thus, in the equivalent 2D model, we keep the heterogeneity but we assume a constant temperature on the hot wall which is equal to the average temperature ( ). For the sake of brevity, we do not consider spatial maps of temperature and entropy generation, but just compare the 2D and 3D results in terms of the average Nusselt number as metric of heat transfer, the total entropy number, and the dimensionless mixing rate (as metrics of entropy generation), and the dimensionless temperature at the top center point (X=0.5, Y=0.5, Z=1 for 3D cases, and X=0.5, Z=1 for 2D cases). for both 2D and 3D models with varying rates of heterogeneity for V-het configuration.

Obviously, 2D results insensitive to heterogeneity because the V-het 2D model is homogeneous and identical to the 3D model with 0   . Therefore, the 3D effect is similar to the effect of heterogeneity discussed in the previous section. Therefore, the 2D assumption leads to an overestimation of the heat losses and average Nusselt number (Fig. 14a). But the impact is small in terms of both total entropy generation and mixing rate (Figs. 14b andc).

The discrepancy between 2D and 3D models is more significant at high Rayleigh regimes.

As the 3D effects are caused by the heterogeneity, it is clear in Fig. 14 that the increase of the rate of heterogeneity enlarges the discrepancy between 2D and 3D models. The H-het configuration yields more interesting results than V-het. The 2D model largely underestimates all indicators (Fig. 15). Simplifying to 2D (i.e., neglecting temperature variability in the hot face of the enclosure) reduces somewhat the heat flux (Nusselt number, Fig. 15a) and leads to a more homogeneous flow and temperature distribution. Lack of variability leads to a dramatic reduction in total entropy generation (a factor around 2, Fig. 15b) and even more in mixing rate (a factor around 3, Fig. 15c). The absolute value of the discrepancy between 2D and 3D simulations is more significant at high Rayleigh numbers. A hint on the reason for the discrepancy can be gained from the temperature at the middle of the top face (Fig. 15d). High permeability at the top causes active fluid circulation, so that temperature at the top face approaches asymptotically the temperature of the hot face (0.5 in the 2D case) as the Rayleigh number increases. However, circulation is most active near the hot end of this face in the 3D case (recall Fig. 9). As a result, temperature at the middle of the top face is above the average temperature of the hot face (Fig. 15d), which explains the large increase in the mixing rate.

Conclusions

In this work, we investigate three-dimensional natural convection and associated entropy generation in heterogeneous porous media under steady-state conditions. Two typical configurations are considered: one has vertically stratified porous media and subject to constant temperature boundary conditions, the other has horizontally stratified porous media and subject to spatially varying temperature boundary conditions. Both configurations lead to three-dimensional flow conditions that cannot be simplified to two-dimensions. The 3D effect of the first configuration comes from the heterogeneity in permeability, while that of the second configuration originates from the varying temperature boundary conditions. As 3D simulations are computationally expensive, the Fourier series (FS) method is used to obtain highly accurate solutions in affordable CPU time. The comparison between the FS and finite element methods (COMSOL) confirms the validity of the new developed FS solutions, which provide a highly accurate three-dimensional benchmark for testing numerical codes.

The solution is different for each configuration. In the V-het configuration, the typical convection cell of 2D natural convection increases its vorticity and splits into two vortices as heterogeneity increases. In the H-het configuration, the variable temperature of the hot face causes the vortex to curve into a quarter of a torus whose axis displaces upwards as heterogeneity increases. Comparison between 2D and 3D simulations shows that the 2D assumption underestimates the heat flux to the domain, the entropy generation and the temperature on the top surface. The underestimation is dramatic in the horizontally stratified case.

We propose an effective large-scale Rayleigh number to characterize natural convection in heterogeneous media. This new large-scale Rayleigh number is similar to the standard Rayleigh number for homogeneous media, but using the arithmetic average of the heterogeneous permeability. Based on the FS solutions, we investigate the effect of this effective Rayleigh number and level of heterogeneity on heat and fluid flux, as quantified by the Nusselt number (dimensionless heat flux) and entropy generation (both from viscous dissipation and mixing). Results reveal that, as expected, the increase of the effective Rayleigh number considerably intensifies the fluid flow and enhances the convective heat transfer, inducing high-temperature gradients and large local entropy generation near the boundaries and, thus, within the enclosure. These increases lead to a large increase of total entropy generation, in terms of both viscous forces dissipation and mixing rate.

Perhaps more surprisingly, we find a very mild but negative correlation between the heterogeneity rate and entropy generation for both configurations. In fact, both total entropy and, especially, mixing rate remain virtually constant, despite a reduction of heat flux (Nusselt number) when heterogeneity increases. This is important because it suggests that the proposed Rayleigh number is indeed sufficient to explain the impact of heterogeneity on dissipative processes and dissolution/precipitation reactions in cases where density variations are driven by changes in composition, so that mixing controls reaction rates (such as in CO 2 dissolution in carbon storage problems). But it is surprising for two reasons. First, for a given effective permeability, one would expect both fluxes and temperature (concentration) gradients to increase with heterogeneity. Second, the arithmetic average is the largest of all reasonable averages (in fact, it is the effective permeability only for ideal infinite dimension geometries), so that one would expect other more traditional averages (e.g., geometric or 1/3 power averaging) to work better. We conclude that the explanation lies in this double paradox. Had we chosen any other average for permeability and large-scale Rayleigh number, we would have found that, indeed, entropy generation increases with heterogeneity when the Rayleigh number is fixed. Further, as the heat (solute mass) flux drops when increasing heterogeneity while fixing Rayleigh number, the expectation of increased disorder turns out to be correct for a fixed boundary heat (solute mass) flux. In summary, the proposed Rayleigh number would not be appropriate for predicting boundary fluxes, which might require using the traditional effective permeability, but it is excellent in predicting entropy generation indicators, which become virtually insensitive to heterogeneity.
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 1 Fig. 1. Schematic description of the two cubic porous enclosures and their boundary conditions: (a) an enclosure filled by vertically stratified porous media with constant but distinct temperatures on the opposite boundaries (V-het); (b) an enclosure filled by horizontally stratified porous media with varying temperature on one side, and constant temperature on the opposite side (H-het).
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  Nj andNk are the truncation orders for the vector potential component X  in the X-, Y-and Z-directions. Similarly, Nl , Nm and Nn (resp. Nd , Nr and Ns ) are that for Y  (resp. Z  ). Nu , Nv and Nw are the truncation orders for the dimensionless temperature  . ,, , and the temperature  , respectively. It should be noted that all the above Fourier series expansions honor the periodic flow and temperature boundary conditions as shown in Eqs. (

  the V-het configuration, the corresponding boundary condition and the permeability are set as   1

1 surf.

 1  . While for the H-het configuration, Using the Fourier series expansion of temperature, we obtain the local Nusselt number expressed by Fourier coefficients:

  the considered NC system, the associated entropy generation is due to heat transfer and Darcy dissipation. It can be computed by the evaluation of the time derivative of the temperature or concentration variance [Le borgne et al., 2010] under very specific transient conditions, but not for the steady-state case considered herein. Based on the local thermodynamic equilibrium of the linear transport theory, the local entropy generation for the 3D natural convection is given by Baytaş [2000] and Ghachem et al. [2012]:
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 35 Note that the first term evaluates the tendency to temperature homogeneity, which is proportional to the time derivative of temperature variance in transient problems [Le borgne et al., 2010], while the second terms equal the viscous dissipation of energy, divided by T c . The first term is especially relevant in solute mass transfer, where it is termed mixing rate, because mixing controls fast reactions, whose rate is limited by the rate at which reactants mix [De Simoni et al., 2005]. Using the change of variable, we obtain the local entropy generation in terms of dimensionless variables. And then we define the local entropy generation number as:
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  are dimensionless velocity components in the X, Y, and Z directions, respectively. And  is the local irreversibility distribution ratio that depends on the variation of permeability in heterogeneous porous media:
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 20 represent the irreversibility caused by mixing (dimensionless mixing rate) and Darcy dissipation (dimensionless viscous dissipation), respectively. Based on these, the Bejan number TE Be N N  that denotes the ratio of heat transfer irreversibility to the local entropy generation is defined. If the Bejan number is over 0.5, it implies that the irreversibility due to heat transfer plays a more important role in the entropy generation; otherwise, the irreversibility caused by fluid flow makes the dominant contribution.Furthermore, to assess the overall entropy generation in the domain, the total entropy generation number and the average Bejan number in the cubic enclosure are computed by: targets are discussed in this section. As a new code has been developed for the FS solution, we first verify the correctness of this code by comparison against finite element (FE) solutions obtained using COMSOL Multiphysics. Secondly, we present high-quality data that can be used as reference solutions for benchmarking numerical models dealing with NC, mixing, and entropy generation in heterogeneous porous domains. Then, taking advantage of the developed FS solution, we investigate the influence of heterogeneity and Rayleigh number on NC and processes irreversibility, and we evaluate the significance of the 3D processes by comparing 2D and 3D simulations.As can be deduced from the dimensionless governing equations, NC processes and associated entropy generation are controlled by three parameters: the local Rayleigh number 0 Ra , the heterogeneity structure (parameterized here in terms of  for the V-het configuration and for the H-het configuration) and the local irreversibility distribution ratio ( 0  ). The latter is linked to 0 Ra as in Eq.[START_REF] Nield | The effects of combined horizontal and vertical heterogeneity on the onset of convection in a porous medium: Moderate heterogeneity[END_REF]. For an adequate analysis, in our investigation, we replace 0 Ra by the effective large-scale Rayleigh number defined based on the average permeability as follows: the large-scale average permeability in the cubic enclosure. The choice is non-trivial, and the effective value of permeability (i.e., the value of homogeneous permeability allowing the same flux through the medium as the actual permeability) has been the subject of research in the oil and hydrology literature[START_REF] Noetinger | The effective permeability of a heterogeneous porous medium[END_REF][START_REF] Ph | Calculating equivalent permeability: a review[END_REF][START_REF] Sanchez-Vila | Representative hydraulic conductivities in saturated groundwater flow[END_REF]. What has been found is that
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 3 Fig. 3. Comparison between the FS (colored map) and FE (dashed lines) solutions: The main isotherms at the vertical slice Y=0.5 for the configurations V-het (top) and H-het (bottom).
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 4 Fig. 4. Effect of large-scale Rayleigh number ( Ra ) on convective flow: Stream-tubes highlighted with the vertical velocity component (
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 5 Fig. 5 depicts the isothermal surfaces for each test case. Buoyancy causes the top face to be
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 5 Fig. 5. Effect of large-scale Rayleigh number ( Ra ) on temperature distribution: Main temperature iso-surfaces for the configuration V-het ( 2   , top) and H-het ( 2   , bottom),
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 6 Fig. 6. Effects of the large-scale Rayleigh number ( Ra ) on heat flux through the hot wall: (a) the average Nusselt number, (b) and (c) maps of local Nusselt number of the hot wall for the configurations V-het ( 2   ) and H-het ( 2   ), respectively.
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 7 Fig. 7 depicts the local entropy generation number E N for both configurations V-het and H-
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 7 Fig. 7. Effect of large-scale Rayleigh number ( Ra ) on entropy generation: Iso-surfaces of local entropy generation number (
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 8 Fig. 8. Effect of large-scale Rayleigh number ( Ra ) on entropy generation: The total entropy generation number ( tot N , left), the total mixing rate ( T N , center), and the average Bejan

  the V-het configuration (Figs. 9a-9c), increasing heterogeneity enhances fluid flow locally and raises the maximum vertical velocity component. The region of maximum Z Q moves toward the corner near Y=1 as the rate of heterogeneity increases, because increasing heterogeneity induces an increase of the local Rayleigh number near Y=1, and a decrease near Y=0. The flow structure for 0
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 9 Fig. 9. Effect of heterogeneity on convective flow: Stream-tubes highlighted with the vertical velocity component ( Z Q ) for the configuration V-het (top) and H-het (bottom) for 100 Ra .

HFig. 10 .

 10 Fig. 10. Effect of heterogeneity on temperature distribution: Main temperature iso-surfaces for the configuration V-het (top) and H-het (bottom) for 100 Ra  .
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 13 Fig. 13 depicts the variation of the total entropy generation number ( tot N ), the total mixing
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 1213 Fig. 12. Effect of heterogeneity on entropy generation: Iso-surfaces of local entropy generation number (
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 14 Fig 14 depicts the variation of these metrics with respect to the large-scale Rayleigh number

Fig. 14 .Fig. 15 .

 1415 Third dimension effect on the (a) average Nusselt number, (b) total entropy generation number, (c) the dimensionless mixing rate, and (c) temperature at the top center point for the V-het configuration. Third dimension effect on the (a) average Nusselt number, (b) total entropy generation number, (c) dimensionless mixing rate, and (d) temperature at the top center point for the configuration H-het.

  

  the curl operator on Darcy's law, one can eliminate the fluid pressure in the flow

	equation as	0   . Further, considering a solenoidal vector potential as shown in p
	Guerrero-Martínez et al. [2016] and Shao et al. [2018] leads to	  φ	0	. Then assuming the
	permeability satisfies the function	K	  , K y z pp 	due to the heterogeneity of the porous
	medium, one obtains the steady-state flow equations in terms of vector potential components:
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  Herein we analyze cases with 2   , where the largest permeability is 7.4 larger than the smallest one and the above four averages (k A , k 1/3 , k G , and k H ) equal 3.2, 2.9, 2.7, and 2.3, respectively, which are not significantly different. Then we analyze cases with 4   , where the largest permeability is 54.6 larger than the smallest one, and the above averages now equal 13.4, 9.2, 7.4, and 4.1, which are not dramatically different either. For a given heterogeneity, the large-scale Rayleigh number is proportional to the adopted effective permeability. As we shall see, when the large-scale Rayleigh number ( Ra ) is constant, entropy indicators remain virtually

  NY, and NZ are tested and the stability is assessed based on the sensitivity of the average Nusselt number ( Nu ) to the Fourier modes. Fig. 2 exemplifies the convergence behavior of the FS solution. It shows the variation of Nu versus the total number

	technique developed by Fahs et al. [2015] to determine the appropriate Fourier modes leading to stable solutions. This technique proceeds by increasing the number of Fourier modes until reaching stable solutions. For the sake of simplicity, we adopt the same number of Fourier coefficients for X  , Y 100 Ra  and three levels of heterogeneity. It is found that for 0   , 2, and 4, the converged FS solutions with stable Nu values are obtained with 6,084 (NX=24, NY=3, and NZ=21), 8,640 (NX=30, NY=3, and NZ=24), and 11,232 (NX=39, NY=3, and NZ=24) Fourier modes, respectively. Typically, the increase of the rate of heterogeneity leads to a higher local Rayleigh number, and thus enhances the thermal convection at high permeable zones. For instance, with 100 Ra  and  , of Fourier modes for three test cases of the V-het configuration, with 4

Z  , and  , that is NX=Ni+1=Nl=Nd=Nu, NY=Nj=Nm+1=Nr=Nv+1, and NZ=Nk=Nn=Ns+1=Nw+1. Accordingly, several levels of truncations orders with increasing values of NX,

Table 2 .

 2 Comparison between the FS and FE solutions: The average Nusselt number

		Configuration V-het	Configuration H-het
	Nu	 	0	 	2	 	0	 	2
	FS solution	3.101	3.048	2.474	2.357

Table 3 .

 3 Quantitative indicators for benchmarking: average Nusselt number ( Nu ), total entropy generation number ( tot N ) and the average Bejan number ( Be ).

								Configuration V-het	
					Ra 	10					Ra 	200
			 	0	 	2	 	4	 	0	 	2	 	4
	Nu	1.079	1.090	1.111	4.936	4.751	4.218
	N	tot	4.493	4.493	4.529	40.729	39.485	46.349
	Be	0.319	0.356	0.453	0.164	0.166	0.170
								Configuration H-het	
					Ra 	10					Ra 	200
			 	0	 	2	 	4	 	0	 	2	 	4
	Nu	1.042	1.037	1.027	3.921	3.737	3.295
	N	tot	2.419	2.238	1.866	21.205	18.949	15.243
	Be	0.316	0.328	0.379	0.151	0.143	0.138
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The effect of heterogeneity on the heat flux through the hot wall is shown in Fig. 11, which displays the variation of the average Nusselt number ( Nu ) as a function of the rate of heterogeneity (  for the V-het configuration and  for the H-het configuration) for two different values of large-scale Rayleigh number. The results show that in both configurations, the average heat flux to the domain decreases with the increase of the rate of heterogeneity.

The effect of rate of heterogeneity on the heat flux is more significant at high Rayleigh regimes, which highlights that the reduction of heat thermal gradients in low permeability zones is slightly more relevant than their increase in regions of high permeability. The reduction is not large, but relevant for a proper understanding of entropy generation dependence on heterogeneity.

The spatial variations of the local Nusselt number on the hot wall for configurations V-het and H-het are depicted in Figs. 11b and11c, respectively. For the V-het configuration, the increase of the rate of heterogeneity enhances the heat flux to the domain at the high permeable zone and reduces it in the low permeable zone. The opposite is true in the H-het configuration, where the maximum local Nusselt number can be observed in the zone of low permeability. , respectively.