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Abstract 4 

Three-dimensional (3D) natural convection (NC) processes in heterogeneous porous media 5 

and associated energy losses and mixing processes are still poorly understood. Studies are 6 

limited to two-dimensional domains because of computational burden, worsened by 7 

heterogeneity, which may demand grid refinement at high permeability zones for accurate 8 

evaluation of buoyancy forces. We develop a meshless Fourier series (FS) solution of the 9 

natural convection problem in a porous enclosure driven by thermal or compositional 10 

variations. We derive the vector potential formulation of the governing equations for vertical 11 

and horizontal heterogeneity of hydraulic conductivity and implement an efficient method to 12 

solve the spectral system with an optimized number of Fourier modes. 3D effects are induced 13 

either by heterogeneity or variable boundary conditions. The developed FS solution is verified 14 

against a finite element solution obtained using COMSOL Multiphysics. We evaluate entropy 15 

generation (viscous dissipation and mixing) indicators using Fourier series expansions and 16 

assess how they are affected by heterogeneity. We define a large-scale Rayleigh number to 17 

account for heterogeneity by adopting an arithmetic average effective permeability. Results 18 

show that increasing the Rayleigh number intensifies fluid flow, thus enhancing convective 19 

transfer, which causes a dramatic increase in total entropy generation. Both viscous 20 

dissipation and mixing (and thus chemical reactions in the solute transport case) increase. The 21 

third dimension effect, which also enhances flow and entropy indicators, is more pronounced 22 

at high Rayleigh numbers. Surprisingly, entropy variation indicators remain virtually 23 

unchanged in response to changes in heterogeneity, for fixed Rayleigh number, which we 24 

attribute to the arithmetic average permeability being indeed appropriate for NC in 3D. This 25 

study not only explores the effect of Rayleigh number and heterogeneity on natural 26 

convection processes and the associated entropy generation and mixing processes, but also 27 

provides a highly accurate solution that can be used for codes benchmarking.    28 

 29 

Keywords: Natural convection; Entropy generation; Heterogeneous porous media; Three-30 

dimensional; Fourier series method  31 
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1 Introduction 32 

Natural convection (NC) takes place in porous media when the saturating fluid density 33 

changes due to the variation of temperature and/or composition. Because of its wide 34 

applications in environmental, industrial, and engineering fields, NC in porous enclosures 35 

caused by thermal effects has been intensively investigated in the past decades. These 36 

applications range from the small (micrometers) scale, such as blood flow in the pulmonary 37 

alveolar sheet and heating process in solid oxide fuel cells, to the large (meters or kilometers) 38 

scale, such as thermal insulation in buildings, CO2 sequestration, aquifers thermal energy 39 

storage, seawater intrusion and geothermal or oil reservoirs. Comprehensive surveys on NC in 40 

porous media and its industrial and environmental applications can be found in Nield and 41 

Simmons [2019], Nield and Bejan [2017], Vafai [2011], Vadász [2008], Ingham and Pop 42 

[2005] and Kimura et al. [1997].  43 

Energy losses due to the convective heat transfer, fluid friction, and diffusion effects occur in 44 

practical applications involving heat transfer in porous media [Torabi et al., 2017]. This 45 

energy loss or the process efficiency can be quantified in terms of entropy generation, based 46 

on simultaneous application of the first and second laws of thermodynamics. Entropy 47 

generation analysis is usually applied to distinguish between reversible and irreversible 48 

processes. By evaluating and minimizing the entropy generation, the overall efficiency of a 49 

thermal system can be improved, and losses can be optimized. Special attention has been paid 50 

to the study of entropy generation on NC in porous enclosures. The main addressed topics are 51 

the influence on entropy generation of enclosure’s geometry and boundary conditions [Baytaş, 52 

2000; Kaluri and Basak, 2011; Basak et al., 2012
a,b

; Datta et al., 2016; Chamkha and 53 

Selimefendigil, 2018; Chandra Pal, 2018], hydraulic and thermal parameters of the porous 54 

medium [Bouabid et al. 2011; Chamkha and Selimefendigil, 2018], different types of fluids 55 

under different rheological behaviors [Khan and Gorla, 2011; Al-Zamily, 2017; Mansour et 56 
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al., 2017] or internal heat generation [Al-Zamily, 2017]. Mansour et al. [2017] investigated 57 

the effect of viscous dissipation. Jbara et al. [2013] studied entropy generation under unsteady 58 

conditions. While most studies assume thermal equilibrium between solid and liquid phases of 59 

the porous medium, Baytas [2007] addressed entropy generation under non-equilibrium 60 

thermal conditions. Entropy generation in MHD nanofluid natural convection has been 61 

investigated in Ghasemi and Siavashi [2017]. Oztop and Al-Salem [2012] presented a 62 

thorough review of entropy generation in natural and mixed convection. Several studies are 63 

concerned with the effect of coupled mass and heat transfer processes (i.e., double-diffusive 64 

convection) on entropy generation [Mchirgui et al. 2014; Kefayati, 2016; Hussain et al., 2018].  65 

Two different kinds of processes drive entropy generation on NC problems: dissipation of 66 

mechanical energy by viscous forces and loss of variability by diffusion (conduction in 67 

thermal convection, or molecular diffusion in solute transport). The latter has received 68 

increased attention in the reactive transport literature, where it is termed mixing, because it 69 

drives chemical reactions [Rezaei et al., 2005; Cirpka and Valocchi, 2007]. In fact, the rates 70 

of fast reactions, driven by the rate at which reacting solutes mix, are proportional to the local 71 

entropy generation rate [de Simoni et al., 2005].  72 

Heterogeneity of porous media is known to play a significant role in flow and heat transfer 73 

processes. Industrial and natural porous media display spatial variability of thermal and, 74 

especially, hydraulic properties, such as permeability and thermal conductivity, which 75 

significantly affect water flow and heat transfer. The effect of heterogeneity on NC in porous 76 

media has been heavily scrutinized. A widely-discussed topic is the effect of heterogeneity on 77 

the onset of NC induced by a vertical density gradient (unstable configuration) [Nield and 78 

Simmons, 2007; Nield and Kuznetsov, 2007
a,b

,2008, 2011; Nield, 2008; Nield et al. 2009, 79 

2016; Simmons et al., 2010]. The topic is especially relevant for geological CO2 storage, 80 

where density changes when CO2 is dissolved in native fluids, because dissolution controls 81 
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the ultimate fate of CO2, so that the onset of NC controls whether dissolution is going to be 82 

relevant during CO2 injection [Riaz et al., 2006; Hidalgo et al., 2009, 2012]. Impacts of 83 

heterogeneity on the onset of NC under local non-equilibrium conditions have been studied in 84 

Nield and Kuznetsov [2015]. Nguyen et al. [2016] studied the effects of heterogeneity on 85 

fingering phenomena induced by unstable NC. The influence of heterogeneity on stable 86 

configuration of NC (horizontal density gradient) has been the subject of several studies. 87 

Marvel and Lai [2010] investigated NC in layered porous cavity. Fahs et al. [2015] studied the 88 

effect of stratified heterogeneity on stable natural convection and provided a reference 89 

solution for code benchmarking. Fajraoui et al. [2017] performed a global sensitivity analysis 90 

to evaluate the effects of uncertainties related to parameters controlling the heterogeneity on 91 

convective flow, temperature field, and heat transfer flux.  92 

Most of above-mentioned studies on NC in porous enclosures and related processes’ 93 

irreversibility are limited to two-dimensional (2D) domains. This 2D assumption is commonly 94 

adopted to reduce the computational overheads of three-dimensional (3D) simulations. 95 

However, NC processes are three-dimensional by nature. The 2D assumption is only 96 

applicable for configurations with specific geometry, boundary conditions, and heterogeneity, 97 

where the variations are negligible in the third dimension. With the advancement of 98 

computational technology, several 3D numerical studies have been conducted to investigate 99 

and understand the three-dimensional NC processes. Pau et al. [2010] demonstrated that the 100 

onset time is shorter and the convection rate is larger for 3D simulations than for 2D. Wang et 101 

al. [2010] investigated 3D NC in an inclined porous cubic box under time oscillating 102 

boundary conditions, where the 3D effect is related to box inclination. They found that the 103 

convective flow was quasi-two-dimensional if the box has a moderate inclination angle, while 104 

for seriously inclined cases, much more complicated three-dimensional convective flow 105 

patterns were observed. Voss et al. [2010] investigated an unstable configuration of NC in an 106 
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inclined cubic box and showed the effect of 3D processes on the critical Rayleigh number for 107 

the onset of instability. Guerrero-Martínez et al. [2016] studied unstable configuration 108 

(vertical density gradient) of an inclined cubic box in both homogeneous and layered porous 109 

domains, respectively.   110 

This informal survey indicates evidence of the importance of heterogeneity in controlling NC 111 

processes and the significance of entropy generation associated with NC in porous enclosures. 112 

It also reveals increasing interest in 3D studies for practical purposes. However, this review 113 

also shows that there are still several open research questions related to this topic. Indeed, due 114 

to high computational requirements, 3D studies on NC in porous enclosures are scarce. While 115 

different properties of domain and boundary conditions could lead to three-dimensional 116 

configurations, in the few existing studies, the 3D effects are only induced by box inclination 117 

or unstable flow configurations. Furthermore, to deal with computational overheads, existing 118 

studies have considered relatively low Rayleigh numbers. In addition, 3D studies on NC 119 

processes and associated entropy generation in heterogeneous domains are missing and 120 

corresponding processes are still not well-understood. To the best of our knowledge, the only 121 

existing work addressing this topic is Zhuang and Zhu [2018]. Nevertheless, that work does 122 

not account for real 3D effects as the problem under investigation can be simplified to 2D. 123 

The main goal of this work is to address these gaps and to provide a new insight on NC and 124 

entropy generation in 3D heterogeneous porous enclosures.  125 

Thus, we study NC and entropy generation in a cubic enclosure filled with a heterogeneous 126 

porous medium. This is a problem that has been widely studied in academic research and 127 

engineering applications to understand NC processes [Zhao et al., 2005, 2009]. It is also a 128 

typical problem that is commonly used as a benchmark to validate numerical codes. We 129 

consider two different configurations corresponding to vertical and horizontal heterogeneity, 130 

which are common in geological formations [Jiang et al., 2010; Miroshnichenko et al., 2018; 131 
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Fahs et al., 2015]. Both configurations are effective 3D cases that cannot be simplified to 2D. 132 

The 3D effects are induced either by the heterogeneity of the porous domain or boundary 133 

conditions. Simulation of three-dimensional NC in porous media is a computationally 134 

challenging problem, particularly for high Rayleigh numbers. Heterogeneity compounds these 135 

challenges as it leads to locally high permeability zones where the accurate evaluation of 136 

buoyancy forces requires unpractical dense computational grids. Accurate evaluation of 137 

entropy generation is also a hard computational task because it involves fluxes and space 138 

derivatives of the temperature, which requires appropriate numerical techniques [Younes et al., 139 

2010]. Thus, to avoid computational limitations and numerical artifacts of conventional 140 

methods, we develop an efficient and accurate meshless solution based on the Fourier series 141 

method (FS) applied to the vector potential formulation of the governing equation [Peyret, 142 

2002; Shao et al., 2018]. We extend the vector potential formulation developed by Shao et al. 143 

[2018] to the heterogeneous domain and we use an efficient technique to reduce the number 144 

of Fourier series modes. Contrarily to the homogeneous domain, heterogeneity leads to full 145 

non-zero vector potential. We use appropriate techniques to efficiently solve the spectral 146 

system. This includes a simplified evaluation of the nonlinear convective terms, the use of an 147 

efficient nonlinear solver, and parallel implementation of the FS method. Entropy generation 148 

is evaluated analytically based on the Fourier series expansion. The developed FS solution is 149 

verified by comparison against COMSOL Multiphysics. Taking advantage of the accuracy of 150 

the FS solution, we provide high-quality data that can be used as a reference for the validation 151 

of numerical codes dealing with NC and entropy generation. This represents an important 152 

feature of this work, as reference benchmark solutions for entropy generation are lacking. Due 153 

to its high performance, the FS solution is used to i) develop a parametric study, ii) to 154 

understand the effect of heterogeneity on metrics characterizing temperature, heat flux, 155 
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convective flow, mixing, and entropy generation, and iii) to evaluate the significance of the 156 

3D processes by comparing 3D and 2D simulations. 157 

2 Problems description and governing equations 158 

We consider a cubic saturated porous enclosure of size H, as shown in Fig. 1, where fluid 159 

flows in response to density variations caused by variations in temperature or concentration. 160 

For simplicity, we adopt heat transfer nomenclature, but the problem is mathematically 161 

equivalent to solute mass transfer. All domain boundaries are assumed impermeable, that is, 162 

convective fluxes across the six sides are zero. Two different configurations of heterogeneity 163 

are investigated in this work (Fig. 1). In the first configuration (V-het), the enclosure is filled 164 

with vertically stratified porous media, so that its permeability varies along the y coordinate 165 

(i.e., kp= kp (y)). The enclosure is subject to constant but distinct temperatures on two opposite 166 

boundaries, i.e., T=Th at x=0 and T=Tc at x=H, as shown in Fig. 1(a). In the second 167 

configuration (H-het), the enclosure is filled with horizontally stratified porous media, so that 168 

its permeability is a function of z. This configuration can be simplified to 2D. But, as our 169 

objective is to investigate effective 3D cases, we assume varying boundary temperature on 170 

one side (i.e., T=F(y) at x=0), and constant temperature on the opposite side (i.e., T=Tc at 171 

x=H), as shown in Fig. 1(b). Variable temperature boundary conditions are common in the 172 

simulations of geothermal reservoirs. The two configurations allow us to investigate the 3D 173 

effects induced either by heterogeneity or from the varying temperature boundary conditions.  174 

 175 

 176 
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 177 

Fig. 1. Schematic description of the two cubic porous enclosures and their boundary 178 

conditions: (a) an enclosure filled by vertically stratified porous media with constant but 179 
distinct temperatures on the opposite boundaries (V-het); (b) an enclosure filled by 180 
horizontally stratified porous media with varying temperature on one side, and constant 181 
temperature on the opposite side (H-het). 182 

 183 

The mathematical model describing the NC processes in saturated porous media is based on 184 

the mass conservation equation, Darcy’s law, and the heat transfer equation. Adopting the 185 

Boussinesq approximation and steady-state fluid flow, these equations can be written as: 186 

 0 q   (0) 187 

   c c

pk
p g T T 


     zq e   (0) 188 

 
m f m

T
C C T T

t



   


q  (0) 189 

where q  1LT    is water flux (Darcy velocity),   1 1ML T     is the dynamic viscosity of the 190 

fluid, p  1 2ML T     is pressure, c
3ML    is the density of fluid at the reference 191 

temperature cT , g  2LT   is the gravity acceleration,   1    is the thermal expansion 192 

coefficient, 
pk  2L    is the permeability, which depends on the properties of the porous media 193 

and may vary in space, t   T  is time, fC  1 2 1L MT      is the thermal capacity (specific heat 194 

times density) of the fluid, mC  1 2 1L MT      and m  3 1MLT     are the thermal capacity 195 
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(specific heat times density) and the effective thermal conductivity of the porous medium, 196 

respectively. The latter is obtained by averaging the thermal capacity and conductivity of the 197 

fluid and solid phases, weighted by the porosity  : 198 

  m f s= 1C C C    (0) 199 

  m f s= 1      (0) 200 

Subscripts m, s, and f represent the porous medium, solid, and fluid, respectively. The density 201 

of the fluid is a linear function of temperature: 202 

   c c1 T T      (0) 203 

The boundary conditions of the two aforementioned configurations (V-het and H-het) are 204 

defined in Table 1, where xq , 
yq , and zq  are the water flux components in the x-, y-, and z- 205 

directions, respectively. 206 

Table 1. Boundary conditions of the two configurations showing the variable prescribed 207 

temperature at the x=0 face. 208 

Configuration 0x   x H  0, y H  0, z H  

V-het 0, x hq T T   
c0, xq T T   0, 0y

T
q

y


 


 0, 0z

T
q

z


 


 

H-het  0, xq T F y   

 209 

3 Fourier series solution 210 

The Fourier series method is used to solve the governing equations for both configurations V-211 

het (vertical heterogeneity) and H-het (horizontal heterogeneity). The solution procedure is as 212 

follows. First, governing equations are expressed in terms the vector potential. Second, a 213 

change of variables is made to ensure periodic-homogeneous boundary conditions for both 214 

flow and heat transfer. Third, the temperature and the components of the vector potential are 215 

expanded using Fourier series truncated at given orders, which are then substituted into the 216 

governing equations. After the Galerkin treatment, a system of nonlinear equations with the 217 
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Fourier series coefficients as unknowns is generated. Eventually, solving the system of 218 

equations, one obtains the vector potential and the temperature field expressed analytically in 219 

terms of Fourier coefficients. 220 

3.1 The vector potential formulation 221 

At steady state, Darcy’s velocity q  admits a vector potential φ  such that q φ . 222 

According to the continuity equation, the vector potential satisfies   0   q φ . 223 

Applying the curl operator on Darcy’s law, one can eliminate the fluid pressure in the flow 224 

equation as 0p  . Further, considering a solenoidal vector potential as shown in 225 

Guerrero-Martínez et al. [2016] and Shao et al. [2018] leads to 0 φ . Then assuming the 226 

permeability satisfies the function  ,p pK K y z  due to the heterogeneity of the porous 227 

medium, one obtains the steady-state flow equations in terms of vector potential components: 228 

 

c2

c2

2

1
0

1
+ 0

1
0

p y p px x z
x

p

p y pz
y

p

p yz
z

p

k k gk T

k y x y z z x y

k gk T

k z y z x

k

k y y z

    




  







          
           

          


   
     

    
       
    

 (0) 229 

Substituting the vector potential into Eq. (3), we simplify the steady-state heat transfer 230 

equation to: 231 

   T T   φ  (0) 232 

where m fC   represents the effective thermal diffusivity. Then we define the following 233 

dimensionless variables: 234 

 c= , = , , , 
T T x y z

X Y Z
T H H H





  



φ
ψ  (0) 235 
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where h cT T T    is the temperature difference between the hot and cold walls. Using the 236 

above non-dimensional variables, we obtain the dimensionless steady-state flow and heat 237 

transfer equations as follows: 238 

 

2

2

2

1
0

1
+ 0

1
0

p pY X X Z
X

p

p Z Y
Y

p

p Z Y
Z

p

k k
Ra

k Y X Y Z Z X Y

k
Ra

k Z Y Z X

k

k Y Y Z

    


  


 


          
           

          
      
     

    
        

    

 (0) 239 

      ψ  (0) 240 

where  c pRa gk H T     is the local thermal Rayleigh number that is dependent on the 241 

variation of permeability in heterogeneous porous media. 242 

These equations are similar to those of Shao et al. [2018], except for the terms involving the z-243 

component of the vector potential that can be dropped out in homogeneous domains. Here we 244 

show that, due to heterogeneity, all the components of the vector potential should be 245 

considered.     246 

3.2 Homogeneous boundary conditions 247 

The flow boundary conditions are derived in terms of vector potential. As it is shown in 248 

Guerrero-Martínez et al. [2016] and Shao et al. [2018], the flow boundary conditions can be 249 

written as follows: 250 

 

0, at 0,1

0, at 0,1

0, at 0,1

X
Y Z

Y
X Z

Z
X Z

X
X

Y
Y

Z
Z


 


 


 


   




   




   



 (0) 251 
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Note that these homogeneous impervious boundary conditions for fluid flow are applicable 252 

for both configurations V-het and H-het. To derive homogeneous boundary conditions for 253 

heat transfer, we express the temperature boundary conditions in terms of dimensionless 254 

variables: 255 

 
  , at 0

     0, at 0,1     =0,  at 0,1
0,    at 1

f Y X
Y Z

Y ZX

  



   
  

  
 (0) 256 

where  f Y  is a constant   1f Y   for the V-het configuration, and defined as 257 

      c h cf Y F y T T T    for the H-het configuration. Further, we define the following 258 

change of variable: 259 

    1X f Y      (0) 260 

Using the above equation, the boundary conditions in terms of the shifted dimensionless 261 

temperature   become: 262 

    

0,                        at 0,1

1 '    at 0,1

0                     at 0,1

X

X f Y Y
Y

Z
Z







 


  




 



,

,

 (0) 263 

These temperature boundary conditions are periodic when the function  f Y  satisfies the 264 

condition    ' 0 ' 1 0f f  . For the V-het configuration, as   1f Y  , this condition is 265 

satisfied in nature. For the H-het configuration, to meet this requirement, we select a 266 

particular function such that: 267 

  
 1 cos

2

Y
f Y


  (0) 268 

Note that the presented method is not limited to this particular function. Any other function 269 

that leads to periodic boundary conditions is applicable. Substituting Eq. (14) into Eqs. (10) 270 



14 

 

and (11), one obtains the final system of governing equations in terms of the shifted 271 

temperature   and vector potential components: 272 

   2 1
1 0

p pY X X Z
X

p

k k
Ra Ra X f Y

k Y X Y Z Z X Y

    


         
            

          
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3.3 The spectral system 277 

The components of the vector potential X , Y , and Z , as well as the shifted temperature 278 

  are expanded using infinite triple Fourier series that are truncated at given orders: 279 

        , ,

0 1 1

, , cos sin sin
NjNi Nk

X i j k

i j k

X Y Z A i X j Y k Z   
  

   (0) 280 

        , ,
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Y l m n

l m n

X Y Z B l X m Y n Z   
  

   (0) 281 

        , ,

1 1 0

, , sin sin cos
Nd Nr Ns

Z d r s

d r s

X Y Z C d X r Y s Z   
  

  (0) 282 

        , ,

1 0 0

, , sin cos cos
Nu Nv Nw

u v w

u v w

X Y Z E u X v Y w Z   
  

   (0) 283 

where Ni , Nj  and Nk  are the truncation orders for the vector potential component X  in 284 

the X-, Y- and Z-directions. Similarly, Nl , Nm  and Nn  (resp. Nd , Nr  and Ns ) are that for 285 

Y  (resp. Z ). Nu , Nv  and Nw  are the truncation orders for the dimensionless temperature 286 
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 . 
, ,i j kA , 

, ,l m nB ,  
, ,d r sC  and 

, ,u v wE  are the Fourier series coefficients for the vector potential 287 

components X , Y , Z , and the temperature  , respectively. It should be noted that all the 288 

above Fourier series expansions honor the periodic flow and temperature boundary conditions 289 

as shown in Eqs. (12) and (15). 290 

The Fourier series expansions are substituted into Eqs. (17)-(20), and followed by the 291 

Galerkin treatment, where the resulted equations are multiplied, respectively, by the following 292 

trial functions that use Fourier modes: 293 
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U X V Y W Z U Nu V Nv W Nw       

 294 

The resulted equations are then integrated over the cubic domain. To allow an analytical 295 

evaluation of all the triple integrations arising from the FS method, we assume that 296 

permeability depends on space by means of an exponential function [Jiang et al., 2010; Fahs 297 

et al., 2015; Zhuang and Zhu, 2018]: 298 

   +

0, Y Z

pk Y Z k e   (0) 299 

where 0k  is the permeability at 0Y Z  , and   and   are the changing rate of  ln pK  in 300 

the Y  and Z  direction, respectively. When 0   , permeability is homogeneous over the 301 

domain. With 0   and 0  , the porous medium is vertically stratified, and permeability 302 

varies in the Y  direction, which is the case in the V-het configuration as shown in Fig. 1(a). 303 

While with 0   and 0  , the porous medium is horizontally stratified, which is the case 304 

in the H-het configuration as shown in Fig. 1(b). 305 

Eq. (25) allows us to integrate all Fourier integrals analytically, resulting in a system of 306 

nonlinear algebraic equations with the Fourier coefficients 
, ,i j kA , 

, ,l m nB ,  
, ,d r sC , and 

, ,u v wE  as 307 
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unknowns. For the V-het configuration, the corresponding boundary condition and the 308 

permeability are set as   1f Y   and 
0

Y

pk k e , leading to the following residual equations: 309 
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(0) 313 

where RFX, RFY, RFZ, and RT are the residuals corresponding to the three flow components 314 

and heat transfer equations, respectively. 0Ra  in Eqs. (26) and (27) is the thermal Rayleigh 315 

number at Y=0 and Z=0, defined as: 316 

c 0
0

gk H T
Ra

 






      
(30) 317 
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For the V-het configuration, 0Ra  represents the Rayleigh number based on the permeability of 318 

the lower layer (Z=0), while for the H-het configuration it is the Rayleigh number based on 319 

the permeability of the vertical wall Y=0.   320 

The residuals for the H-het configuration and the corresponding coefficients in these 321 

equations are given in the Section S1 of Supplemental Material. We solve the system of 322 

nonlinear equations using a nonlinear solver from the IMSL library based on the modified 323 

Powell hybrid algorithm 324 

(https://docs.roguewave.com/imsl/fortran/7.1/html/fnlmath/index.html), which is very 325 

efficient. We include analytical evaluation of the Jacobian matrix to improve the performance 326 

and convergence of the solver (see Supplemental Material Section S2). Besides, Eq. (29) 327 

involves terms that have six overlapped summations, which are computationally expensive. 328 

We simplify these terms from six to three nested summations, as in Shao et al. [2018], to 329 

reduce computations. Indeed, this reformulation reduces CPU-time by 2 to 3 orders of 330 

magnitude. Finally, parallel computing is implemented in these FG solutions to further reduce 331 

the CPU time. 332 

3.4 Metrics for the assessment of convective flow, heat transfer and entropy generation 333 

The convective flow is assessed using the dimensionless velocity defined as follows:
 

334 

 
H


Q q  (31) 335 

The heat transfer performance is evaluated by the average Nusselt number that assesses the 336 

heat diffusion across the boundary X=0 into the domain. The local Nusselt number is defined 337 

by 338 

 
0

1

Xsurf

Nu
X



 





 (32) 339 

https://docs.roguewave.com/imsl/fortran/7.1/html/fnlmath/index.html
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where 
surf  is the imposed average temperature at the boundary X=0. For the V-het 340 

configuration, the average temperature at X=0 is 1surf  . While for the H-het configuration, 341 

we have  
1 1

0 0
d d 1 2surf f Y X Z    . Using the Fourier series expansion of temperature, we 342 

obtain the local Nusselt number expressed by Fourier coefficients: 343 

 
, ,

1 0 0
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Nu Nv Nw
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f Y
Nu uE v Y w Z


 

   

   (33) 344 

And the average Nusselt number is computed as follows: 345 

 
1 1

,0,0

10 0

. 1
Nu

u

usurf

Nu Nu dYdZ uE


 

    (34) 346 

In the considered NC system, the associated entropy generation is due to heat transfer and 347 

Darcy dissipation. It can be computed by the evaluation of the time derivative of the 348 

temperature or concentration variance [Le borgne et al., 2010] under very specific transient 349 

conditions, but not for the steady-state case considered herein. Based on the local 350 

thermodynamic equilibrium of the linear transport theory, the local entropy generation for the 351 

3D natural convection is given by Baytaş [2000] and Ghachem et al. [2012]: 352 

  
22 2

2 2 2m

2

c c

E x y z

p

T T T
S q q q

T x y z T k

        
          

        

 (35) 353 

Note that the first term evaluates the tendency to temperature homogeneity, which is 354 

proportional to the time derivative of temperature variance in transient problems [Le borgne et 355 

al., 2010], while the second terms equal the viscous dissipation of energy, divided by Tc. The 356 

first term is especially relevant in solute mass transfer, where it is termed mixing rate, because 357 

mixing controls fast reactions, whose rate is limited by the rate at which reactants mix [De 358 

Simoni et al., 2005]. Using the change of variable, we obtain the local entropy generation in 359 

terms of dimensionless variables. And then we define the local entropy generation number as: 360 
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 (36) 361 

where 
XQ , 

YQ , and 
ZQ  are dimensionless velocity components in the X, Y, and Z directions, 362 

respectively. And   is the local irreversibility distribution ratio that depends on the variation 363 

of permeability in heterogeneous porous media: 364 

 

 
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c

2

m p

T

T k

 



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

 

(37)

 

365 

At Y=0 and Z=0, we have     22

0 c m 0T T k     . It is noted that the value of 0  is 366 

dependent on the thermal Rayleigh number ( 0Ra ). In this work, as in Baytaş [2000], we take:  367 

  
0

0

10

Ra
   (38) 368 

In Eq. (36), TN  and FN  represent the irreversibility caused by mixing (dimensionless mixing 369 

rate) and Darcy dissipation (dimensionless viscous dissipation), respectively. Based on these, 370 

the Bejan number T EBe N N  that denotes the ratio of heat transfer irreversibility to the 371 

local entropy generation is defined. If the Bejan number is over 0.5, it implies that the 372 

irreversibility due to heat transfer plays a more important role in the entropy generation; 373 

otherwise, the irreversibility caused by fluid flow makes the dominant contribution. 374 

Furthermore, to assess the overall entropy generation in the domain, the total entropy 375 

generation number and the average Bejan number in the cubic enclosure are computed by: 376 

 
1 1 1

tot

0 0 0

d d dEN N X Y Z     (39) 377 

 
1 1 1

0 0 0

d d dBe Be X Y Z     (40) 378 

4 Results and discussion 379 
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Three targets are discussed in this section. As a new code has been developed for the FS 380 

solution, we first verify the correctness of this code by comparison against finite element (FE) 381 

solutions obtained using COMSOL Multiphysics. Secondly, we present high-quality data that 382 

can be used as reference solutions for benchmarking numerical models dealing with NC, 383 

mixing, and entropy generation in heterogeneous porous domains. Then, taking advantage of 384 

the developed FS solution, we investigate the influence of heterogeneity and Rayleigh number 385 

on NC and processes irreversibility, and we evaluate the significance of the 3D processes by 386 

comparing 2D and 3D simulations.  387 

As can be deduced from the dimensionless governing equations, NC processes and associated 388 

entropy generation are controlled by three parameters: the local Rayleigh number 0Ra , the 389 

heterogeneity structure (parameterized here in terms of   for the V-het configuration and   390 

for the H-het configuration) and the local irreversibility distribution ratio ( 0 ). The latter is 391 

linked to 0Ra  as in Eq. (38). For an adequate analysis, in our investigation, we replace 0Ra  by 392 

the effective large-scale Rayleigh number defined based on the average permeability as 393 

follows:  394 

 

c pgk H T
Ra

 




  (41) 395 

where  
1 1 1

0 0 0
, d d dp pk k Y Z X Y Z     is the large-scale average permeability in the cubic 396 

enclosure. The choice is non-trivial, and the effective value of permeability (i.e., the value of 397 

homogeneous permeability allowing the same flux through the medium as the actual 398 

permeability) has been the subject of research in the oil and hydrology literature [Noetinger, 399 

1994; Renard and de Marsily, 1997; Sanchez-Vila et al., 2006]. What has been found is that 400 

the appropriate averaging of permeability depends on the flow dimension. In 1D, the effective 401 

permeability is the harmonic average (kH). In 2D, the effective permeability is the geometric 402 
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average (kG). In 3D, the effective permeability is the 1/3 power average (k1/3). The arithmetic 403 

average adopted here (kA) is only appropriate for mathematically ideal infinite dimensions. 404 

When heterogeneity is large, these averages can be very different. Herein we analyze cases 405 

with 2  , where the largest permeability is 7.4 larger than the smallest one and the above 406 

four averages (kA, k1/3, kG, and kH) equal 3.2, 2.9, 2.7, and 2.3, respectively, which are not 407 

significantly different. Then we analyze cases with 4  , where the largest permeability is 408 

54.6 larger than the smallest one, and the above averages now equal 13.4, 9.2, 7.4, and 4.1, 409 

which are not dramatically different either. For a given heterogeneity, the large-scale 410 

Rayleigh number is proportional to the adopted effective permeability. As we shall see, when 411 

the large-scale Rayleigh number ( Ra ) is constant, entropy indicators remain virtually 412 

unchanged when the heterogeneity rate is changed. However, they would increase 413 

dramatically if we had adopted any other average for effective permeability, because k0 would 414 

have to be increased in order to maintain the large-scale Rayleigh number unchanged, 415 

Thus in all our simulations, we consider the large-scale Rayleigh number ( Ra ) and the rate of 416 

heterogeneity (  or  ) as primary parameters controlling physical processes. Based on these 417 

parameters, we evaluate the parameters such as the local Rayleigh number ( 0Ra ) and the local 418 

irreversibility distribution ratio ( 0 ).   419 

4.1 Verification of the FS solution 420 

The number of Fourier modes may affect the accuracy of the FS solutions. We adopt the 421 

technique developed by Fahs et al. [2015] to determine the appropriate Fourier modes leading 422 

to stable solutions. This technique proceeds by increasing the number of Fourier modes until 423 

reaching stable solutions. For the sake of simplicity, we adopt the same number of Fourier 424 

coefficients for X , Y , Z , and  , that is NX=Ni+1=Nl=Nd=Nu, NY=Nj=Nm+1=Nr=Nv+1, 425 

and NZ=Nk=Nn=Ns+1=Nw+1. Accordingly, several levels of truncations orders with 426 
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increasing values of NX, NY, and NZ are tested and the stability is assessed based on the 427 

sensitivity of the average Nusselt number ( Nu ) to the Fourier modes. Fig. 2 exemplifies the 428 

convergence behavior of the FS solution. It shows the variation of Nu  versus the total number 429 

of Fourier modes for three test cases of the V-het configuration, with 100Ra   and three 430 

levels of heterogeneity. It is found that for 0  , 2, and 4, the converged FS solutions with 431 

stable Nu  values are obtained with 6,084 (NX=24, NY=3, and NZ=21), 8,640 (NX=30, NY=3, 432 

and NZ=24), and 11,232 (NX=39, NY=3, and NZ=24) Fourier modes, respectively. Typically, 433 

the increase of the rate of heterogeneity leads to a higher local Rayleigh number, and thus 434 

enhances the thermal convection at high permeable zones. For instance, with 100Ra   and 435 

4  , the maximum local Rayleigh number in the domain can reach more than 400. In 436 

convection-dominant problems, a large number of Fourier modes is usually required to avoid 437 

Gibbs phenomenon and to obtain oscillation-free results [Peyret, 2002]. We should mention 438 

that the most important truncation order controlling oscillations is NX. Similar behaviours of 439 

the FS solution have been observed for the H-het configuration but they are not presented here 440 

for the sake of brevity.  441 

 442 

 443 
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Fig. 2. Example of the convergence of the FS solutions: Variation of the average Nusselt 444 

number ( Nu ) versus the total number of Fourier modes for the V-het configuration (vertical 445 

heterogeneity) at 100Ra  . 446 

 447 

To further verify the FS solutions, a FE analysis is performed for some test cases using 448 

COMSOL Multiphysics. We checked relatively simple cases, dealing with  100Ra   and low 449 

rates of heterogeneity ( 0   and 2 for the V-het configuration and 0  , 2 for the H-het 450 

configuration), in order to facilitate convergence and to avoid numerical artifacts in the FE 451 

solutions that could affect the comparisons. A grid dependence test is conducted for each case 452 

using different levels of grid refinement in COMSOL. The FE computations are challenging 453 

because the gridding effect is important. The mesh-independent solutions have been obtained 454 

with a computational mesh of about 80K nodes in the homogeneous cases ( 0   or 0  ) 455 

and 310K nodes for the heterogeneous cases ( 2   or 2  ). The temperature field at the 456 

vertical slice Y=0.5 obtained from FS and FE solutions for these test cases are plotted in Fig. 457 

3. Table 2 lists the converged results of the average Nusselt number. From Fig. 3 and Table 2, 458 

it is observed that FS solutions show excellent agreement with FE solutions at various 459 

parameters, which indicates the correctness of the code developed for the FS solutions and 460 

gives confidence in the correctness of the developed COMSOL model. It is relevant to 461 

mention that while similar accuracy are obtained for these test cases with both solutions, the 462 

FS solution is significantly more efficient as it requires fewer degrees of freedom than the FE 463 

solution. For instance, in the V-het configuration ( 2  ), the FS solution is obtained with 464 

8,640 Fourier modes while the FE solution requires a computational mesh of 310K nodes 465 

involving more than 620K degrees of freedom.     466 

 467 

Table 2. Comparison between the FS and FE solutions: The average Nusselt number 468 

Nu  
Configuration V-het Configuration H-het 

0   2   0   2   

FS solution 3.101 3.048 2.474 2.357 
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FE solution 3.073 2.981 2.456 2.343 

 469 

  

(a) 100,  0Ra    (b) 100,  2Ra    

  

(c) 100,  0Ra    (d) 100,  2Ra    

 470 
Fig. 3. Comparison between the FS (colored map) and FE (dashed lines) solutions: The main 471 

isotherms at the vertical slice Y=0.5 for the configurations V-het (top) and H-het (bottom). 472 
 473 

4.2 Reference solutions for code benchmarking: NC and entropy generation 474 

The problem of NC in a porous enclosure is accepted as a common benchmark for numerical 475 

codes. Different solutions of this problem have been obtained based on a variety of numerical 476 

methods (see Fahs et al. [2015] and reference therein). Comparison between existing solutions 477 

is widely used to validate and assess new developed numerical schemes and to help modelers 478 

in handling codes interfaces and in data processing. Due to computation limitations, the 479 

existing solutions are restricted to 2D. Even in 2D, the numerical accuracy of the entropy 480 

generation is not well discussed, which can be significant because it requires a delicate post-481 
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processing procedure based on the reconstruction of thermal and fluid fluxes. Here, taking 482 

advantage of the accuracy and performance of the developed FS method, we provide 483 

reference solutions that could be useful for benchmarking codes dealing with NC in porous 484 

domains and associated entropy generation. The first set of solutions deal with low large-scale 485 

Rayleigh number ( 10Ra  ) with different rates of heterogeneity ( 0  , 2 and 4 for the V-486 

het configuration and 0  , 2 and 4 for the H-het configuration). These cases are relatively 487 

simple from the computational point of view as they deal with a low Rayleigh number. They 488 

are useful for codes validations but not appropriate for inter-codes comparison. A relevant 489 

benchmark problem for comparing numerical methods should be able to make clear 490 

distinctions between the compared methods. Thus, we present solutions for cases dealing with 491 

relatively high Rayleigh number and a high rate of heterogeneity. For such cases, it is well-492 

known that numerical schemes may lead to errors with clear grid-based artifacts. Accurate 493 

solutions of such cases represent a major challenge for finite-element simulations. 494 

Heterogeneity compounds the challenge as an accurate velocity field in heterogenous porous 495 

media requires appropriate numerical schemes [Younes et al. 2013]. Thus, we present a 496 

second set of solutions for cases dealing with 200Ra   and 0  , 2 and 4 (for the V-het 497 

configuration) and 0  , 2 and 4 (for the H-het configuration).  498 

We provide several quantitative indicators related to heat transfer and entropy generation. The 499 

quantitative indicators facilitate inter-code comparison as they are more for comparison than 500 

visual inspection of isotherms [Prasad and Simmons, 2005]. We use the average Nusselt 501 

number as a metric of heat transfer processes, and the total entropy generation as well as the 502 

average Bejan numbers to assess entropy generation. All these metrics are calculated without 503 

any approximation based on the Fourier series. The results for all test cases are summarized in 504 

Table 3. This table provides high-quality data that could be used as references for 505 

benchmarking codes dealing with NC and related entropy generation.  506 
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 507 

Table 3. Quantitative indicators for benchmarking: average Nusselt number ( Nu ), total 508 

entropy generation number ( totN ) and the average Bejan number ( Be ).   509 

 Configuration V-het 

 10Ra   200Ra   

 0   2   4   0   2   4   

Nu  1.079 1.090 1.111 4.936 4.751 4.218 

tot
N  4.493 4.493 4.529 40.729 39.485 46.349 

Be  0.319 0.356 0.453 0.164 0.166 0.170 

 Configuration H-het 

 10Ra   200Ra   

 0   2   4   0   2   4   

Nu  1.042 1.037 1.027 3.921 3.737 3.295 

tot
N  2.419 2.238 1.866 21.205 18.949 15.243 

Be  0.316 0.328 0.379 0.151 0.143 0.138 

 510 

 511 

4.3 Effect of large-scale thermal Rayleigh number on NC and entropy generation in 512 

heterogeneous domains  513 

The Rayleigh number is the main parameter controlling NC processes. In homogeneous 514 

domains, the effect of this number on convective flow, heat fluxes and processes 515 

irreversibility is a common topic in literature. In this work, we suggest the use of the large-516 

scale number ( Ra ) as the controlling parameter in heterogeneous domain. This section aims 517 

at investigating the effect of this new suggested Ra on NC and entropy generation in 518 

heterogeneous domain. To this end, we analyze the configurations V-het ( 2  ) and H-het 519 

( 2  ) with varied large-scale Rayleigh numbers ( 10, 100, and 200Ra  ).   520 

To understand the flow structure, we plot in Fig. 4 the stream-tubes highlighted with the 521 

Darcy’s vertical velocity component ( ZQ ). For the V-het configuration (Figs. 4a-4c), one 522 

main convective vortex (torus-like convection cell) occurs in the domain around the central 523 

axis of symmetry parallel to the Y-axis. The vertical velocity component (color scale) 524 

indicates a clockwise rotating flow, as expected (hot water flows up the hot face, X=0, and 525 
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down the cold face, X=1, with faster velocity near the back face, Y=1, where permeability is 526 

the largest). The shape and orientation of the vortex depend on the large-scale Rayleigh 527 

number. From this point of view, the latter has a similar effect as the local Rayleigh number in 528 

homogeneous domain. While the vortex is centric and axially symmetrical for 10Ra  , it 529 

becomes diagonally-oriented and losses its central orientation when the large-scale Rayleigh 530 

number is increased. At a constant heterogeneity rate ( ), the increase of the large-scale 531 

Rayleigh number can be interpreted as an increase of permeability everywhere in the domain. 532 

Thus, the convective flow becomes faster (notice the colour scale in Figs. 4a, b and c), the 533 

thermal boundary around the vertical hot and cold walls shrinks and the zone of high velocity 534 

moves down, as it can be observed in Figs. 4b and 4c.  535 

For the H-het configuration (Figs. 4d-4f), the flow structure is complex (recall Fig. 1b that 536 

temperature is prescribed as a variable at the X=0 face). The main flow structure has the shape 537 

of a convergent-divergent spiral vortex with a curved axis oriented from the vertical plane 538 

X=0 to the vertical plane Y=0. The vortex structure of the flow is related to both crossed 539 

temperature gradients occurring in the domain. The first gradient is generated by the 540 

temperature difference between the hot and cold walls (oriented along the X-axis), while the 541 

second gradient is related to the variable temperature imposed at the hot wall (oriented along 542 

the Y-axis). As for the V-het configuration, the large-scale Rayleigh number affects the flow 543 

structure and mainly the location of the vortex at the vertical plane Y=0. The location of the 544 

vortex at the vertical plane X=0 is slightly sensitive to Ra . This makes sense as the origin of 545 

the vortex shape at X=0 is the temperature gradient imposed as a boundary condition and 546 

independent on Ra . For both configurations V-het and H-het, the scales of ZQ
 
shows a 547 

significant acceleration of the rotating flow with the increase of Ra .   548 



28 

 

   

(a) 10Ra   (b) 100Ra   (c) 200Ra   

   

(d) 10Ra   (e) 100Ra   (f) 200Ra   

Fig. 4. Effect of large-scale Rayleigh number ( Ra ) on convective flow: Stream-tubes 549 

highlighted with the vertical velocity component ( ZQ ) for the V-het configuration ( 2  , 550 

top) and H-het ( 2  , bottom), respectively.  551 

  552 

Fig. 5 depicts the isothermal surfaces for each test case. Buoyancy causes the top face to be 553 

warmer than the bottom face. However, the two configurations exhibit completely different 554 

temperature fields owing to the distinct layouts of heterogeneity and different boundary 555 

conditions. At low Ra , the heat transfer processes are mainly conductive. The isothermal 556 

surfaces are almost vertical. With the increase of Ra , the isothermal surfaces become more 557 

distorted inside the enclosure as they follow the flow structure. The transition zone becomes 558 

narrower close to the hot boundary (at X=0) because convective heat transfer is enhanced.  559 

 560 
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(a) 10Ra   (b) 100Ra   (c) 200Ra   

   

(d) 10Ra   (e) 100Ra   (f) 200Ra   

Fig. 5. Effect of large-scale Rayleigh number ( Ra ) on temperature distribution: Main 561 

temperature iso-surfaces for the configuration V-het ( 2  , top) and H-het ( 2  , bottom), 562 

respectively.  563 

 564 

The variation of the average Nusselt number with respect to Ra  is given in Fig. 6a. This 565 

figure indicates that Nu  increases with Ra , as the buoyancy-induced flow enhances the 566 

diffusive heat transfer across the boundary. At the same level of large-scale Rayleigh number 567 

and heterogeneity rate, vertical heterogeneity leads to more heat transfer to the domain than 568 

horizontal heterogeneity. The space distribution of the heat flux through the hot wall is also 569 

investigated using the local Nusselt number as in Figs. 6b and 6c. It is clear that, for the V-het 570 

configuration, at a low Rayleigh regime, the heat flux to the domain is uniformly distributed. 571 

The increase of Ra  enhances the heat flux locally in the bottom part of the hot wall (near 572 

Z=0), particularly in the high permeable zone. The heat flux at the upper part of the wall (near 573 
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Z=1) is slightly sensitive to Ra . For the H-het configuration, we can observe negative local 574 

Nusselt numbers, indicating heat losses in some parts of the wall. This is due to the variable 575 

temperature imposed at the hot wall. In these parts, due to convective flow in the Y direction 576 

(caused by the variable temperature), the temperature of the fluid in the thermal boundary 577 

layer becomes higher than the imposed temperature, leading to a heat flux from the domain to 578 

the hot wall. The largest heat flux to the domain is observed at the bottom corner (Y=Z=0).  579 

 580 

   

 

 

(a) (b) (c)  

Fig. 6. Effects of the large-scale Rayleigh number ( Ra ) on heat flux through the hot wall: (a) 581 

the average Nusselt number, (b) and (c) maps of local Nusselt number of the hot wall for the 582 

configurations V-het ( 2  ) and H-het ( 2  ), respectively. 583 

 584 

 585 

Fig. 7 depicts the local entropy generation number EN  for both configurations V-het and H-586 

het with 10, 100, and 200Ra  . For the V-het configuration, in the case of low Ra  (Fig. 7a), 587 

two zones of high entropy generation can be observed. The first one is located within the 588 

thermal boundary layer near the hot and cold walls, in the high permeable area (toward Y=1). 589 

In this zone, the high permeability leads to a high fluid circulation, which causes 590 

irreversibility due to viscous dissipation. The fact that the geometry of this high entropy 591 

generation zone resembles the geometry of the high-velocity zone (red in Fig. 4) points that 592 

viscous dissipation, rather than mixing, is the main entropy generation process. Mixing only 593 

displays in enlarging the high entropy generation towards the bottom of the X=0 face, where 594 

temperature gradients are highest (see Fig. 5). For low Rayleigh number, a second zone of 595 
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high entropy generation is located near the top (Z=1) where velocity is high due to the 596 

heterogeneity. This zone is displaced to the back (X=1) when Rayleigh number increases 597 

which causes a severe increase in temperature gradients and thus to mixing between hot and 598 

cold fluids. The temperature gradient in this zone is relatively high due to mixing. Thus 599 

entropy generation in this zone is mainly related to the conduction effect. When Ra  is 600 

increased (Figs. 7b and 7c), the thermal boundary layer shrinks, and the fluid circulation 601 

increases. But, overall, entropy generation due to flow dominates, and the maximum local 602 

entropy generation appears within the thermal boundary layer near the hot and cold walls at 603 

X=0 and X=1 and increases along the Y axis from Y=0 and Y=1, as the gradient of temperature 604 

and the velocity field are intensified locally due to the heterogeneity of porous medium. For 605 

the H-het configuration, the zone of high entropy generation is located just near the hot wall, 606 

in contrast to the V-het configuration where high entropy generation is observed near both hot 607 

and cold walls. This is related to the boundary conditions. Near the hot wall, there is a thermal 608 

gradient related to the imposed variable temperature and the temperature difference with the 609 

cold wall. Thus entropy generation due to heat transfer at the hot side (Y=0) of the hot wall 610 

(X=0) is more important than that at the cold wall. Note also that entropy generation is more 611 

pronounced at the top surface than at the bottom surface, where permeability is smallest.  612 

Fig.8 depicts the variation of total entropy generation number ( totN ), the total mixing rate (613 

TN ),  and the average Bejan number ( Be ) as a function of the large-scale Rayleigh number. 614 

For both configurations, V-het and H-het, the total entropy generation number increases 615 

significantly with Ra , as the higher Ra  leads to an enhancement of fluid flow and 616 

convective heat transfer (Fig. 8a). Also in both configurations, all the average Bejan numbers 617 

are far below 0.5, indicating that the irreversibility due to fluid flow makes the major 618 

contribution on the total entropy generation. Besides, Be
 
decreases with the increase of Ra . 619 
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This indicates that fluid flow irreversibility becomes more significant with the increase of Ra620 

. 621 

 622 

 623 

   

(a) 10Ra   (b) 100Ra   (c) 200Ra   

    

(d) 10Ra   (e) 100Ra   (f) 200Ra   

Fig. 7. Effect of large-scale Rayleigh number ( Ra ) on entropy generation: Iso-surfaces of 624 

local entropy generation number ( EN ) for the configuration V-het ( 2  , top) and H-het (625 

2  , bottom), respectively.  626 

 627 

 628 

   

Fig. 8. Effect of large-scale Rayleigh number ( Ra ) on entropy generation: The total entropy 629 

generation number ( totN , left), the total mixing rate ( TN , center), and the average Bejan 630 

number ( Be , right) for the configuration V-het ( 2  ) and H-het ( 2  ), respectively.  631 



33 

 

 632 

 633 
 634 
 635 

 636 
 637 
4.4 Influence of heterogeneity 638 

To investigate the effect of varying heterogeneity on the 3D natural convection and entropy 639 

generation, we fix the large-scale Rayleigh number at 100Ra  , and vary the rate of 640 

heterogeneity from 0 to 4. Fig. 9 shows the stream-tubes highlighted with the Darcy’s vertical 641 

velocity component ( ZQ ) for the rate of heterogeneity varying from 0 to 4. We recall that, at a 642 

constant large-scale Rayleigh number, the increase of the rate of heterogeneity, for the 643 

configuration V-het (resp. H-het) corresponds to higher permeability around the vertical plane 644 

Y=1 (resp. top surface) and lower permeability near the vertical wall Y=0 (resp. bottom 645 

surface), so that the arithmetic average of permeability is the same for the the three rates. For 646 

the V-het configuration (Figs. 9a-9c), increasing heterogeneity enhances fluid flow locally 647 

and raises the maximum vertical velocity component. The region of maximum ZQ  moves 648 

toward the corner near Y=1 as the rate of heterogeneity increases, because increasing 649 

heterogeneity induces an increase of the local Rayleigh number near Y=1, and a decrease near 650 

Y=0. The flow structure for 0   (homogeneous case, when the flow structure is 2D) and  651 

2   are quite similar, except for the increase of vertical flux near Y=1 at the front (X=0) 652 

face. However, for the high rate of heterogeneity, we can observe two vortices in the zone of 653 

low permeability.  654 

For the H-het configuration (Figs. 9d-9f) the region of maximum velocity moves upward with 655 

the increase of the level of heterogeneity, as expected. However, the value of maximum 656 

velocity for this configuration is only slightly influenced by the variation of heterogeneity 657 

rate. In contrast to the V-het configuration, the flow structure is affected by the rate of 658 

heterogeneity, as it can be observed in Figs. 9d-9f, where the location of the vortices at the 659 
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planes X=0 and Y=0 are moving towards the high permeable zones when the rate of 660 

heterogeneity is increased.    661 

 662 

   
(a) 0   (b) 2   (c) 4   

    
(d) 0   (e) 2   (f) 4   

 663 

Fig. 9. Effect of heterogeneity on convective flow: Stream-tubes highlighted with the vertical 664 

velocity component ( ZQ ) for the configuration V-het (top) and H-het (bottom) for 100Ra  . 665 

 666 

The isothermal surfaces for both configurations are plotted in Fig. 10. For the V-het 667 

configuration, when the level of heterogeneity is 0  , the porous medium is homogeneous, 668 

resulting in a quasi 2D problem. The isothermal surfaces, shown in Fig. 10a, exhibit the 2D 669 

nature of heat transfer in the enclosure. As the rate of heterogeneity increases to 2   and 4 670 

(Figs. 10b and 10c), the isothermal surfaces become increasingly distorted inside the 671 

enclosure. The transition zone becomes narrow close to the hot and cold boundaries near Y=1, 672 

and wide near Y=0. This is because although the three cases take the same large-scale 673 

Rayleigh number, the rising of the rate of heterogeneity leads to an increase of the local 674 

Rayleigh number near Y=1, and a decrease of that near Y=0. Basically, the higher local 675 

Rayleigh number intensifies the flow velocity and enhances the convective heat transfer in the 676 
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vicinity of Y=1. The opposite effect is found near Y=0. Therefore, a correlation between the 677 

isothermal surfaces and the rate of heterogeneity is observed for this configuration: the higher 678 

the rate of heterogeneity, the more distorted the temperature iso-surfaces. Contrarily, for the 679 

H-het configuration (Figs. 10d-10f), the impact of heterogeneity is much less evident 680 

influence on the shape of isothermal surfaces. The three cases exhibit a typical 3D nature of 681 

heat transfer in the enclosure. Unlike the V-het configuration, the 3D effect for the H-het 682 

configuration originates from the varying temperature boundary condition, rather than 683 

heterogeneity. Increase of rate of heterogeneity only causes a slight change in the shape of 684 

isotherms in the bottom half of the X=0, Y=0 edge, where the transition zone becomes wider 685 

due to the decrease of local Rayleigh number that reduces the convective heat transfer at this 686 

region. 687 

 688 

   
(a) 0   (b) 2   (c) 4   

   
(d) 0   (e) 2   (f) 4   

Fig. 10. Effect of heterogeneity on temperature distribution: Main temperature iso-surfaces 689 

for the configuration V-het (top) and H-het (bottom) for 100Ra  .  690 

 691 
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The effect of heterogeneity on the heat flux through the hot wall is shown in Fig. 11, which 692 

displays the variation of the average Nusselt number ( Nu ) as a function of the rate of 693 

heterogeneity (  for the V-het configuration and   for the H-het configuration) for two 694 

different values of large-scale Rayleigh number. The results show that in both configurations, 695 

the average heat flux to the domain decreases with the increase of the rate of heterogeneity. 696 

The effect of rate of heterogeneity on the heat flux is more significant at high Rayleigh 697 

regimes, which highlights that the reduction of heat thermal gradients in low permeability 698 

zones is slightly more relevant than their increase in regions of high permeability. The 699 

reduction is not large, but relevant for a proper understanding of entropy generation 700 

dependence on heterogeneity.     701 

The spatial variations of the local Nusselt number on the hot wall for configurations V-het and 702 

H-het are depicted in Figs. 11b and 11c, respectively. For the V-het configuration, the 703 

increase of the rate of heterogeneity enhances the heat flux to the domain at the high 704 

permeable zone and reduces it in the low permeable zone. The opposite is true in the H-het 705 

configuration, where the maximum local Nusselt number can be observed in the zone of low 706 

permeability.    707 

 708 

   

 

 
 

(a) (b) (c)  

Fig. 11. Effect of heterogeneity on heat flux through the hot wall: (a) the average Nusselt 709 

number, (b) and (c) maps of local Nusselt number of the hot wall for the configurations V-het 710 

and H-het with 100Ra  , respectively.  711 

 712 
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Fig. 12 depicts the local entropy generation number EN  for both configurations with varying 713 

rate of heterogeneity. The 2D nature of the homogeneous ( 0  ) V-het configuration also 714 

shows on the local entropy generation, which does not change along the Y axis (Fig. 12a). As 715 

the rate of heterogeneity increases, the local entropy generation varies along the Y axis. 716 

Specifically, the zone of maximum local entropy generation moves toward the corner in the 717 

vicinity of Y=1, where the local Rayleigh number near Y=1, which intensifies both the 718 

temperature gradient (Figs. 10a, b, and c) and the fluid flux (Figs. 9a, b, and c). Both increases 719 

trigger an increase on the maximum local entropy generation. For the H-het configuration 720 

(Figs. 12d-12f), a negative correlation between the heterogeneity rate and the maximum local 721 

entropy generation is found: the higher the rate of heterogeneity, the smaller the maximum 722 

value of local entropy generation (see the color scale). It should be noted that the effect of the 723 

heterogeneity rate on the maximum value of local entropy generation is not very evident for 724 

this configuration. This is because for the H-het configuration, neither the temperature 725 

gradient nor the maximum velocity change much with the variation of heterogeneity rate (see 726 

Figs. 9 and 10). In the vicinity of hot wall at X=0, the zone of maximum local entropy 727 

generation moves upward with the increase of heterogeneity rate, which is consistent with the 728 

velocity field (Fig. 9), as the higher heterogeneity rate increases the local Rayleigh number 729 

near Z=1 and decreases that near Z=0, which further influences the fluid flow and modifies 730 

the distribution of local entropy generation. It may be noticed, however, that the maximum 731 

entropy generation occurs slightly below the maximum velocity, which reflects that thermal 732 

gradients are highest in the lower part (Fig. 10) and contribute to the mixing term of entropy 733 

generation. 734 

Fig. 13 depicts the variation of the total entropy generation number ( totN ), the total mixing 735 

rate ( TN ),  and the average Bejan number ( Be )  as a function of the rate of heterogeneity. 736 

The most important observation is that both total entropy generation and mixing rate are 737 
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virtually insensitive to heterogeneity, which implies that the adopted effective permeability is 738 

indeed appropriate. The total entropy generation number decreases slightly as the 739 

heterogeneity level increases for both configurations, which is probably due to the shrink of 740 

the active zone for local entropy generation. This phenomenon is also observed in Fig. 9, 741 

where the flow velocity field shows similar profiles. totN  slightly decreases with the increase 742 

of the rate of heterogeneity. The average Bejan number demonstrates that the irreversibility 743 

due to fluid flow has a dominant influence on the total entropy generation in the domain. 744 

Similar to the total entropy generation number, in the H-het configuration, Be  decreases with 745 

the increase of the rate of heterogeneity. In the opposite, for the V-het configuration, Be  746 

significantly increases with the increase of the rate of heterogeneity.   747 

 748 

   
(a) 0   (b) 2   (c) 4   

   
(d) 0   (e) 2   (f) 4   

Fig. 12. Effect of heterogeneity on entropy generation: Iso-surfaces of local entropy 749 

generation number ( EN ) for the V-het configuration (top) and H-het (bottom) for 100Ra  .  750 

 751 
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Fig. 13. Effect of heterogeneity on entropy generation: The total entropy generation number (752 

totN , left), the total mixing rate ( TN , center), and the average Bejan number ( Be , right) for 753 

the configurations V-het and H-het ( 100Ra  ). 754 

 755 

4.5 Third dimension effect 756 

The goal of this section is to evaluate the effect of the third dimension on the convective flow, 757 

heat transfer, and entropy generation. Thus, we compare the 3D results with those of 758 

equivalent 2D models. For the V-het configuration, the third dimension effects are caused by 759 

heterogeneity. Hence, in the equivalent 2D model, we consider a homogenous domain with 760 

equivalent permeability as defined in the large-scale Rayleigh number (Eq. (41)). Under this 761 

assumption, the 3D model can be simplified to 2D. For the H-het configuration, the third 762 

dimension effects are related to the variable boundary conditions. Thus, in the equivalent 2D 763 

model, we keep the heterogeneity but we assume a constant temperature on the hot wall 764 

which is equal to the average temperature (
1

0
( ) 0.5f Y dY   ). For the sake of brevity, we 765 

do not consider spatial maps of temperature and entropy generation, but just compare the 2D 766 

and 3D results in terms of the average Nusselt number as metric of heat transfer, the total 767 

entropy number, and the dimensionless mixing rate (as metrics of entropy generation), and the 768 

dimensionless temperature at the top center point (X=0.5, Y=0.5, Z=1 for 3D cases, and X=0.5, 769 

Z=1 for 2D cases).  770 

Fig 14 depicts the variation of these metrics with respect to the large-scale Rayleigh number 771 

for both 2D and 3D models with varying rates of heterogeneity for V-het configuration. 772 
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Obviously, 2D results insensitive to heterogeneity because the V-het 2D model is 773 

homogeneous and identical to the 3D model with 0  . Therefore, the 3D effect is similar to 774 

the effect of heterogeneity discussed in the previous section. Therefore, the 2D assumption 775 

leads to an overestimation of the heat losses and average Nusselt number (Fig. 14a). But the 776 

impact is small in terms of both total entropy generation and mixing rate (Figs. 14b and c). 777 

The discrepancy between 2D and 3D models is more significant at high Rayleigh regimes.    778 

As the 3D effects are caused by the heterogeneity, it is clear in Fig.14 that the increase of the 779 

rate of heterogeneity enlarges the discrepancy between 2D and 3D models.    780 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 14. Third dimension effect on the (a) average Nusselt number, (b) total entropy 781 
generation number, (c) the dimensionless mixing rate, and (c) temperature at the top center 782 
point for the V-het configuration. 783 

 784 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 15. Third dimension effect on the (a) average Nusselt number, (b) total entropy 785 
generation number, (c) dimensionless mixing rate, and (d) temperature at the top center point 786 
for the configuration H-het. 787 

 788 
The H-het configuration yields more interesting results than V-het. The 2D model largely 789 

underestimates all indicators (Fig. 15). Simplifying to 2D (i.e., neglecting temperature 790 

variability in the hot face of the enclosure) reduces somewhat the heat flux (Nusselt number, 791 

Fig. 15a) and leads to a more homogeneous flow and temperature distribution. Lack of 792 

variability leads to a dramatic reduction in total entropy generation (a factor around 2, Fig. 793 
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15b) and even more in mixing rate (a factor around 3, Fig. 15c). The absolute value of the 794 

discrepancy between 2D and 3D simulations is more significant at high Rayleigh numbers. A 795 

hint on the reason for the discrepancy can be gained from the temperature at the middle of the 796 

top face (Fig. 15d). High permeability at the top causes active fluid circulation, so that 797 

temperature at the top face approaches asymptotically the temperature of the hot face (0.5 in 798 

the 2D case) as the Rayleigh number increases. However, circulation is most active near the 799 

hot end of this face in the 3D case (recall Fig. 9). As a result, temperature at the middle of the 800 

top face is above the average temperature of the hot face (Fig. 15d), which explains the large 801 

increase in the mixing rate.     802 

 803 

5 Conclusions 804 

In this work, we investigate three-dimensional natural convection and associated entropy 805 

generation in heterogeneous porous media under steady-state conditions. Two typical 806 

configurations are considered: one has vertically stratified porous media and subject to 807 

constant temperature boundary conditions, the other has horizontally stratified porous media 808 

and subject to spatially varying temperature boundary conditions. Both configurations lead to 809 

three-dimensional flow conditions that cannot be simplified to two-dimensions. The 3D effect 810 

of the first configuration comes from the heterogeneity in permeability, while that of the 811 

second configuration originates from the varying temperature boundary conditions. As 3D 812 

simulations are computationally expensive, the Fourier series (FS) method is used to obtain 813 

highly accurate solutions in affordable CPU time. The comparison between the FS and finite 814 

element methods (COMSOL) confirms the validity of the new developed FS solutions, which 815 

provide a highly accurate three-dimensional benchmark for testing numerical codes.  816 

The solution is different for each configuration. In the V-het configuration, the typical 817 

convection cell of 2D natural convection increases its vorticity and splits into two vortices as 818 
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heterogeneity increases. In the H-het configuration, the variable temperature of the hot face 819 

causes the vortex to curve into a quarter of a torus whose axis displaces upwards as 820 

heterogeneity increases. Comparison between 2D and 3D simulations shows that the 2D 821 

assumption underestimates the heat flux to the domain, the entropy generation and the 822 

temperature on the top surface. The underestimation is dramatic in the horizontally stratified 823 

case.  824 

We propose an effective large-scale Rayleigh number to characterize natural convection in 825 

heterogeneous media. This new large-scale Rayleigh number is similar to the standard 826 

Rayleigh number for homogeneous media, but using the arithmetic average of the 827 

heterogeneous permeability. Based on the FS solutions, we investigate the effect of this 828 

effective Rayleigh number and level of heterogeneity on heat and fluid flux, as quantified by 829 

the Nusselt number (dimensionless heat flux) and entropy generation (both from viscous 830 

dissipation and mixing). Results reveal that, as expected, the increase of the effective 831 

Rayleigh number considerably intensifies the fluid flow and enhances the convective heat 832 

transfer, inducing high-temperature gradients and large local entropy generation near the 833 

boundaries and, thus, within the enclosure. These increases lead to a large increase of total 834 

entropy generation, in terms of both viscous forces dissipation and mixing rate.  835 

Perhaps more surprisingly, we find a very mild but negative correlation between the 836 

heterogeneity rate and entropy generation for both configurations. In fact, both total entropy 837 

and, especially, mixing rate remain virtually constant, despite a reduction of heat flux (Nusselt 838 

number) when heterogeneity increases. This is important because it suggests that the proposed 839 

Rayleigh number is indeed sufficient to explain the impact of heterogeneity on dissipative 840 

processes and dissolution/precipitation reactions in cases where density variations are driven 841 

by changes in composition, so that mixing controls reaction rates (such as in CO2 dissolution 842 

in carbon storage problems). But it is surprising for two reasons. First, for a given effective 843 
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permeability, one would expect both fluxes and temperature (concentration) gradients to 844 

increase with heterogeneity. Second, the arithmetic average is the largest of all reasonable 845 

averages (in fact, it is the effective permeability only for ideal infinite dimension geometries), 846 

so that one would expect other more traditional averages (e.g., geometric or 1/3 power 847 

averaging) to work better. We conclude that the explanation lies in this double paradox. Had 848 

we chosen any other average for permeability and large-scale Rayleigh number, we would 849 

have found that, indeed, entropy generation increases with heterogeneity when the Rayleigh 850 

number is fixed. Further, as the heat (solute mass) flux drops when increasing heterogeneity 851 

while fixing Rayleigh number, the expectation of increased disorder turns out to be correct for 852 

a fixed boundary heat (solute mass) flux. In summary, the proposed Rayleigh number would 853 

not be appropriate for predicting boundary fluxes, which might require using the traditional 854 

effective permeability, but it is excellent in predicting entropy generation indicators, which 855 

become virtually insensitive to heterogeneity.    856 
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