
HAL Id: hal-03432668
https://hal.science/hal-03432668

Submitted on 17 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fourier series solution for transient three-dimensional
thermohaline convection in porous enclosures

Sara Tabrizi Nejad As, Marwan Fahs, Behzad Ataie-Ashtiani, Craig T
Simmons, Raphaël Di Chiara Roupert, Anis Younes

To cite this version:
Sara Tabrizi Nejad As, Marwan Fahs, Behzad Ataie-Ashtiani, Craig T Simmons, Raphaël Di Chiara
Roupert, et al.. A Fourier series solution for transient three-dimensional thermohaline convection in
porous enclosures. Water Resources Research, 2020, 56, �10.1029/2020WR028111�. �hal-03432668�

https://hal.science/hal-03432668
https://hal.archives-ouvertes.fr


1 
 

A Fourier series solution for transient three-dimensional thermohaline 

convection in porous enclosures 

 

Sara Tabrizi Nejad As
1
, Marwan Fahs

1,*
, Behzad Ataie-Ashtiani

2
 , Craig. T. Simmons

2
, di Chiara 

Roupert Raphaël
1
, Anis Younes

1
 

 

1
 Laboratoire d’Hydrologie et Geochemie de Strasbourg, University of Strasbourg/EOST/ENGEES, 

CNRS, 1 Rue Blessig, 67084 Strasbourg, France 

 
2
 National Centre for Groundwater Research and Training & College of Science and Engineering, 

Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia 

 

 

 

 

 

 

 

 

Submitted to Water Resources Research 

*Contact person: Marwan Fahs  

E-mail: fahs@unistra.fr  

 

 

 

 

 

 

 

 

 

 

mailto:fahs@unistra.fr


2 
 

Abstract 

Thermohaline convection (THC) in porous media is frequently investigated using the problem of 

porous enclosure. Most of the existing modeling-based studies are limited to 2D simulations, 

because 2D assumption is widely used to deal with computational requirement of 3D numerical 

solutions. Analytical solutions serve as an alternative to deal with computational requirement of 

numerical solutions. Existing analytical solutions of THC are mostly limited to 2D and also 

under steady-state regime. In this work, we develop a meshless 3D semi-analytical solution for 

the problem of THC in a porous box under crossed thermal and solute gradients, for both steady-

state and transient regimes. The semi-analytical solution is developed using the Fourier series 

(FS) method applied to the vector potential form of the governing equations. The extension to 

transient solutions represents an important technical feature of this work, as the applications of 

the FS method to density-driven problems have been limited to steady-state conditions. The FS 

solution is validated against a finite element solution obtained using COMSOL Multiphysics. 

Numerical experiments show the worthiness of the developed FS solution as a benchmark 

because it clearly allows making distinction between different numerical techniques. The effects 

of governing parameters on three-dimensional THC have not been investigated previously. We 

perform a detailed parameter sensitivity analysis to address this gap. A vortex convective flow is 

observed and the orientation and intensity of the flow is sensitive to the gravity number. The 

increase in the temperature gradient reduces the salinity flux. 

 

Keywords: Thermohaline convection; 3D semi-analytical solution; Crossed thermal and salinity 

gradients; Fourier series; benchmarking; COMSOL Multiphysics.   
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1. Introduction 

Thermal and solute variations through porous media are the main causes of density changes of 

fluid and may give rise to density-driven flow. This phenomenon is usually called thermohaline 

or thermosolutal convection (THC). When the flow is driven by both temperature and solute 

gradients the problem is also called double diffusive convection (DDC) (Zhao et al., 2008a). This 

phenomenon can be observed in several applications such as in geological carbon dioxide 

sequestration (Babaei and Islam, 2018; Islam et al., 2014), geothermal systems (Bao and Liu, 

2019; Le Lous et al., 2015; van Lopik, et al., 2015), underground thermal energy storage (Cabeza 

et al., 2015), salt mining (Zechner et al., 2019), salt domes (Jamshidzadeh et al., 2015; Evans et 

al., 2015), groundwater management (love et al., 2007), soil contamination (Neild et al., 2008), 

and waste disposal and seawater intrusion (Langevin et al., 2010; Thorne et al., 2006).  

THC studies in real systems at the field scale are increasingly reported in the literature. For 

instance, Yilmaz Turali and Simsek (2017) performed THC simulations of the Sorgun 

hydrothermal reservoir (Turkey). Jamshidzadeh et al. (2015) investigated THC near salt dome at 

Napoleonville Dome (USA). Sheldon et al. (2012) assessed the potential for thermal convection 

to occur in the Perth Basin in Australia. Schilling et al. (2013) used THC simulations to provide 

insight into the subsurface thermal regime of the same basin. Magri et al. (2012) investigated 

fault-induced seawater intrusion in a geothermal system. However, in most theoretical and 

academic research and in several engineering applications, THC is frequently investigated using 

the problem of a porous enclosure. This problem is widely used to understand the THC physical 

processes and as a common benchmark for numerical models and schemes. Unstable 

configurations of this problem, in which the fluid density decreases with depth (vertical thermal 

and solute gradients either opposing or cooperating each other), have been extensively studied 
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for different purposes. For instance, Cooper et al. (2001) performed an experimental study to 

evaluate the effect of buoyancy ratio on the development of double-diffusive finger convection 

in a Hele-Shaw cell. Based on a rectangular porous enclosure, Islam et al. (2013) investigated 

double diffusive convection of CO2 in a brine saturated geothermal reservoir. Islam et al. (2014) 

extended their previous study to heterogeneous domains. Jamshidzadeh et al. (2013) used the 

modified thermohaline Elder problem to evaluate the effect of fluid dispersion on the THC. 

Fingering phenomena due to the DDC has been investigated in Hughes et al. (2005) and 

Musuuza et al. (2012). A square porous enclosure is considered in Babaei and Islam (2018) to 

study convective‐ reactive CO2 dissolution in aquifers and in Mansour et al. (2006) and Khadiri 

et al. (2010) to evaluate the Soret effect on the THC. Several works on unstable THC are 

concerned with the onset of convective flow, based on linear or nonlinear stability analysis (e.g. 

Jafari Raad et al., 2019; Nield and Kuznetsov, 2013; Javaheri et al., 2010). Stable configurations 

(horizontal thermal and solute gradients) of the problem of THC in a porous enclosure have also 

been widely investigated in the literature as they are important in many applications. In this 

context, several previous works performed parameter sensitivity analysis to understand the effect 

of governing parameters on the flow, heat, and mass processes and on the overall rate of heat and 

mass transfer (e.g. Trevisan and Bejan, 1986; Alavyoon 1993). Chamkha et al (2002) studied the 

THC in a rectangular porous enclosure with cooperating gradients and evaluate the effects of 

heat generation or absorption. Bennacer et al. (2001) investigated the effect of anisotropy on the 

average Nusselt and Sherwood numbers. The effect of anomalous fluid density was investigated 

in Sivasankaran et al. (2008). Mchirgui et al. (2012) studied entropy generation due to the THC. 

The influence of a local non-equilibrium state on the THC has been developed in Bera et al. 

(2014). Shao et al. (2016) developed a benchmark reference solution and investigated the effect 
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of heterogeneity on THC. Most studies dealt with horizontal thermal and solute gradients either 

cooperating or opposing each other. Few studies investigated cases with crossed (vertical-

horizontal) heat and mass gradients (Kalla et al., 2001; Mohamad and Bennacer, 2001, 2002; 

Mansour et al., 2006).  

Despite the fact that THC processes are three-dimensional in nature, due to boundary conditions 

and/or domain heterogeneity, all of the works described above are limited by the assumption of 

two-dimensional flow. The 2D assumption is widely adopted to deal with computational 

complexity (computational cost, memory requirement, unphysical oscillations and convergence 

issues), as THC simulations require simultaneously solving the coupled nonlinear equations of 

flow, solute transport and heat transfer under variable fluid density. Regarding three-dimensional 

THC problems, the most studied configuration is the case of horizontal thermal and solute 

gradients. Based on numerical simulations and laboratory experiments, Sezai and Mohamad 

(1999) found that, for a certain range of parameters (Lewis and Rayleigh numbers), the 

convective flow is strictly three-dimensional. Stajnko et al. (2017) developed a 3D solution 

based on the boundary element method and investigated the effect of governing parameters on 

convective flow and rate of heat and mass transfer. Zhu et al. (2017) studied the influence of 

heterogeneity on entropy generation associated to the THC. Hadidi and Bennacer (2018) studied 

the THC in a bi-layered porous domain. Mohamad and Bennacer (2001) investigated the THC in 

a 3D porous enclosure subjected to vertical solute and horizontal heat gradients. They indicated 

that, even though the convective flow has a three-dimensional structure, the difference between 

three-and two-dimensional rate of mass and heat transfer is not significant. The cases considered 

in the literature dealt with specific boundary conditions for which the problem can be simplified 

to 2D. While most engineering applications and real-world problem of THC are unsteady or 
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transient in nature, the existing works are limited to steady-state conditions. Although 

computational simulations have been conducted for 3D convection problems in the emerging 

computational geoscience field (Zhao et al., 2009, 2018), there is a need for developing new 

efficient and accurate methods to investigate 3D THD cases under transient conditions with 

higher Rayleigh numbers.    

Analytical solutions can serve as an alternative to provide high accurate solutions and to avoid 

computational requirements of numerical solutions. They are helpful to provide insight on the 

physical processes as they are free of numerical errors. Analytical solutions are also important 

for benchmarking numerical codes and for the assessment of numerical schemes such as in the 

convergence analysis. However, analytical solutions are usually limited to specific boundary 

conditions and geometry and cannot be obtained without significant simplifications of the 

governing equations. Semi-analytical solutions combine the accuracy of analytical solutions with 

the flexibility of numerical solutions in solving the full mathematical models under complex and 

realistic boundary conditions. For the THC, Kalla et al. (2001) developed a 2D analytical 

solution based on the parallel flow approximation. Analytical solutions for 2D cases have been 

obtained in Trevisan and Bejan (1986) and Masuda et al. (2013) using the boundary layer 

approximation. Shao et al. (2015) developed a 2D semi-analytical solution for the full 

mathematical model (without any approximation), based on the Fourier series method (FS). 

Mostly, the existing analytical or semi-analytical solutions are limited to 2D cases. Some 

theoretical/analytical studies have been derived for convective instability of three-dimensional 

THC problems (Zhao et al. 2005, 2008a). In general, analytical and semi-analytical solutions for 

density-driven flow model are limited to steady-state conditions.  
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Thus, the main goal of this study is to develop a 3D-transient semi-analytical solution for the 

problem of THC in a porous enclosure. Our main objective is to investigate an effective 3D 

configuration that cannot be simplified to 2D. The motivations are i) to provide a reference 

solution that could be helpful for code benchmarking and ii) to understand the physical processes 

of THC in such a configuration (3D-tranisent). The semi-analytical solution is obtained using the 

FS method applied to the vector potential formulation of the governing equation, as in Shao et al. 

(2018). The extension to transient solutions represents an important technical feature of this 

work, as the applications of the FS method to density-driven problems have to date been limited 

to steady-state conditions.     

2. Problem and Model Statement 

2.1. Problem description 

The problem under investigation is a saturated porous box which is commonly used as a 

benchmark for density-driven flow in porous media (Voss et al., 2010; Shao et al., 2018).  The 

domain is a cubic box of size H, as shown in Figure 1a. All walls are assumed to be impermeable 

and adiabatic. Heat and mass fluxes only arise in the direction of imposed gradients of 

temperature and concentration. We consider a stable configuration of density-driven flow. Such a 

configuration is important in several applications and it is more relevant for benchmarking than 

unstable cases which can suffer from solution multiplicity (i.e. bifurcation and oscillations). As 

our goal is to investigate an effective 3D case, we impose horizontal-crossed thermal and solute 

gradients. Thus, we have a horizontal thermal gradient parallel to x-direction and a horizontal 

solute gradient parallel to y-direction (Figure 1a). Constant temperatures are applied to the back 

and front walls of the domain and constant salinity concentrations are imposed on the left and 

right walls. With these boundary conditions, two circulation flows arise on two different planes 



8 
 

and a 3D investigation becomes inevitable. Such a configuration can be found in several 

applications as in geothermal systems in coastal aquifers or in islands (e.g. GEOTREF project: 

https://geotref.com; van Lopik et al., 2015; Navelot et al., 2018; De Giorgio et al., 2018) where 

the sea/ocean can generate a salinity gradient and geothermal wells create a thermal gradient 

(Figure 1b). It is also important in applications involving variable density flow related to two 

different solute compositions in which the solute gradient can be horizontal and crossed. 
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Figure 1. a) The conceptual problem of a cubic porous box with horizontal-crossed gradients of 

temperature and concentration and b) a conceptual model for a geothermal reservoir dealing with 

horizontal-crossed gradients of temperature and salinity.   

2.2. Model assumptions, governing equations and boundary and initial conditions 

We consider an isotropic and homogeneous porous medium and we assume local thermal 

equilibrium between the solid and liquid phases. The Soret and Dufour effects are neglected, as 
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common in THC studies. These effects are unlikely to be significant in real systems (Vafai, 

2015).  The only process contributing to mixing is the molecular diffusion for solute transport 

and thermal conduction for heat transfer. Hydrodynamic dispersion processes are neglected. The 

viscosity dependence to the temperature is also neglected. Such an approximation could be valid 

for small range of temperature change. For the porous medium, the assumption of 

incompressibility leads to elimination of specific storage from the continuity equation. The flow, 

mass transport and heat transport equations have been written in the transient mode. Boussinesq 

approximation is considered. Thus, fluid density is assumed to be constant in all terms of the 

governing equations, except the buoyancy term. Under the above assumptions, the fluid flow 

equations consist of continuity equation and generalized Darcy's law in terms of equivalent 

fresh-water head:   

. 0 q  (1) 

0 0

0

gk
h

  

 

 
    

 
zq e  

(2) 

where 
1.LT   q  is the Darcy's velocity , 

3

0 .M L    is the fresh-water density at the reference 

temperature, 
2.g LT     is the Gravity acceleration, 

2k L    
is the permeability of the porous 

medium, 
1 1. .M L T      is the water viscosity,  h L

 
is equivalent freshwater head, 

3.M L    is 

the density of salt water at a given temperature and ze is the upward vertical unit vector. 

The governing equation for the saline mass transport is as follows: 

. . 0m

c
c D c

t



    


q  
(3) 
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where    is porosity,  c  is relative dimensionless concentration, 
2 1.mD L T     is the diffusion 

coefficient. 

The heat transfer is governed by the equation of conservation of energy: 

. . 0
T

T T
t

 


    


q  
(4) 

where,    is the ratio of heat capacity,  T   is the temperature, 
2 1.L T     is the thermal 

diffusivity. 

The flow and heat and mass transfer equations are coupled via the following linear mixture 

density equation:  

    0 0 01 C Tc c T T         (5) 

where, [ ]C   and 
1[ ]T
  are, respectively, the solute and thermal expansions,  0c   is the 

reference relative salt concentration and 0[ ]T   is the reference temperature. 

The boundary conditions are as follows: 

0 0;  ; 0

0;  ; 0

0 0;  ; 0

0;  ; 0

0; 0;  0; 0

x H

x C

y S

y F

z

x q T T c x

x H q T T c x

y q c c T y

y H q c c T y

z z H q c z T z

      

      

      

      

         

 (6) 

where [ ]HT   and [ ]CT   are the hot and cold temperatures, [ ]Fc   is the relative salinity 

concentration of freshwater which is equal to zero and [ ]Sc   is the relative salinity concentration 
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of saltwater which is equal to one. For the transient cases, we assume that the initial temperature 

and concentration varies linearly with respect to x and y, respectively.    

It should be noted that existing extensive studies (Zhao et al., 2008b, 2016; Zhao, 2014) have 

demonstrated that chemical dissolution reactions can change both porosity and permeability of a 

porous medium and therefore affect the flow instability in the porous medium. This kind of 

instability is called the chemical dissolution-front instability and can interact with the THC flow 

(Zhao et al., 2013, 2015). However, since chemical reactions were neglected in this study, this 

issue was not considered, even though they should be considered in the future studies.  

3. The Fourier series solution 

The 3D semi-analytical solution is developed using the FS method also called Fourier-Galerkin 

method (Peyret, 2013). This method has been used to obtain semi-analytical solutions for several 

2D density-driven flow problems (Henry, 1964; Segol, 1994, Simpson and Clement, 2003, 2004; 

Van Reeuwijk et al., 2009; Zidane et al., 2012, Younes and Fahs, 2014, 2015; Fahs et al., 2014, 

2015, 2016; Shao et al. 2015, 2016; Koohbor et al., 2018). Shao et al. (2018) extended the FS 

method to solve a three-dimensional solute density-driven flow problem. In all the 

aforementioned works the FS method implementations have been limited to steady-state cases. 

This method has never been used to obtain transient solutions. In this work, we extend the 

steady-state FS method developed by Shao et al. (2018) to THC by including heat transfer 

processes and we develop a new implementation of this method to obtain transient solutions. In 

both cases (steady-state and transient), the solutions are obtained using the vector potential 

formulation of the governing equations. This formulation simplifies the resolution procedure by 

i) eliminating the pressure head which acts as a source term in the linear momentum 

conservation equation and may be at the origin of slower convergence of the Fourier series, ii) 
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honoring the continuity equation and iii) ensuring homogeneous boundary conditions required 

for the FS method. The main steps of the FS method are recalled below:  

3.1. Vector potential formulation and non-dimensional system 

The continuity equation implies the existence of the vector potential (
2 1[ . ]L T  ) which is 

defined by (Guerrero-Martínez et al., 2017):  

q   (7) 

The vector potential formulation of the governing equations can be obtained by applying the curl 

operator to Darcy’s law and by substituting equation (7) into equations (3) and (4). The non-

dimensional form of the equations can be obtained using the following dimensionless variables: 

2
; ; ; ; ; C

H C

T Tx y z t
X Y Z

H H H H T T


 




     




  (8) 

Thus, by using the dimensionless variables and the vector potential and by assuming that the 

reference temperature is CT  ( 0 CT T ) and the reference concentration is Fc  ( 0 Fc c ), the 

governing equations become (more details can be found in Shao et al. (2018)):   

2 0X T g

c
Ra N

Y Y

  
     

  
 (9) 

2 0Y T g

c
Ra N

X X

  
     

  
 (10) 

2 0Z    (11) 

  21
0

c
c c

Le





     


  (12) 

  2 0


  



    


  (13) 
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where ,  ,  X Y Z    are the components of the vector potential  , 
 0 T H C

T

gkH T T
Ra

 




  is 

the thermal Rayleigh number representing the ratio of the thermal buoyancy to thermal 

diffusivity, 
 

 
C S F

g

T H C

c c
N

T T









 is the Gravity number which is the ratio of mass buoyancy to 

thermal buoyancy and 
m

Le
D


 is the Lewis number expressing the ratio of thermal diffusivity to 

mass diffusivity.  

3.2. Homogeneous boundary conditions 

The FS method requires homogeneous boundary conditions to ensure periodicity. For the vector 

potential, the impermeable boundary conditions can be expressed as follows (for more details 

readers can refer to Shao et al. 2018): 

0,     0,1

0,     Y 0,1

0,     Z 0,1

X Y Z

Y X Z

Z X Y

X at X

Y at

Z at

       

       

       

 (14) 

Thus, the flow boundary conditions are homogeneous. The solute and thermal boundary 

conditions are homogeneous except in the x and y directions, respectively. To get homogeneous 

boundary conditions, we use the following shifted concentration and temperature:  

 1C c Y    (2) 

 1X    (3) 

The final system of equations become:  

2 0X T g g

C
Ra N N

Y Y

  
      

  
 (17) 
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2 1 0Y T g

C
Ra N

X X

  
      

  
 (18) 

2 0Z    (19) 

2 2 2

2 2 2

1
0Y X Y X XC C C C C C C

Z X Z Y X Y Z Le X Y Z Z




            
          

              
 (20) 

2 2 2

2 2 2
0Y X Y X Y

Z X Z Y X Y Z X Y Z Z




               
          

              
 (21) 

The third component of the flow system (equation (19)) associated to the boundary conditions 

leads to 0Z  .  Thus, equation (19) and Z  can be eliminated from the final system.  

3.3. The spectral system 

As boundary conditions are homogeneous, the components of the vector potential ( X , y ), 

shifted concentration (C ) and shifted temperature ( ) can be expressed as Fourier series in the 

spectral space. The Fourier series that satisfy the boundary conditions are as follows:  

, ,

0 1 1

( , , ) cos( )sin( )sin( )
NjNi Nk

x i j k

i j k

X Y Z A i X j Y k Z  
  

   (22) 

, ,

1 0 1

( , , ) sin( )cos( )sin( )
Nl Nm Nn

y l m n

l m n

X Y Z B l X m Y n Z  
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   (23) 

, ,

0 1 0

( , , ) cos( )sin( )cos( )
Nu Nv Nw

u v w

u v w

C X Y Z E u X v Y w Z  
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  (24) 

, ,

1 0 0

( , , ) sin( )cos( )cos( )
NpNs Nt

s p t

s p t

X Y Z G s X p Y t Z  
  

   (25) 

where , ,i j kA , , ,l m nB , , ,u v wE  and , ,s p tG  are the Fourier series coefficients, Ni , Nj , Nk , Nl , Nm , 

Nn , Nu , Nv , Nw , Ns , Np , Nt  are the truncation orders of the Fourier series in the space 

directions.   
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The Fourier series coefficient can be calculated by substituting the Fourier series into equations 

(17) -(18) -(20) and (21) and by projecting the resulting equation into the spectral space using the 

Fourier modes as trial functions. The final spectral system can be written as follows:  
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Where, , ,RFX RFY RT  and RE  are the residuals corresponding to the flow and mass and heat 

transport equations, respectively. The coefficients of equations (25)-(29) are given in Appendix 

A. 

The spectral system (equations (25)-(29)) is a system of differential algebraic equations that 

contains a set of ordinary differential equations (mass and heat transport residuals) and algebraic 

nonlinear equations (residuals of the x and y-components of the flow equations). The steady-state 

spectral system can be obtained by dropping out the transient terms (first terms) in equations (28) 

and (29) which yields an algebraic nonlinear system.   

3.4. Solving the spectral system  

Solving the spectral system (equations (25)-(29)) is a crucial step to obtain the Fourier 

coefficients and the semi-analytical solution. For both transient and steady-state configurations, 

the performance of the FS method depends on the way in which the spectral system is solved. 

This is a challenging task as, for sharp solutions (i.e. high Rayleigh or Lewis numbers), the FS 

method requires large number of Fourier modes to avoid the Gibbs phenomenon (Peyert, 2013) 

for which the solution could become impractical due to the computational cost and nonlinearity. 

This would undermine the first advantage of the semi-analytical solution regarding its 

practicality when compared against numerical solutions. Furthermore, for transient 

configurations, the accuracy of the solution depends on the numerical technique used for time 

integration. Here, we present the numerical implementations used to ease these challenges and to 

obtain accurate solutions in tractable CPU time.  
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- Transient solution 

As shown in the previous section, in the spectral space, the problem of THC in a porous cubic 

box is modeled as a system of differential algebraic equations (DAEs) that contains a set of 

ordinary differential equations (ODEs) (equations 28 and 29) and algebraic nonlinear constraints 

(equations 26 and 27). The unknowns are the Fourier series coefficients (A, B, E and G). To 

obtain an accurate and efficient solution, we convert the DAEs system into an ODEs system. To 

do so, we use equations (26) and (27) to analytically express the coefficients A and B as function 

of E and G (see Appendix B). We then substitute the analytical expressions of A and B into 

equations (28) and (29). This procedure reduces, on one hand, the number of unknowns as the 

new system can be solved with only the Fourier series coefficients of the concentration and 

temperature as primary unknowns (i.e. E and G), and on the other hand, simplifies and improves 

the resolution procedure, as it is well-known that ODEs systems are more stable than DEAs 

systems. For stable and accurate time integration of the resulting ODEs system with strong non-

linearity, we use the sophisticated and mature time integration solver DASPK 

(https://techtransfer.universityofcalifornia.edu/NCD/10326.html). This solver provides high 

accuracy as it is based on the Backward Difference Formulas (BDF) which is an implicit high 

order integration technique (Li and Petzold, 1999). The solver adapts both the time step size and 

time integration order (up to fifth order) to reach high accuracy and stable solutions. Higher 

order time integration method also improves the efficiency of the integration procedure as it 

allows for a large time step size. The Fixed Leading Coefficient Backward Difference Formulas 

(FLCBDF) is used in DASPK to deal with variable time step size and integration order. With this 

method the system is converted, at each time step, to a system of nonlinear algebraic equations. 

In DASPK, this system is solved using the modified Newton’s method (Brown et al., 1994). The 

https://techtransfer.universityofcalifornia.edu/NCD/10326.html
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Jacobian matrix can be evaluated numerically (i.e. using finite difference approximation) or 

provided by the user. The assembly of the numerical Jacobian is computationally consuming, as 

the system is fully-dense (i.e. most of the elements of the Jacobian matrix are nonzero). Thus, in 

our implementation, we provide the Jacobian matrix analytically in order to improve the solution 

performance. The resulting linear system can be solved using either direct or iterative methods. 

We choose the iterative method (Krylov method) to gain computational efficiency owing to the 

highly dense nature of the matrices involved and due to the system high-dimensionality in 3D 

(Brown et al. 1994). Our choice for an iterative method is also justified by the memory limitation 

with direct methods for large linear systems. Both relative and absolute local error tolerances are 

prescribed to be 10
-8

.  

- Steady-state solution 

The spectral steady-state system can be obtained by dropping out the transient terms (first terms) 

in equations (28) and (29). This yields an algebraic nonlinear system with the Fourier 

coefficients as unknowns. To solve this system, we extend the implementation developed by 

Shao et al. (2018) to deal with THC. Thus, we first reduce the number of unknowns by 

expressing the Fourier coefficients A and B as function of E and G, as in the transient solution 

(see appendix B). The resulting nonlinear system is then solved using the nonlinear solver of the 

IMSL library (http://www.roguewave.com/products-services/imsl-numerical-libraries). To 

improve the solver performance, we provide the analytical Jacobian matrix. 

In both transient and steady-state solutions, the nonlinear solvers require the evaluation of the 

residual vector. The evaluation of this vector involves six nested summations in the convection 

terms. Thus, when a large number of Fourier coefficients should be used to avoid the Gibbs 

phenomenon, the solution becomes computationally impractical. As in Shao et al. (2018), we use 

http://www.roguewave.com/products-services/imsl-numerical-libraries
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the properties of the Kronecker delta function to reduce the number of nested summations to 

three.          

4. Results and Discussion: Verification and benchmarking 

Three targets are discussed in this section: i) as two numerical codes have been developed to 

solve the steady-state and transient spectral systems, we verify the correctness of these codes by 

comparison with finite element solutions obtained using a commercial code (COMSOL 

Multiphysics®), ii) comparison against standard finite element solutions, for complex cases 

involving sharp concentration and/or temperature distributions, are also used to examine the 

worthiness of the developed semi-analytical solution in benchmarking numerical codes and iii) 

we use the developed solution to provide new physical insights on the three-dimensional THC 

processes in the case of crossed-horizontal gradients, under both steady-state and transient 

conditions. In our analysis, as common in the literature, we use the average Nusselt ( Nu ) and 

Sherwood ( Sh ) numbers to characterize the rates of heat and mass transfer to the domain, 

respectively. Both steady-state values and time-variations of these numbers are investigated to 

assess steady-state and transient solutions, respectively. Nu  and Sh  are calculated using the 

Fourier series as follows:   
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4.1 Verifications 

To gain confidence in the correctness of the codes developed to solve the steady-state and 

transient spectral systems of the semi-analytical solution, we compare their results with a finite 

element solution (FE) obtained using COMSOL Multiphysics®. The steady-state semi-analytical 

solution is denoted by ‘SA-steady’ and the transient solution is termed as ‘SA-transient’. To 

avoid numerical artifacts in the finite element solution, that could lead to discrepancy with the 

semi-analytical solution, we consider relatively simple cases dealing with smooth temperature 

and concentration distributions (low convective flow regime). Thus, we examine two cases 

dealing with 10TRa  , 1.5gN   and 2Le   (denoted by ‘test case 1’) and 100TRa  , 1gN   

and 0.5Le   (denoted by ‘test case 2’), respectively. In ‘test case 1’ the conduction-diffusion 

regime is dominating (low thermal Rayleigh number), the mass transport is less diffusive than 

heat transfer ( 1Le  ) and the convective flow is solute-dominated ( 1gN  ). In the ‘test case 2’, 

the convective flow is more pronounced than ‘test case 1’ (higher thermal Rayleigh number), 

molecular diffusion is more intense than thermal conduction ( 1Le  ) and thermal and solute 

convective flows occur in equal proportions ( 1gN  ). 1Le   is not common in THC because 

heat is more diffusive than mass transfer, but such a configuration can be found in DDC. For the 

transient solutions, in both test cases, we consider 0.1   (porosity) and 0.46   (specific heat 

ratio).   

The FS method could suffer from Gibbs oscillations around discontinuities. Thus, appropriate 

number of Fourier modes should be used to obtain stable solutions. To do so, we use the 

technique developed by Fahs et al. (2014) that proceeds by increasing progressively the number 

of Fourier modes until reaching stable values of Nu  and Sh . In each space direction, we use the 
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same number of Fourier modes for all variables ( x , y , c  and  ). Thus, we have 

NX Ni Nl Nu Ns    , NY Nj Nm Nv Np     and NZ Nk Nn Nw Nt    . For the 

‘test case 1’, stable solutions (both SA-steady and SA-transient) have been obtained with 

3NX  , 12NY   and 6NZ  . In ‘test case 2’, the temperature and concentration distributions 

are sharper than ‘test case 1’. Thus, more Fourier modes are required to get a stable solution 

which is obtained with 3NX  , 24NY   and 20NZ  . It should be mentioned that stable 

isotherms and concentration contours can be obtained with smaller number of Fourier modes, but 

these numbers were required to get stable Nu  and Sh . 

The COMSOL model has been built by coupling three modules: ‘Darcy’s Law –dl’, ‘Heat 

Transfer in Porous Media –ht’ and ‘Transport of Diluted Species in Porous media –tds’. The 

density is assumed to be a function of temperature and concentration as in equation (5). The 

Boussinesq approximation is implemented in COMSOL by assuming constant density in the 

three modules (‘dl’, ‘ht’ and ‘tds’) and including variable density in the Gravity term. The 

physical parameters used in COMSOL to simulate ‘test case 1’ and ‘test case 2’ are given in 

Table 1. Transient simulations are performed in COMSOL. This is useful to avoid convergence 

issues usually encountered with steady-state solutions. It is also helpful for the comparison 

against the SA-transient solution. Steady-state solutions are obtained with COMSOL by letting 

the transient solutions evolve until a permanent regime is obtained. For each case, a grid 

convergence analysis is performed to obtain a mesh-independent solution. Nu  and Sh  are used 

as metrics for the convergence analysis. 3D triangular grids, generated by the COMSOL meshing 

tool (physical controlled mesh), are used for the space domain discretization. For ‘test case 1’ 

and ‘test case 2’, mesh-independent solutions are obtained using grids consisting of about 35K 

and 100K elements, respectively.  
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Table 1. Non-dimensional parameters used in the semi-analytical solutions and physical 

parameters used in COMSOL for different test cases.  

 

Non-dimensional parameters used in the semi-analytical solutions 

 

 
TRa  gN  Le  

*  
*  

‘test case 1’  10 1.5 2.0 0.1 0.46 

‘test case 2’ 100 1.0 0.5 0.1 0.46 

‘test case 3’ 100 1.5 2.0 0.1 0.46 

Invariable physical parameters used in COMSOL 

Porous box side 1.0 mH   

Porosity 0.1e   

Freshwater density -3

0 1000 kg.m   

Solid phase density -32000 kg.ms   

Gravity -29.8 m.sg   

Viscosity 3 -1 -110  kg.m .s   

Cold temperature 273.15 KCT   

Hot temperature 274.15 KHT   

Concentration of saltwater -31 mol.mSc   

Concentration of freshwater -30 mol.mFc   

Thermal expansion coefficient of water  2 -110  KT
  

Thermal capacity of Water -1 -14200 J.kg .Kfcp   

Thermal capacity of soil -1 -1850 J.kg .Kscp   

Thermal Conductivity of Water -1 -10.65 W.m .Kf   

Thermal Conductivity of Soil -1 -11.59 W.m .Ks   

Variable physical parameters used in COMSOL 

 Permeability 
2(m )K   

Molecular Diffusion 
2 -1(m .s ) mD   

Mass Expansion 
3 -1 (m .mol )C  

‘test case 1’  113.634 10  71.78 10  21.5 10  

‘test case 2’ 103.634 10  77.12 10  210  

‘test case 3’ 103.634 10  71.78 10  21.5 10  

*   and   are only used for transient solutions. 
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‘Test case 1’: 10TRa  , 1.5gN   and 2Le   

  
‘Test case 2’: 100TRa  , 1gN   and 0.5Le   

 
Figure 2. Comparison of the steady-state semi-analytical solution (Flood map) and COMSOL 

(dashed lines): concentration contours (left) and isotherms (right) in two diagonal plans. 

 

Figure 2 exemplifies results of the comparison between the ‘SA-steady’ solution against 

COMSOL. It shows the main concentration contours and isotherms on the diagonal plans along 

the solute and thermal gradients, respectively. These plans are helpful to understand the effects 

of thermal and solute gradients on concentration and temperature distributions. For ‘test case 1’, 

the figure shows a clear three-dimensional structure of the concentration distribution while the 

temperature field is almost two-dimensional because a conduction regime is dominating (low 

TRa  and 1Le  ). For higher thermal Rayleigh number, as in ‘test case 2’, both the concentration 
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distribution and temperature field have three-dimensional structures. Similar plots are made in 

Figure 3 for the comparison between the ‘SA-transient’ solution and COMSOL, at 0.005   for 

‘test case 1’ and 0.001   for ‘test case 2’. At 0.005  , the concentration contours and 

isotherms are almost linear in ‘test case 1’. Thus, the convective flow is relatively weak. The 

convective flow is more pronounced at earlier time in ‘test case 2’. We also compare the ‘SA-

steady’ solutions and COMSOL based on Nu  and Sh . The corresponding values are given in 

Table 2. For the SA-transient solutions, we plot, in Figure 4, the time variation of Nu  and Sh . 

This figure indicates that, for ‘test case 1’, mass transfer to the domain increases with time while 

the heat transfer flux is almost constant. For ‘test case 2’, two variation regimes can be 

distinguished. Both Nu  and Sh  increase with time at the beginning until reaching their maximal 

values. After a critical time, they decrease and reach asymptotic values. Figures 2, 3 and 4 and 

Table 2 show excellent agreement between the results of the semi-analytical solutions and 

COMSOL. Moreover, the asymptotic values of transient Nu  and Sh  are equal to the 

corresponding steady-state values, as in Table 2. These results provide compelling evidence in 

confirming the correctness of the codes developed to solve the steady-state and transient spectral 

systems of the semi-analytical solution. It should be mentioned that relatively fine levels of grids 

have been used to obtain independent-mesh values of Nu  and Sh , but in general stable 

isotherms and concentration contours can be obtained with coarser grids. 
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‘Test case 1’ ( 10TRa  , 1.5gN   and 2Le  )  at  0.005   

  
‘Test case 2’ ( 100TRa  , 1gN   and 0.5Le  ) at 0.001   

 
Figure 3. Comparison of the transient semi-analytical solution (Flood map) and COMSOL 

(dashed lines): concentration contours (left) and isotherms (right) in two diagonal plans (  is the 

non-dimensional time, 0.1    and 0.46    ). 
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Table 2. Average Nusselt ( Nu ) and Sherwood ( Sh ) numbers for different test cases obtained 

using the steady-state semi-analytical solution (SA-steady) and COMSOL. COMSOL-v5.3 is 

used to denote a previous version of the software while COMSOL is used for the newer release 

(v5.4). All parameters for the three test cases are given in Table 1. 

Test case Method Sh  Nu  

‘test case 1’ 
SA-steady 1.44 1.04 

COMSOL 1.42 1.04 

‘test case 2’ 
SA-steady 1.37 2.19 

COMSOL 1.37 2.16 

‘test case 3’ 

SA-steady 5.17 1.25 

COMSOL 5.01 1.25 

COMSOL-v5.3 1.97 1.17 

 

  

Figure 4. Time variation of the average Nusselt ( Nu ) and Sherwood ( Sh ) numbers: Comparison 

of the transient Fourier series solution (SA-transient) and COMSOL for ‘test case 1’ and ‘test 

case 2’. All parameters for both test cases are given in Table 1. 

 

 4.2 Benchmarking 

 

We consider a complex case dealing with sharper temperature and concentration distributions 

than the previous test cases. To do so, we assume high values for TRa  ( 100 ), gN  ( 1.5 ) and 

Le  ( 2 ). The new test case is called ‘test case 3’. Its non-dimensional and physical parameters 

are given in Table 1. The semi-analytical solution is obtained with: 17NX  , 18NY   and 

15NZ  . Our first simulations have been performed using COMSOL version (5.3). The 

simulations are performed using a grid of about 100K elements, as in ‘test case 2’. COMSOL is 

bound to run into convergence difficulties and cannot reach the permanent regime. Incoherent 
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results can be observed with negative temperatures and concentrations and larger values beyond 

physics (i.e. negative temperatures and concentrations or values largely greater than 1). 

Convergence issues and unphysical values of concentration and temperature are related to 

spurious oscillations because ‘test case 3’ is a convection-dominated problem for which the finite 

element method, used in COMSOL, can lead to instabilities. It is well-known that these 

oscillations can be removed by using a grid respecting a Péclet number less than 1 in the whole 

computational domain. In 3D, this requires a very fine grid with several million of elements 

which is computationally highly expensive. When finer grid (about 400K elements) is used, 

COMSOL runs for the entire simulation duration until the steady-state solution. The numerical 

oscillations can be significantly reduced but they do not completely disappear. The COMSOL 

results and the SA-steady solution are plotted in Figure 5. It can be clearly seen that the solutions 

are useless. Spurious Oscillations are spread over the whole domain. As mass transfer is more 

convective than heat ( 1Le  ), oscillations are more pronounced for concentration contours than 

isotherms. The steady-state Nusselt and Sherwood numbers obtained using the semi-analytical 

solution and COMSOL (v5.3) are given in Table 2 which shows significant discrepancy between 

the results, especially for Sh . This is consistent with the results presented in Figure 5.  

For the comparison between the SA-transient solution and COMSOL, we only investigate time 

variation of Nu  and Sh . For the sake of brevity, we do not present isotherms and concentration 

contours. The time variations of Nu  and Sh  are given in Figure 6. This figure indicates a huge 

discrepancy between the semi-analytical solution and COMSOL-v5.3. The latter produces 

unphysical results as both Nu  and Sh  are decreasing with time. The origin of this behavior is the 

spurious oscillations that appear during the entire simulation. 
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‘Test case 3’: SA-steady vs. COMSOL-v5.3  

  
‘Test case 3’: SA-steady vs. COMSOL 

 
Figure 5. Comparison of the steady-state semi-analytical (SA-steady) solution in flood map and 

COMSOL in dashed lines for ‘test case 3’: concentration contours (left) and isotherms (right) in 

two diagonal plans. COMSOL-v5.3 is used to denote a previous version of the software while 

COMSOL is used for the newer release (v5.4). Parameters for ‘test case 3’ are given in Table 1.   

 

We also simulate ‘test case 3’ using the new release of COMSOL (version 5.4) with a grid 

consisting of about 400K elements. The resulting isotherms and concentration contours are 

plotted in Figure 5. This figure shows good agreement with the semi-analytical solution. In 

COMSOL (version 5.4) the software undergoes stability improvements that are introduced as 

updates. The results of Figure 5 confirm that the new numerical technique implemented in the 

new version of COMSOL allows for reducing the unphysical osciallations. But this technique 

cannot remove the osciallations competely, as some instabilities are still visible on the 
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concentration contours (see Figure 5). Good agreement is also found between the SA-steady 

solution and COMSOL (version 5.4) reagarding Nu  and Sh , as given in Table 2. The time 

variation of Nu  and Sh  with the new version of COMSOL are plotted in Figure 6. Excellent 

agreement can be observed with the SA-transient solution regarding Nu , while small 

discrepancy can be noted for Sh  which is underestimated in COMSOL. This means that the 

numerical scheme used in COMSOL overestimates the molecular diffusion. This phenomenon is 

known as numerical diffusion (Younes et al., 2007). It affects only Sh  because concentration 

distribution is sharper than the temperature distribution ( 1Le  ).    

 

Figure 6. Time variation of the average Nusselt ( Nu ) and Sherwood ( Sh ) numbers: Comparison 

of the transient semi-analytical (SA-transient) solution and COMSOL for ‘test case 3’. 

COMSOL-v5.3 is used to denote a previous version of the software while COMSOL is used for 

the newer release (v5.4). Parameters for ‘test case 3’ are given in Table 1.       

 

Both versions of COMSOL (5.3) and (5.4) give similar results for ‘test case 1’ and ‘test case 2’. 

Thus, contrary to the previous test cases, the numerical solution of ‘test case 3’ is sensitive to the 

numerical scheme used to solve the governing equations. This is an important property for a 

good benchmark that can be useful for the verification of numerical codes and to assess the 
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robustness of numerical schemes for solving the equations of THC. ‘test case 3’ is also helpful in 

comparing performance of numerical codes. To highlight this property, we perform several 

simulations of ‘test case 3’ using different strategies of time integration in COMSOL. The results 

show that the performance of the numerical solution (CPU time) is more sensitive to the time 

integration scheme than the first test cases.  

The comparison between the semi-analytical solution and COMSOL, in particular for ‘test case 

3’, points out the high performance of the former. In fact, while a grid involving about 400K 

elements (370K nodes), leading to a system with 740K degrees of freedom, is required to obtain 

an accurate numerical solution, the semi-analytical solution is obtained with only 14K degrees of 

freedom. This leads to a huge reduction in computational time. This gain is more significant for 

convection-dominated cases. Moreover, we should mention that the problem of unphysical 

oscillations has been reported in purely solute or thermal natural convection in porous media at 

relatively high Rayleigh number (Ra=500) (Shao et al., 2018). The results here show that THC 

simulation is more challenging than purely compositional or thermal natural convection because 

numerical instabilities could appear at relatively small values of Rayleigh number.  

5. Sensitivity to parameters for THC under crossed thermal and 

solute gradients 
 

At steady-state, the THC in the porous box is controlled by three parameters: TRa , gN  and Le .  

Two additional parameters (  and  ) are involved in transient solutions. The developed semi-

analytical solution deals with three-dimensional THC in the case of crossed-horizontal salinity 

and temperature gradients. The effects of the parameters controlling THC on heat and mass 

transfer processes in such a case have never been investigated in the literature because it requires 
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3D simulations which are computationally expensive. In this section, taking advantage of the 

efficiency and robustness of the developed semi-analytical solution, we perform a detailed 

parameters sensitivity analysis. The effects of   and    on convective flow and heat and mass 

transfer are predictable as they mainly affect the time required to reach the steady-state regime. 

Thus, in our analysis we consider the sensitivity to TRa , gN  and Le . For the transient 

simulations, we assume constant 0.1   and 0.46  .  

5.1 Effect of TRa  

We assume moderate value of Le  ( 2)  to confine the discussion. This value is physically 

plausible as heat transfer is more diffusive than mass transfer. We vary TRa  from 10 to 200 and 

we consider two cases dealing with thermal ( 0.5gN  ) and solute ( 1.5gN  ) -dominated 

convective flow, respectively. The cases dealing with thermal-dominated convective flow are 

denoted by ‘TD’ while the cases involving solute-dominated convective flow are denoted by 

‘SD’. The effect of TRa  on the structure of the steady-state velocity field is investigated using 

the arrow-surface representation as in Figure 7. This figure is helpful in understanding the 3D 

structure of the main flow which is the superposition of the two components. The first 

component is related to the solute-driven convective flow (SDC) while the second one is the 

thermally driven convective flow (TDC). The SDC flow component is two-dimensional and 

occurs in the vertical planes orthogonal to the x-axis. The TDC flow component is also planar 

and takes place in the vertical planes orthogonal to y-axis (see figure C1 in Appendix C). The 

superposition of these flow components (SDC and TDC) results in a three-dimensional overall 

flow. Different structures are reported for the TD and SD cases. For the TD case, the primary 

flow is the TDC flow component, which is two-dimensional. The three-dimensional structure of 
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the overall flow is created by the crossing SDC flow component that leads to vortex formation at 

the vertical plane Y=1. The inviscid evolution of this vortex within the domain is represented 

using stream-tubes in Figure 7 (bottom figures). For the TD case, the vortex structure is an 

association of two hourglass shaped vortices oriented diagonally from the plane Y=1 to the plane 

Y=0. For the SD case, the primary flow is analogue to the SDC flow component and three-

dimensional structure is attributed to the TDC flow component. Crossing-flows lead to a central 

vortex which has the same shape as in the SD case, but with a different orientation from the 

plane X=1 to X=0. The iso-surfaces of the steady-state vector potential are given in Appendix C 

(Figure C2). This figure indicates that distribution of X  is attributed to the SDC flow. This is 

consistent with equation (17) which confirms that variation of X  is mainly related to the y-

component of the concentration gradient. The variation of Y  is linked with the TDC which is 

consistent with the mathematical formulation in equation (18). For low a Rayleigh number, the 

vector potential isosurfaces have a regular form, indicating almost two-dimensional conditions. 

Irregular shapes can be observed at high Rayleigh number, indicating three-dimensional flow. 

For the TD case, X  (= 0.09) is smaller than Y  (= 0.18). Thus, the TDC flow is 

dominating. The opposite is true for the SD case. Vector potential isosurfaces indicate that the 

strength of the convective flow increases with increasing Rayleigh number (both X  and Y  

increase with TRa ).  
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     TD case - 0.5gN   SD case - 1.5gN   

 
 
 
 
 
 

 

  

 
 
 
 
 
 
 

 

 

 

 

 
Figure 7. Effect of Rayleigh number on the flow structure: Arrow surface plot of the steady-state 

velocity field at small and large thermal Rayleigh number in the cases of thermal (TD) and solute 

(SD) -dominated convective flow. Bottom figures: Stream-tubes showing the behavior of the 

vortex within the domain. For the TD case the stream-tubes are highlighted with concentration 

while for the SD cases they are highlighted with temperature.   
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Figure 8 shows the effect of TRa  on the concentration and temperature distributions. These 

figures indicate that concentration distribution is sensitive to TRa  in the SD case while 

temperature field is affected by TRa  in the TD case. At low TRa , in the TD case, the 

concentration isosurfaces are almost planar and vertical because the main flow occurs in the 

planes orthogonal to the concentration gradient. This is also the case for temperature isosurfaces 

at low TRa  in the SD case. At high TRa , in the TD case, both temperature and concentration 

isosurfaces follow the flow structure. The three-dimensional variation of the concentration is 

confined to limited zones at the top and bottom surfaces of the domain. However, the 

temperature isosurfaces are fully three-dimensional. The opposite is true for the SD case at high 

thermal Rayleigh number.  

 TD case - 0.5gN   SD case - 1.5gN   

 Concentration Temperature Concentration Temperature 

 
 
 
 
 
 

 

    

 
 
 
 
 
 
 

 

    
Figure 8. Effect of the Rayleigh number on the concentration and temperature distributions: 

Steady-state concentration and temperature isosurfaces (0.25, 0.5 and 0.75) at small and large 

thermal Rayleigh numbers in the cases of thermal (TD) and solute (SD) -dominated convective 

flow.     
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The effects of TRa  on Nu  and Sh  (both steady-state and transient) are depicted in Figure 9, for 

both TD and SD cases. Figures 9a and 9b confirm that the steady-state values of both Nu  and 

Sh  increase with TRa . The increase of Rayleigh number leads to flow intensification which 

narrow the solute and thermal boundary layers and enhance heat and mass transfer to the domain. 

However, the effect of TRa  on heat ( Nu ) and mass ( Sh ) transfer fluxes are not equally 

distributed. In the TD case, TRa  has a slight effect on Sh  and a significant impact on Nu . The 

opposite is true for the SD case. This means that in the TD cases, the increase of TRa  

significantly enhance the heat transfer flux, while for the SD cases, TRa  has more impact on the 

mass transfer flux.      
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(a) (b) 

  
(c) (d) 

Figure 9. Effects of the thermal Rayleigh number on the average Sherwood and Nusselt numbers 

in the cases of thermal (TD) and solute (SD) -dominated convective flow: Steady-state regime (a 

and b) and transient regime (c and d). 

Figures 9c and 9d show the time variations of Sh  and Nu  at low and high values of TRa , for 

TD and SD cases. The general behavior is that both Sh  and Nu  start from 1 at t=0 and evolve 

until reaching asymptotic values indicating the steady-state regime. The initial value of one is 

related to the initial conditions that are linearly distributed for both concentration and 

temperature. The time required to reach the steady-state regime decreases with increasing TRa . 

While in general, the mass flux to the cavity increases with time, Figure 9c shows particular 

variation of Sh  in the TD case and at high Rayleigh number. This figure shows that, in such a 
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case, the time variation of the mass flux (as measured by Sh ) exhibits two regimes. Thus, it 

increases first to reach a maximum value at a transition time after which it decreases 

asymptotically toward the steady-state value. A similar behavior can be observed for Nu  but in 

the SD case and at high Rayleigh numbers. 

5.2 Effect of gN  

As in the previous section, we assume 2Le  . Since gN  affects mainly the buoyancy forces, we 

consider high convective cases by assuming 100TRa  . The effect of gN  on the flow structure 

was investigated in the previous section. Thus, we investigate its effect on the maximum velocity 

components   max max max,  and X Y ZQ Q Q . 
2H

 
 

 
Q = q

 

is the non-dimensional velocity field. The 

steady-state results (Figure 10a) show that the maximum velocity component is in the vertical 

direction ( max

ZQ ). There is an enhancement in the vertical flow when gN  is increased. In the TD 

cases, the x-component decreases with gN  while the y-component increases. Both components 

increase with gN
 
in the SD cases. For the TD cases, the flow in the x-direction is higher than in 

the y-direction. The opposite is true in the SD cases. The average Nusselt number decreases with 

gN  while the average Sherwood number increases (Figure 10b). This indicates that the increase 

of gN
 
leads to the improvement of the mass flux to the domain and to the diminishment of the 

heat flux.     

The transient solutions confirm that the increase of gN  leads to the enhancement of the flow in 

the y- and z-components, whatever the time (Figure 10c). It is also true for the x-component in 

the SD cases and TD cases, but in TD cases, just for a short time at the beginning of the transient 

regime. After this short time and until the steady-state regime, max

XQ  decreases with the increase 
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in gN . In general, these results are consistent with the flow behavior in the steady-state regime.  

Figure 10c shows that max

ZQ  increases with time and reaches the steady-state regime faster than 

the other velocity components. max

YQ  is almost increasing with time, but less time variability can 

be observed in the TD cases. Variation of  max

XQ in time is highly sensitive to gN . We can observe 

in Figure 10c that, in the TD case, max

XQ increases with time for  0.25gN   while it decreases 

when gN  is increased to 0.75. For the SD cases with  1.25gN   , max

XQ   exhibits two regimes for 

time variation as it increases for a short time at the beginning of the simulation and then it 

decreases to reach the steady-state value. For the SD cases but with  1.75gN   ,  max

XQ  decreases 

with time. The time variations of the average Sherwood and Nusselt numbers are given in 

Figures 10d and 10e, respectively. It is clear that, whatever the time, Sh  increases with the 

increase of gN , while Nu  is decreasing. In the TD cases, Sh  follows two regimes of time 

variation. It increases with time at the beginning of the transient regime and then decreases until 

reaching its steady-state value. Similar behavior is observed for Nu  (Figure 10e), except for the 

TD case at small Gravity number ( 0.25gN  ). 
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(a) (b) 

 

 
(d) 

 

(c) (e) 

Figure 10. Effects of the Gravity number on the maximum velocity components, average 

Sherwood and Nusselt numbers for steady-state (a and b) and transient (c-e) regimes.  

The effects of gN
 
on concentration and temperature distributions are shown in Figure 11. For the 

TD cases, at constant TRa , the increase in gN  can be interpreted as an increase in the 
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concentration gradient. This enhances the convective flow in the vertical planes parallel to YOZ 

and reduces the flow component in the vertical planes parallel to XOZ (related to the thermal 

gradient). This explains why the concentration isosurfaces become deformed when gN  is 

increased while the opposite is true for the temperature isosurfaces. Similar behavior is observed 

for the SD cases.  

 TD cases - 1gN    SD cases - 1gN   

 Concentration Temperature  Concentration Temperature 

 
 
 
 
  
 
 

  

 
 
 
 
  
 

 

  

 
 
 
 
  
 
 

  

 
 
 
 
  
 

 

  
Figure 11. Effect of the Gravity number ( gN ) on the concentration and temperature 

distributions: Main temperature and concentration isosurfaces (0.25, 0.5 and 0.75) for different 

values of gN   in the cases of thermal (TD- left) and solute (SD- right) -dominated convective 

flow.     
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5.3 Effect of Le  

The effect of Le  is investigated in both TD   0.5gN   and SD  1.5gN    cases. We assume 

100TRa  . The effects of Le  on the steady-state maximum velocity components are given in 

Figure 12a. It can be seen that the velocity field is slightly sensitive to Le  in the TD cases. At 

constant thermal Rayleigh number, the increase in Le  can be interpreted as a decrease of the 

molecular diffusion coefficient. The latter can lead to a sharper concentration distribution and, as 

a result, a higher solute gradient. However, since convection flow is mainly caused by the 

thermal gradient, the increase of the solute gradient does not affect the velocity field. For the SD 

case, where convective flow is mainly related to concentration gradient, the velocity field 

becomes sensitive to Le , in particular  max

YQ  and max

ZQ .  max

XQ  remains slightly sensitive to Le , 

which is logical as this component of the flow is caused by the temperature gradient. Figure 12a 

shows an intensified convection rotating flow with the increase in Le . Time variations of the 

maximum velocity components are given in Figure 12c. This figure confirms that, in the TD 

cases, the transient convective flow is slightly sensitive to Le . max

XQ  increases with time to reach 

its steady-state value while  max

ZQ  and max

YQ  have critical time for the transition between 

increasing and decreasing variations. For the SD case, as for the steady-state regime, the 

transient maximum velocity components increase with the increase of Le . It can be seen that 

max

YQ and  max

ZQ increase with time until reaching the steady-state values, while  max

XQ has different 

behavior as it is decreasing. In the SD case, both mass and heat fluxes to the domain are sensitive 

to Le  (Figure 12b). As expected the mass flux to the domain is enhanced with the increase in Le

. This is attributed to the reduction in the solute gradient. However, the heat flux to the domain is 

reduced. In the TD case, Nu  is slightly sensitive to Le  while expected Sh  increases with the 
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increase of Le . The time variations of Sh  and Nu  are given in Figures 12d and 12e, 

respectively. Similar to the steady-state condition, the transient mass flux in the domain increases 

with the increase in Le  while the transient heat flux decreases. In the SD case, Sh  increases with 

the time until reaching the steady-state regime while in the TD case it evolves to the steady-state 

value by following increasing and decreasing periods. The opposite is true for Nu . It is relevant 

to mention that, while steady-state heat flux has been found to be insensitive to Le , the transient 

behavior of the Nu  shows some sensitivity to this parameter. Figures 12d and 12e show that 

both Sh  and Nu  reach the steady-state regime in the SD case faster than in the TD case.  

 The effects of Le  on the temperature and concentration isosurfaces are shown in Figure 13. It is 

clear from this figure that, for the considered range of variations, in both SD and TD cases, the 

temperature and concentration fields are slightly sensitive to Le . More sensitivity is observed for 

concentration than temperature.  
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(a) (b) 

 

 
(d) 

 
(c) (e) 

Figure 12. Effects of Lewis number on the maximum velocity components, average Sherwood 

and Nusselt numbers for steady-state (a and b) and transient (c-e) regimes.  
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 TD case - 0.5gN   SD case - 1.5gN   
 Concentration Temperature Concentration Temperature 

 
 
 
 

 

    

 
 
 
 

 

    
Figure 13. Effect of the Lewis number on the concentration and temperature distributions: 

Steady-state concentration and temperature isosurfaces (0.25, 0.5 and 0.75) at different values of 

Lewis numbers in the TD and SD cases.      

6. Understanding the effects of temperature and concentration 

gradients on heat and salinity fluxes 

Several applications involve THC processes under different configurations of heat and salinity 

gradients. For instance, in applications involving injection of hot fluids inside wells (i.e 

geothermal, gas and oil wells) and in steam injection, there are significant heat losses that create 

a temperature gradient in the aquifers. In salinized aquifers, this creates an interaction with the 

existing salinity gradient (van Lopik et al., 2015). Thus, in such a case, it is important to 

understand the effect of temperature gradient on mass flux entering the domain and the impact of 

salinity gradient on heat flux, which is the main objective of this section. This is useful to 

investigate the heat losses caused by the salinity gradient and/or the salinization induced by the 

heat gradient. Several previous studies addressed this question but under a 2D assumption (van 

Lopik et al., 2015), which is not valid in the case of crossed-horizontal temperature and salinity 

gradients because of the 3D effects. We address this question taking advantage of the developed 
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3D semi-analytical solution. Thus, we first assume variable-temperature gradient H CT T T    

and we investigate the effect of T  on mass flux, as measured by the average Sherwood 

number. All other parameters related to fluid and porous domain properties are assumed to be 

constant. The analysis is based on the parameters used in ‘test case 3’, as described in Table 1. 

However, to investigate both TD  1gN   and SD  1gN 
 
cases, we consider 5gN   for  

1T  , we then increase T  from 1 to 11, progressively. This corresponds to the decrease in  

gN  from 5 to 0.45. The variation of the steady-state average Sherwood number with respect to 

T  is depicted in Figure 14a. As it can be seen, the increase of T  reduces the salinity flux in 

both TD and SD cases. In fact, the increase in T
 
is associated with the enhancement of the 

convective flow caused by the thermal gradient which occurs in the vertical planes parallel to the 

salinized wall. This leads to a reduction in the flow component perpendicular to the salinized 

wall and, as a result, reduces the salinity flux. Figure 14a shows that the salinity flux is more 

sensitive to the temperature gradient in the SD cases than the TD cases. The effect of T  on the 

transient behavior of the salinity flux is depicted in Figure 14b. For small temperature gradient, 

the salinity flux reaches the steady-state value faster than high temperature gradient where two-

time variation regimes (increasing then decreasing) can be observed. As for steady-state, the 

transient behavior of the salinity flux is slightly sensitive to  T  in the TD cases. We also 

investigate the effect of concentration gradient  s fc c c  
 
on heat flux, as measured by the 

average Nusselt number. Thus, as for the effect of  T , we keep all parameters constant and we 

increase  c  from 1 to 11. We use the same parameters as in ‘test case 3’ in Table 1, but we 

assume that 0.2gN 
 
for 1c  . Thus  gN

 
varies from 0.2 to 2.2. Figure 14c shows that the 

steady-state heat flux to the domain decreases with increasing c . The explanation of this 
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behavior is analogous to the variation of the salinity flux with temperature gradient. The heat 

flux is more sensitive to c  in the TD cases. Figure 14d indicates that, in the SD cases, the 

transient heat flux reaches the steady-state regime faster than the TD cases. In contrast to the 

salinity flux, similar behavior of heat flux with respect to time can be observed, whatever the 

concentration gradient.     

 

Figure 14. Effect of temperature (resp. concentration) gradient on mass (resp. heat) flux to the 

domain, as measured by the average Sherwood (resp. Nusselt) number: Steady-state regime (a 

and c) and transient regime (b and d).   

  

(a) (b) 

  
(c) (d) 
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7. Conclusion 

In this work, we investigated three-dimensional THC in a porous box under both transient and 

steady-state regimes. We consider the case of crossed-horizontal temperature and concentration 

gradients for which the 2D assumption is not valid. We develop a meshless semi–analytical 

solution based on the Fourier series method (FS). From a theoretical and technical point of view, 

the main contribution and novelty of this work is the new implementation of the FS method for 

solving transient problems. The governing flow, mass and heat transport equations have been 

amenable to a FS solution by using the vector potential, the 3D counterpart of the stream 

function. The FS method leads to a spectral system of differential-algebraic equations. In the 

spectral space, we express the flow (i.e. vector potential) in terms of the concentration and 

temperature Fourier series and we convert the spectral system to a system of ordinary differential 

equations. This allows for reducing the number of degree of freedom and improves the resolution 

procedure as it is well-known that ordinary differential systems are more stable than differential-

algebraic systems.   

The semi-analytical solution is verified against a finite element solution obtained with 

COMSOL. In general the semi-analytical solution provides high accurate results with reduced 

number of degree of freedom. Excellent agreement between these solutions has been observed 

for cases involving small Rayleigh number. Numerical experiments with a high Rayleigh number 

show high sensitivity of the finite element solution to the computational mesh and the numerical 

technique used in space discretization and time integration. This highlights the worthiness of the 

developed semi-analytical solution as a benchmark for the assessment of newly developed 

numerical methods and schemes for THC problems. We provide high quality data, based on 

quantitative metrics, which can be used for benchmarking numerical codes.     
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We performed a complete parameter sensitivity analysis to investigate the effect of governing 

parameters on the THC processes. In our analysis we distinguish between the cases of thermal-

dominated convective flow (TD) and solute-dominated convective flow (SD). In both cases we 

observed the formation of single vortex convective flow which cannot be captured in 2D cases. 

The orientation of the vortex flow depends on the Gravity number ( gN ) while its intensity is also 

sensitive to the thermal Rayleigh number ( TRa ). As it is well known in problems involving 

density driven flow, the increase of TRa  intensifies the convective flow and leads to the increase 

of both steady-state Nusselt ( Nu ) and Sherwood ( Sh ) numbers. In the TD cases, two regimes 

(increasing then decreasing) of transient behavior are observed for Sh . Similar transient 

evolution is observed for Nu  in the SD cases. The increase of the Gravity number can be 

interpreted as an increase of the solute Rayleigh number which is accompanied by convective 

flow intensification. The flow acceleration occurs in the plane parallel to the concentration 

gradient. This leads to the enhancement of the steady-state salinity flux entering the domain (i.e. 

Sh ) and reduction of the heat flux (i.e. Nu ). Transient evolutions of Nu  and Sh  are sensitive to 

gN . Either monotonic increasing variation or two regimes of variation can be observed, 

depending on gN . The convective flow is slightly sensitive to the Lewis number ( Le ). But in 

general, the vertical component of flow increases with Le . The steady-state heat flux to the 

domain is also slightly sensitive to Le , especially in the TD cases, while the transient evolution 

of the heat flux is highly  sensitive to this parameter.   

We also investigate the effect of thermal gradient on the salinity flux and the effect of 

concentration gradient on heat flux. The results show that, in the case of crossed gradients, the 
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increase in heat gradient reduces the salinity flux to the domain, especially in the SD cases. The 

increase of salinity gradient reduces the heat losses from the hot source.   

Future extensions of this work could be the application of the FS method to unstable 

configurations of THC. This will be useful to address the representativeness of 2D and 3D 

simulations with a high accurate solution free from discretization errors. The findings in this 

paper provide a technical support on the effect of pertinent parameters on three-dimensional 

THC, validity and applicability of these findings in real-word problem is worthy of future 

inquiry. This study has certain limitations. For example, existing extensive studies (Zhao et al., 

2008b, 2016; Zhao, 2014) have demonstrated that chemical dissolution reactions can change 

both porosity and permeability of a porous medium and therefore affect the flow instability in the 

porous medium. Chemical reactions were neglected in this study, even though they should be 

considered in the future studies.  
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Appendix A: Coefficients of the spectral system 

 

1  if 0

0  if 0
i

i

i



 

  

(A1) 
 

 

2  if I 0

1  if I 0
I


 

  

 

 

 

(A2)

 

,

1 ( 1) 1 ( 1)
    G

0                                       G

G r G r

G r

if r
G r G r

if r

     
 

   
   

(A3) 

, ,'

, ,

  if ,  and 

0        

i j k

i j k

A i Ni j Nj k Nk
A

else

   
 
  

(A4) 

, ,'

, ,

  if ,  and 

0        

i j k

i j k

B i Nl j Nm k Nn
B

else

   
 
  

(A5) 

, ,'

, ,

  if ,  and 

0        

i j k

i j k

E i Nu j Nv k Nw
E

else

   
 
  

(A6) 

, ,'

, ,

  if ,  and 

0        else 

i j k

i j k

G i Ns j Np k Nt
G

   
 
  

 (A7) 

, , , , , ,G r o G r o G r o G r o G r o            

 

 (A8) 

, , , , ,G r o G r o G r o G r o        

 

 (A9) 

, , , , ,G r o G r o G r o G r o        

 
 (A10) 

, , , , ,G r o G r o G r o G r o        

 

 (A11) 

, , , , ,G r o G r o G r o G r o         

 
 (A12) 

 

where ,i j
 
is the Kronecker delta function

 

 

 



58 
 

Appendix B: converting the spectral equations to a system of ordinary 

differential equations 
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Appendix C: Understanding the structure of the convective flow 

 

Figure C1. Components of the overall convective flow: The solute-driven convective flow 

(SDC) and the thermal-driven convective flow (TDC).   

 

 

 TD cases - 0.5gN   SD cases - 1.5gN   

 
 
 
 
 
 

 

  

 
 
 
 
 
 
 

 

  
Figure C2. Steady-state isosurfaces of the vector potential components ( X : left and Y : 

right) and velocity field (arrows) at small and large thermal Rayleigh numbers in the cases of 

thermal (TD) and solute (SD) -dominated convective flow.    

 


