
HAL Id: hal-03432654
https://hal.science/hal-03432654v1

Preprint submitted on 17 Nov 2021 (v1), last revised 17 Jan 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A review on deep reinforcement learning for fluid
mechanics: an update

J Viquerat, P Meliga, A Larcher, E Hachem

To cite this version:
J Viquerat, P Meliga, A Larcher, E Hachem. A review on deep reinforcement learning for fluid
mechanics: an update. 2021. �hal-03432654v1�

https://hal.science/hal-03432654v1
https://hal.archives-ouvertes.fr

A review on deep reinforcement learning for
fluid mechanics: an update

A Preprint

J. Viquerat∗
MINES Paristech, CEMEF
PSL - Research University

jonathan.viquerat@mines-paristech.fr

P. Meliga
MINES Paristech, CEMEF
PSL - Research University

A. Larcher
MINES Paristech, CEMEF
PSL - Research University

E. Hachem
MINES Paristech, CEMEF
PSL - Research University

October 20, 2021

Abstract

In the past couple of years, the interest of the fluid mechanics community for deep re-1

inforcement learning (DRL) techniques has increased at fast pace, leading to a growing2

bibliography on the topic. Due to its ability to solve complex decision-making prob-3

lems, DRL has especially emerged as a valuable tool to perform flow control, but4

recent publications also advertise great potential for other applications, such as shape5

optimization or micro-fluidics. The present work proposes an exhaustive review of6

the existing literature, and is a follow-up to our previous review on the topic. The7

contributions are regrouped by domain of application, and are compared together re-8

garding algorithmic and technical choices, such as state selection, reward design, time9

granularity, and more. Based on these comparisons, general conclusions are drawn10

regarding the current state-of-the-art, and perspectives for future improvements are11

sketched.12

Keywords Deep reinforcement learning · Fluid mechanics13

1 Introduction14

During the past decade, machine learning methods, and more specifically deep neural network (DNN),15

have achieved great successes in a wide variety of domains. State-of-the-art neural network architec-16

tures have reached astonishing performance levels in image classification tasks [1, 2], speech recognition17

[3] or generative tasks [4]. With a generalized access to GPU computational resources through cheaper18

hardware or cloud computing, such advances have been paving the way for a general evolution of the19

reference methods in these domains at both academic and industrial levels.20

The rapid expansion of neural networks to multiple domains has also yielded important progress in the21

domain of decision-making techniques, by the coupling of DNNs with reinforcement learning algorithms22

(called deep reinforcement learning, or DRL). Several major obstacles that had been hindering classical23

reinforcement learning have been lifted using the feature extraction capabilities of DNNs, and their24

ability to handle high-dimensional state spaces. Unprecedented efficiency has been achieved in many25

∗Corresponding author

2016 2017 2018 2019 2020 2021

Drag reduction
Heat transfer Experimental

Others
Microfluidics
Swimming

Review
Shape optimization

Figure 1: Timeline of recent publications on deep reinforcement learning for fluid dynam-
ics. Colors indicate different fields of application. Please note that we retain here the date of the first
pre-print publication, and not that of final publication in peer-review journals. Indeed, the fast-paced
evolution of the DRL community brings particular importance to pre-prints, sometimes supported by
code release. The square symbols denote references included in our previous review [17].

domains such as robotics [5], language processing [6], or games [7, 8], but DRL has also proven useful26

in many industrial applications, such as autonomous cars [9, 10], or data center cooling [11].27

The efforts for applying DRL to fluid mechanics are ongoing but still at an early stage, with only a28

handful of pioneering studies providing insight into the performance improvements to be delivered in29

the field. Nonetheless, from a few liminal contributions in 2016 [12] and early 2018 [13], the domain has30

undergone an increasing inflow of contributions, that pinnacled in 2020, with no less than 16 pre-prints31

and articles, and a clear focus on drag reduction problems, as shown in figure 1. This enthusiasm can32

be explained by two main factors: first, the increasing number of open-source initiatives [14, 15, 16],33

that has led to an accelerated diffusion of the methods in the community. Second, the sustained34

commitment from the machine learning community, that has allowed concurrently expanding the35

scope from computationally inexpensive, low-dimensional reductions of the underlying fluid dynamics36

to complex Navier–Stokes systems, all the way to experimental set-ups. The present review proposes37

a six-year perspective of deep reinforcement learning applied to fluid flow problems, in the context38

of both numerical and experimental environments. It is intended as a follow up to our first review39

released as a pre-print in 2019 [17], that was followed in 2020 by a shorter review by another group of40

authors, focused on drag reduction and shape optimization problems [18]. To the best of the authors41

knowledge, those are the only other similar initiatives preceding this one, that are also featured in42

figure 1 for the sake of completeness.43

The organization is as follows: a reminder on the main DRL algorithms that have been used in a fluid44

dynamics context is provided in section 2. Section 3 lists of relevant issues to consider when evaluating45

the progress of DRL for practically fluid flow problems. An extensive bibliographical review is then46

conducted in sections 4 and 5, that covers a total of 32 papers, most of them subsequent to the47

previous review articles. Contributions are grouped and compared by domain of applications. Finally,48

section 6 draws general conclusions on the state-of-the-art and proposes a transversal study including49

suggestions for future work in the field.50

2 Deep reinforcement learning51

This section covers the basic concepts of deep reinforcement learning, and briefly describes the methods52

most represented in the selected contributions. First, the basic concepts of reinforcement learning are53

introduced, whereafter value-based and policy-based methods are distinguished. Then, specificities of54

DRL are detailed, and a curated list of algorithms is proposed, including deep Q-networks (DQN),55

advantage actor-critic (A2C), proximal policy optimization (PPO), trust-region policy optimization56

(TRPO), deep deterministic policy gradients (DDPG), twin-delayed deep deterministic policy gradients57

(TD3) and policy-based optimization (PBO). For a more sophisticated introduction to DRL, the reader58

is referred to [19]. The notations used in the remaining of this review can be found in table 1.59

2

Table 1: Notations used in the present review
γ discount factor
λ learning rate
α, β step-size
ε probability of random action
s,s′ states
S+ set of all states
S set of non-termination states
a action
A set of all actions
r reward
R set of all rewards
D set of collected transitions
t time station
T final time station
at action at time t
st state at time t
rt reward at time t

r(s, a) reward received for taking action a in state s
R(τ) discounted cumulative reward following trajectory τ
Gt discounted cumulative reward starting from time t
π policy
θ, θ′ parameterization vector of a policy
πθ policy parameterized by θ
π(s) action probability distribution in state s following π
π(a|s) probability of taking action a in state s following π
V π(s) value of state s under policy π
V ∗(s) value of state s under the optimal policy
Qπ(s, a) value of taking action a in state s under policy π
Q∗(s, a) value of taking action a in state s under the optimal policy
Qθ(s, a) estimated value of taking action a in state s with parameterization θ

2.1 Reinforcement learning60

Reinforcement learning is a class of methods designed for decision-making problems, in which an61

agent learns to interact with an environment by (i) observing it, (ii) taking actions based on these62

observations, and (iii) receiving rewards from it, as a measure of the quality of the action taken. RL63

is based on Markov decision processes, for which a typical execution goes as follows (see also figure 2):64

� Assume the environment is in state st ∈ S at iteration t, where S is a set of states;65

� The agent uses wt, an observation of the current environment state (and possibly a partial66

subset of st) to take action at ∈ A, where A is a set of actions;67

� The environment reacts to the action by transitionning from st to state st+1 ∈ S;68

� The agent is fed with a reward rt ∈ R, where R is a set of rewards, and a new observation69

wt+1.70

The steps described above repeat until a termination state is reached, and the succession of states71

and actions then define a finite trajectory τ =
(
s0, a0, s1, a1, ...

)
. In any given state, the objective of72

the agent is to determine the adequate action to maximize its cumulative reward over an episode, i.e.73

over one trajectory. Most often, the quantity of interest is the discounted cumulative reward along a74

trajectory, defined as:75

R(τ) =
T∑
t=0

γtrt , (1)

3

Environment
st 7→ st+1

Agent
rt

at

wt

Figure 2: RL agent and its interactions with the environment.

where T is the horizon of the trajectory (i.e. the terminal time station), and γ ∈ [0, 1] is a discount76

factor that weights the relative importance of present and future rewards. Within the zoology of DRL77

methods, we distinguish two categories, namely model-based and model-free algorithms. Model-based78

method incorporates a model of the environment they interact with, and will not be considered in this79

paper (the reader is referred to [19] and references therein for details about model-based methods). On80

the contrary, model-free algorithms directly interact with their environment, and are currently the most81

commonly used within the DRL community, mainly for their ease of application and implementation.82

Model-free methods are further distinguished between value-based methods and policy-based methods83

[19]. Although both approaches aim at maximizing their expected return, policy-based methods do84

so by directly optimizing the parameterized policy, while value-based methods learn to estimate the85

expected value of a state-action pair optimally, which in turn determines the best action to take in86

each state.87

2.1.1 Value-based methods88

In value-based methods, the agent learns to optimally estimate a value function, which in turn dictates89

the policy of the agent by selecting the action of the highest value. One usually defines the state value90

function:91

V π(s) = E
τ∼π

[
R(τ)|s

]
,

denoting the expected discounted cumulative reward starting in state s, then following trajectory τ92

according to policy π, and the state-action value function, or Q-function:93

Qπ(s, a) = E
τ∼π

[
R(τ)|s, a

]
,

denoting the same expected discounted cumulative reward starting in state s and taking action a.94

Both values are quite obviously such that:95

V π(s) = E
a∼π

[
Qπ(s, a)

]
,

meaning that in practice, V π(s) is the weighted average of Qπ(s, a) over all possible actions by the96

probability of each action. One of the main value-based methods in use is called Q-learning, as it relies97

on the learning of the Q-function to find an optimal policy. In classical Q-learning, the Q-function98

is stored in a Q-table, which is a simple array representing the estimated value of the optimal Q-99

function Q∗(s, a) for each pair (s, a) ∈ S × A. The Q-table is initialized randomly, and its values are100

4

progressively updated as the agent explores the environment, until the Bellman optimality condition101

[20] is reached:102

Q∗(s, a) = r(s, a) + γmax
a′

Q∗(s′, a′), (2)

at which point the Q-table estimate of the Q-value has converged, and taking the action with the103

highest Q-value systematically leads to the optimal policy.104

2.1.2 Policy-based methods105

Policy methods maximize the expected discounted cumulative reward of a policy π(a|s) mapping states106

to actions, and resort not to a value function, but to a probability distribution over actions given states.107

Compared to value-based methods, policy-based methods offer three main advantages:108

� they have better convergence properties, although they tend to get trapped in local minima;109

� they naturally handle high dimensional action spaces;110

� they can learn stochastic policies.111

Most DRL algorithms applied to fluid mechanics problems are policy gradient methods, in which112

gradient ascent is used to optimize a parameterized policy πθ(a|s) with respect to some measure of113

the expected return. In practice, one defines an objective function based on the expected discounted114

cumulative reward:115

J(θ) = E
τ∼πθ

[
R(τ)

]
,

and seeks the optimal parameterization θ∗ that maximizes J(θ):116

θ∗ = arg max
θ

E
τ∼πθ

[
R(τ)

]
,

which can be done on paper by plugging an estimator of the policy gradient ∇θJ(θ) into a gradient117

ascent algorithm. In practice, this is no small task, as one is looking for the gradient with respect to118

the policy parameters θ, in a context where the effects of policy changes on the state distribution are119

unknown (since modifying the policy will most likely modify the set of visited states, which will in turn120

affect performance in some indefinite manner). The standard derivation relies on the log-probability121

trick [21], and allows expressing ∇θJ(θ) as an evaluable expected value:122

∇θJ(θ) = E
τ∼πθ

[
T∑
t=0
∇θ log (πθ(at|st))R(τ)

]
, (3)

after which the gradient is used to update the policy parameters:123

θ ← θ + λ∇θJ(θ). (4)

2.2 Deep reinforcement learning124

Deep reinforcement learning (or DRL) is the result of applying RL using deep neural networks to125

output either value functions (value-based RL methods), or action distributions given input states126

(policy-based RL methods)2. A neural network (NN) is a collection of artificial neurons, i.e. con-127

nected computational units with universal approximation capabilities [22, 23], that can be trained to128

arbitrarily well approximate the mapping function between input and output spaces. Each connection129

2An alternative presented above is to use tables to store the values for every state or state-action pair, but
such a strategy generally does not scale with the size of state-action spaces, and is thus limited to discrete
spaces.

5

x1

x2

x3

y1

y2

Figure 3: Fully connected neural network with two hidden layers.

provides the output of a neuron as an input to another neuron. Each neuron performs a weighted sum130

of its inputs, to assign significance to the inputs with regard to the task the algorithm is trying to131

learn. It then adds a bias to better represent the part of the output that is actually independent of the132

input. Finally, it feeds a non-linear activation function that determines whether and to what extent133

the computed value should affect the ultimate outcome. As sketched in figure 3, a fully connected134

network is generally organized into layers, with the neurons of one layer being connected solely to135

those of the immediately preceding and following layers. The layer that receives the external data is136

the input layer, the layer that produces the outcome is the output layer, and in between them are zero137

or more hidden layers.138

The learning process in neural networks consists in adjusting all the biases and weights of the network139

in order to reduce the value of a well-chosen loss function that represents the quality of the network140

prediction. This update is usually performed by a stochastic gradient method, in which the gradients141

of the loss function with respect to the weights and biases (i.e. the parameterization θ of the neural142

network) are obtained using a back-propagation algorithm. The abundant literature available on this143

topic (see [24] and the references therein) points out that a relevant network architecture (e.g. type144

of network, depth, width of each layer), finely tuned hyper parameters (i.e. parameters whose value145

cannot be estimated from data, e.g. , optimizer, learning rate, batch size) and a sufficiently large146

amount of data to learn from are key ingredients for a successful network training.147

2.3 DRL algorithms148

This section briefly reviews some of the most popular DRL methods encountered in the field of DRL for149

fluid mechanics. Only their main features are reviewed here, the reader interested in further details (or150

in the numerous custom variations introduced in the RL literature) is referred to the various references151

given in this section.152

2.3.1 Deep and double deep Q-networks (DQN and DDQN)153

In Q-learning methods, obtaining a converged Q-table for large state and actions spaces can be partic-154

ularly expensive in terms of environment interactions. To overcome this issue, the map S+×A −→ R155

is represented by a neural network, called deep Q-network [25], tasked with providing an estimate156

of the Q-value for each possible action given an input state. To do so, the Q-network is trained on157

state-action-reward transitions obtained by interacting with the environment. The loss used for the158

training is classically obtained from the Bellman equation (2):159

L(θ) = E
(s,a,r,s′)∼D

[
1
2

([
r(s, a) + γmax

a′
Qθ(s′, a′)

]
− Qθ(s, a)

)2
]
, (5)

where Qθ(s, a) is the Q-value estimate provided by the DQN for action s and state a under network160

parameterization θ, and D represents the set of transitions collected from the environment. The161

quantity r(s, a) + γmaxa′ Qθ(s′, a′), denoted target, also appears in the Bellman equation (2), as the162

6

estimate Qθ(s, a) is equal to the target (and L(θ) is thus zero) when the optimal set of parameters θ∗163

is reached.164

In order to balance the trade-off between exploration and exploitation, the DQN algorithm classically165

implements a stochastic exploration strategy called ε-greedy: before each action, a random parame-166

ter p is drawn in [0, 1] and compared to a user-defined value ε ∈ [0, 1], and the action prescribed by167

maxaQθ(s, a) is taken only if p > ε (otherwise a random action is taken). The value of ε usually de-168

creases during the learning process, thereby progressively reducing exploration in favour of exploitation.169

Nevertheless, the performance of vanilla DQN remains limited. This has led to multiple developments170

aimed at stabilizing learning and at improving performance, a handful of which have become standard171

practice e.g., replay [26], target networks [25], or double Q-networks [27]. For the sake of clarity, we172

shall not go into the specifics of these evolutions, for which the interested reader can instead refer to173

[19] and the references therein.174

2.3.2 Vanilla deep policy gradient175

In policy methods, a stochastic gradient algorithm is used to perform network updates from the policy176

loss:177

L(θ) = E
τ∼πθ

[
T∑
t=0

log (πθ(at|st))R(τ)
]
. (6)

whose gradient is equal to the policy gradient (3). The latter is computed with the back-propagation178

algorithm with respect to each weight and bias by the chain rule, one layer at the time from the output179

to the input layer. Such a method is also known as Monte Carlo policy gradient, as the loss (6) takes180

the form of an expected value, that can be numerically calculated using an empirical average over a set181

of full trajectories. However, if some low-quality actions are taken along the trajectory, their negative182

impact will be averaged by the high-quality actions and will remain undetected. This problem can be183

overcome using actor-critic methods, in which a Q-function evaluation is used in conjunction with a184

policy optimization.185

2.3.3 Advantage actor-critic (A2C)186

Different strategies are available to alleviate the high variance of training the agent from (6), for which187

it has become customary to replace the discounted cumulative reward by the advantage function:188

A(s, a) = Q(s, a)− V (s),

that represents the improvement in the expected cumulative reward when taking action a in state s,189

compared to the average of all possible actions taken in state s. As a result, the loss function reads:190

L(θ) = E
τ∼πθ

[
T∑
t=0

log (πθ(at|st))Aπθ (st, at)
]
.

In practice, the classical policy network (called actor) is used concurrently with a second network191

(called critic), that learns to predict the state-value function V (s). The advantage function is then192

approximated as193

A(st, at) ∼ r(st, at) + γV (st+1)− V (st).

to avoid having a third network learn to predict the state-action value Q(s, a). In contrast to the194

Monte Carlo-style update of vanilla policy gradient methods, the actor-critic algorithm allows training195

the policy network in a temporal-difference manner, meaning that updates can be performed several196

times during an episode, thanks to the critic state-value estimate [28].197

7

2.3.4 Trust-region and proximal policy optimization (TRPO and PPO)198

The performance of policy gradient methods is hurt by the high sensitivity to the learning rate, i.e.,199

the size of the step to be taken in the gradient direction. Indeed, small learning rates are detrimental200

to learning, but large learning rates can lead to a performance collapse if the agent falls off the cliff201

and restarts from a poorly performing state with a locally bad policy (an issue magnified by the fact202

that the learning rate cannot be tuned locally). Trust region policy optimization (TRPO [29])) ensures203

continuous improvement by leveraging second-order natural gradient optimization to update the policy204

parameters within a trust-region of fixed maximum Kullback-Leibler divergence between previous and205

current policies. Proximal policy optimization (PPO [30]) uses a simpler yet effective heuristic to206

similarly avoid destructive updates. Namely, it relies on the clipped surrogate loss:207

L(θ) = E
(s,a)∼πθold

[
min

(
πθ(a|s)
πθold(a|s) , g (ε, Aπθold (s, a))

)
Aπθold (s, a)

]
,

where208

g(ε, A) =
{

(1 + ε)A if A ≥ 0,
(1− ε)A if A < 0,

and ε is the clipping range, a small, user-defined parameter defining how far away the new policy is209

allowed to go from the old one. The general picture is that a positive (resp. negative) advantage210

increases (resp. decreases) the probability of taking action a in state s, but always by a proportion211

smaller than ε, otherwise the min kicks in (2.3.4) and its argument hits a ceiling of 1 + ε (resp. a floor212

of 1− ε). This prevents stepping too far away from the current policy, and ensures that the new policy213

will behave similarly.214

Due to its improved learning stability and its relatively robust behaviour with respect to hyper-215

parameters, the PPO algorithm has received considerable attention in the DRL community. As shown216

in table 4, it is by far the most common DRL algorithm exploited in the context of DRL-based control217

for fluid dynamics.218

2.3.5 Deep deterministic policy gradient (DDPG)219

Deep deterministic policy gradient (DDPG) can be thought as a DQN algorithm for continuous ac-220

tions spaces, that combines the learning of a Q-network Qθ(s, a) (as in the DQN algorithm) and a221

deterministic policy network µφ(s). As in DQN, the replay buffer and target network tricks are used,222

the latter being a key ingredient of the method. Looking back at the DQN loss (5), it is obvious that223

the maxa′ Qθ(s′, a′) term does not make sense in the context of a continuous action space. In DDPG,224

the latter is thus approximated using the target network, yielding the modified loss:225

L(θ) = E
(s,a,r,s′)∼D

[
1
2
([
r(s, a) + γ Qθtarg(s′, µφtarg(s′))

]
− Qθ(s, a)

)2
]
. (7)

Hence, the policy µφ(s) is expected to produce actions corresponding to a maximum value predicted226

by the Q-network, and therefore its loss is obtained straightforwardly as:227

L(φ) = E
s∼D

[Qθ (s, µφ(s))] . (8)

Finally, a gaussian noise is usually applied to the predicted actions in order to achieve an efficient228

balance between exploration and exploitation.229

2.3.6 Twin-delayed DDPG (TD3)230

The Twin-delayed DDPG (TD3) algorithm is a refinement of the DDPG method that improves its231

learning stability and robustness against hyper-parameters [31]. For the sake of brevity, only the232

differences between the two methods are pointed out here, namely:233

8

� the use of a second Q-network to avoid the common problem of overestimation of the Q-value,234

as is done in DDQN [27];235

� additional delays in the policy and target network updates;236

� additional noises in the target actions.237

Compared to standard DDPG, these three modifications largely improve the stability and performance238

of the method. Yet, as shown in table 4, these two methods have received little attention in the field239

of DRL-based control for fluid dynamics.240

2.4 Single-step DRL241

In several contributions assessed in this review, the optimal policy to be learnt by the neural network242

is state-independent, as is notably the case in optimization and open-loop control problems. We group243

here under the “single-step DRL” label the class of algorithms dedicated to this class of problems under244

the premise that it may be enough for the neural network to get only one attempt per episode at finding245

the optimal. In essence, the proposed methods inherit from deep policy gradient algorithms in the sense246

that relevant probability density function parameters are obtained from neural networks trained using247

a policy gradient-like loss. Yet, they also fall heir of evolutionary strategies (ES), as their successive248

steps follow a generation/individual nomenclature, exploiting information from previous generations249

in order to update the parameters of a probability density function. The seminal PPO-1 algorithm250

proceeds from the standard PPO algorithm (section 2.3.4) and samples actions isotropically from scalar251

covariance matrices [32, 33, 16]. The follow-up policy-based optimization (PBO) algorithm relies on252

a variant of the vanilla policy gradient method and delivers several major improvements by adopting253

key heuristics from the covariance matrix adaptation evolution strategy (CMA-ES [34]), including the254

use of a valid, full covariance matrix generated from neural network outputs [35].255

3 Open challenges256

Before delving into the specifics of the compiled papers, it is important to define a consistent list of257

challenges to serve as a common thread to measure the progress of DRL in the context of fluid mechanics258

applications (and also to examine the willingness of the community to take on these challenges). For259

those challenges left mostly unanswered, section 6 proposes a series of possible mitigation strategies that260

have received consideration in the literature, albeit in a different context. The retained challenges are261

computational cost (more generally, sampling-efficiency), turbulence, robustness, partial observability,262

delays, and any combination of them. Nonetheless, there are several other challenges that should be263

considered on the second level to help bridge the gap between DRL capabilities and the requirements264

of practical deployment, for instance multi-agent DRL (leveraging experience from multiple agents265

learning concurrently) or multi-objective reward (training an agent in reasoning about several weighted266

objectives), see, e.g. [36, 37, 38] for comprehensive domain-agnostic surveys.267

◦ Computational cost/sampling efficiency: the environment of computational fluid dynamics (CFD)268

problems is resource expensive, as it routinely involves numerical simulations with tens or hundreds of269

millions of degrees of freedom (unless an appropriate low-dimensional reduction is achieved, which in270

itself often proves very challenging). This is all the more problematic since classical RL methods have271

low sample efficiency, i.e. many trials are required for the agent to learn a purposive behavior.272

◦ Stochasticity (turbulence): most natural and engineered flows are turbulent and carry energy dis-273

tributed over a wide range of scales with varying degrees of spatial and temporal coherence. Their274

dynamics therefore inherently includes some degree of stochasticity, which might lead to high variance275

gradient estimates that hamper learning.276

◦ Robustness: optimizing robust policies is a key issue for fluid flow applications, with multiple sources277

of uncertainty relating to the occurrence of irregular transient dynamics and the high sensitivity to278

initial conditions and system parameters variations (all non-normal amplification mechanisms associ-279

ated with the asymmetry of the Navier–Stokes convection operator), not to mention the difficulty to280

consistently ascertain the accuracy of the computed numerical solutions.281

◦ Partial observability: the traditional states space of fluid flow problems are easily prohibitively282

large for policy learning. The agent must therefore operate under partially observable environments,283

9

t t+ δtactt∗ t∗∗

Agent

st at

δtpre δtpost

Figure 4: Different type of delays encountered in DRL environments. Pre-action delay corre-
sponds to the time delay existing between the moment of state collection and the moment when action
is applied to the environment (this type of delay does not exist in the case of numerical environments).
Post-action delay is defined as the time delay existing between the moment the action is applied to
the environment, and the moment where it becomes fully effective in the dynamics of the system.

in which case the performance becomes highly dependent on the quality and relevance of the data284

available for observation. This issue is strongly related to data-driven model reduction techniques for285

large scale dynamical systems, which usually require using measures of observability as an information286

quality metric.287

◦ Pre-action delays: in numerical environments, states are collected in the environment, provided to288

the agent, and actions are returned instantaneously, which amounts to artificially interrupting the289

lapse of time every time the agent must draw new actions. In real-world environments, a certain delay290

is inevitable due to data processing, data transition, and physical constraints of sensors and actuators,291

during which the environment keeps evolving, meaning that the agent actually takes actions based on292

out-dated states.293

◦ Post-action delays: an environment has an intrinsic response time that depends on the interplay294

between transient amplification of the action-induced initial energy and non-linear saturation (the295

former all the more important in fluid mechanics where non-normal systems are common occurrence).296

This entails post-action delays, defined as the time interval between the moment an action is applied,297

and the moment it efficiently reaches the current state, that can undermine the accuracy of the reward298

estimation and even prevent learning if they exceed the Lyapunov time (the characteristic time scale on299

which a dynamical system is chaotic). The two types of delays defined above are illustrated in figure 4,300

the general picture being that post-action delays affect both numerical or experimental environment,301

while pre-action delays affect only experimental environments (unless they are purposely included in302

a numerical model).303

4 DRL for computational fluid dynamics304

Of the 32 papers compiled in the present review, 30 consider applying DRL to computational fluid305

dynamic (CFD) systems. Those are classified and presented here in one of the categories listed in table306

2, to put similar papers in perspective with respect to one another and to point out their specificities.307

4.1 Drag reduction308

Drag reduction is by far the most represented application domain in the literature, with 12 different309

papers implementing various control strategies using zero-mass-flow-rate jets [14, 40, 39, 43, 48, 46, 47],310

rotating cylinders [41, 42, 45, 32], plasma actuators [44], or passive devices [32], as illustrated in311

figure 5. Almost all studies focus on prototypal, two-dimensional (2-D) incompressible flows past312

span-wise infinite cylinders (generally different sections of a single cylinder) subjected to a uniform313

and/or parabolic velocity profile. As seen from the comparison between studies provided in table 3,314

all DRL algorithms belong to the actor-critic category, with a clear preference for ready-to-use PPO315

implementations (see section 2.3.4), either from Tensorforce [62], OpenAI baselines [63], or Stable316

Baselines [64]. Regarding the CFD solvers, FeniCS [65] is well represented, mostly because the open-317

source diffusion of the seminal work from Rabault et al. [14] has been heavily re-used in follow-up works318

[40, 42, 43, 44, 45, 47]. Regarding the numerical implementation, since performing a relevant network319

10

Table 2: Classification of the reviewed papers by domain of application. The most represented
domain of application is drag reduction, with no less than 12 papers in total.

Category Domain Reference

Numerical

Drag reduction [39, 14, 40, 41, 42, 43, 44, 45, 46, 32, 47, 48]
Heat transfer [49, 33]
Microfluidics [50, 51]
Swimming [12, 13, 52, 53]

Shape optimization [54, 55, 16, 56]
Other [57, 15, 58, 59]

Experimental
Drag reduction [60]
Flow separation [61]

Microfluidics [51]
Review - [17, 18]

q1

q2

(a) Lateral zero-mass-
flow-rate jets.

ω

(b) Main cylinder ro-
tating.

ω1

ω2

(c) Downstream ro-
tating control cylin-
ders.

q1

q2

(d) Symmetric plasma
actuators.

Figure 5: Different drag reduction methods represented in the DRL literature, in the
context of moderate Reynolds flows around a 2D circular cylinder. (5a) Zero-mass-flow-rate
jets are used to blow or suck fluid on the lateral sides of the obstacle. There can be two or four,
possibly tilted. (5b) An angular velocity is applied to the obstacle, in order to alter the downstream
flow and reduce drag. (5c) Two small control cylinders, placed downstream of the obstacle, are given
angular velocities in order to stabilize the shedding of the main cylinder. (5d) Two symmetric plasma
actuators are controlled to alter the fluid flow near the flow-separation point, thus reducing the overall
drag on the obstacle.

update requires evaluating a sufficient number of actions drawn from the current policy (which in turn320

requires computing the same amount of rewards from resource-expensive numerical simulations), most321

studies have the agent acquire experience at a faster pace by interacting with multiple environments322

simultaneously. This has become a customary procedure after the methodological paper by Rabault323

and Kuhnle [40] on the accelerated gathering of state-action-reward transitions, which highlighted an324

almost perfect speedup up to 20 parallel environments, and a decent performance improvement up to325

60.326

Regarding the flow regimes, almost all contributions assume laminar conditions with Reynolds numbers327

in a range of one hundred to a few hundred. The only two exceptions are [48], where a weakly turbulent328

case at an intermediate Reynolds number Re = 1000 is explicitly targeted, and [32], where moderately329

large Reynolds number in the range of a few thousand to a few ten thousand are tackled in the frame330

of Reynolds averaged Navier–Stokes (RANS); see figure 6 for an illustration pertaining to the fluidic331

pinball, an equilateral triangle arrangement of rotating cylinders immersed in a turbulent stream. As332

stressed in [48], even weakly turbulent conditions make it significantly harder to achieve successful333

drag reduction, as evidenced by the increased number of episodes needed to learn an efficient policy at334

11

Ta
bl

e
3:

Su
m

m
ar

y
of

th
e

m
ai

n
fe

at
ur

es
of

dr
ag

re
du

ct
io

n
D

R
L

ap
pl

ic
at

io
ns

.
O

nl
y

ex
pl

ic
itl

y
st

at
ed

in
fo

rm
at

io
ns

we
re

re
ta

in
ed

fro
m

th
e

co
nt

rib
ut

io
ns

.M
iss

in
g

in
fo

rm
at

io
ns

ar
en

ot
ed

by
a

qu
es

tio
n

m
ar

k
”?

”,
w

hi
le

no
n-

ap
pl

ic
ab

le
da

ta
ar

en
ot

ed
w

ith
a

do
ub

le
-d

as
h

”–
”.

In
th

ec
as

ew
he

re
m

ul
tip

le
st

ud
ie

sw
er

e
co

nd
uc

te
d

in
th

e
co

ns
id

er
ed

pa
pe

rw
ith

di
ffe

re
nt

pa
ra

m
et

er
va

lu
es

,t
he

m
os

ts
ig

ni
fic

an
to

ne
wa

sr
et

ai
ne

d.
n

pr
ob

es
co

rr
es

po
nd

s
to

th
e

nu
m

be
r

of
se

ns
or

s
pl

ac
ed

in
th

e
do

m
ai

n
fo

r
ob

se
rv

at
io

n
co

lle
ct

io
n,

w
hi

le
n

ac
t

re
pr

es
en

ts
th

e
ac

tio
n

di
m

en
sio

na
lit

y.
T

he
in

fo
rm

at
io

n
in

th
e

ac
to

rc
ol

um
n

re
fe

rs
to

fu
lly

-c
on

ne
ct

ed
ne

tw
or

k
ar

ch
ite

ct
ur

e
us

ed
(in

m
os

tc
on

tr
ib

ut
io

ns
,t

he
cr

iti
c

ar
ch

ite
ct

ur
e

is
m

iss
in

g)
.

Fi
na

lly
,t

he
in

fo
rm

at
io

n
in

th
e

la
st

tw
o

co
lu

m
ns

pe
rt

ai
n

re
sp

ec
tiv

el
y

to
th

e
ra

tio
δt

ac
t/
δt

of
th

e
ac

tio
n

to
th

e
sim

ul
at

io
n

tim
e-

st
ep

s,
an

d
to

th
e

ra
tio

δt
ac

t/
δt

ph
y

of
th

e
ac

tio
n

tim
e-

st
ep

to
th

e
ph

ys
ic

al
tim

e
sc

al
e

(h
er

e
eq

ua
lt

o
th

e
vo

rt
ex

sh
ed

di
ng

pe
rio

d)
.

C
on

tr
ol

R
ef

er
en

ce
St

ra
te

gy
R

e
D

R
L

C
F

D
n

p
ro

b
es

n
ac

t
A

ct
or

δt
ac

t/
δt

δt
ac

t/
δt

p
h

y

A
ct

iv
e/

C
lo

se
d-

lo
op

[1
4]

Je
ts

10
0

PP
O

(T
Fc

e)
Fe

ni
C

S
15

1
(v

)
1

[5
12
,5

12
]

50
12

[4
0]

�
10

0
PP

O
(T

Fc
e)

Fe
ni

C
S

15
1

(v
)

1
[5

12
,5

12
]

50
12

[3
9]

�
10

0
D

D
PG

(I
O

)
U

PA
C

S
1

(v
)

1
[4

00
,3

00
]

10
0

60
[4

7]
�

10
0

PP
O

(T
Fc

e)
Fe

ni
C

S
63

(p
)

1
[5

12
,5

12
]

50
12

[4
6]

�
12

0
PP

O
-C

M
A

(I
O

)
Fa

st
S

3–
16

(p
)

1
[5

12
,5

12
]

50
22

[4
3]

�
10

0–
40

0
PP

O
(T

Fc
e)

Fe
ni

C
S

23
6

(?
)

2
[5

12
,5

12
]

20
0

30
[4

8]
�

10
00

PP
O

(I
O

)
LB

M
15

1
(v

)
1

?
30

0
–

[4
1]

R
ot

at
io

n
10

0
PP

O
(O

pA
I)

T
-F

lo
w

s
12

(p
)

1
[6

4,
64

]
30

20
[4

5]
�

10
0–

20
0

PP
O

(T
Fc

e)
Fe

ni
C

S
47

6
(p

)
3

[5
12
,5

12
]

85
–3

50
10

–2
0

[4
2]

�
24

0
PP

O
(T

Fc
e)

Fe
ni

C
S

99
(v

)
2

?
?

?

A
ct

iv
e/

O
pe

n-
lo

op
[4

4]
Pl

as
m

a
10

0
A

2C
(I

O
)

Fe
ni

C
S

10
(p

)
1

[1
28
,6

4]
?

1
[3

2]
R

ot
at

io
n

22
00

PP
O

(S
tB

l)
C

im
lib

–
2–

3
[4
,4

]
–

–
Pa

ss
iv

e
[3

2]
D

ev
ic

e
10

0-
22

00
0

PP
O

(S
tB

l)
C

im
lib

–
2–

3
[4
,4

]
–

–

12

Figure 6: Vorticity field of the fluidic pinball case considered in [32]. The three cylinders are
free to rotate at different angular velocities, leading to complex flow features in the near wake region.

higher Reynolds numbers. Moreover, the use of transfer learning from strategies learned at Re = 100335

to flow control at Re = 1000 is shown to be ineffective in this configuration, due to too different336

flow dynamics. Nonetheless, it is shown possible in [43] to achieve robust flow control over a range337

of Reynolds numbers by training simultaneously a single agent at four different Reynolds numbers338

distributed between 100 and 400. After training, the agent succeeds in efficiently reducing drag for339

Reynolds numbers in the range from 60 to 400, although the performance for each value of Re is340

slightly lower than that achieved training an agent specifically at this Reynolds number. In [46], the341

authors also underline the interest of using non-dimensionalized quantities as input states, which can342

increase the robustness of control strategies even learned at a single Reynolds number. Yet, as stated343

above about the work of [48], this approach is limited to cases with similar flow patterns, and does not344

carry over to turbulent (not even weakly turbulent) flows.345

About the numerical reward, most contributions rely on the design proposed in [14]:346

rt = −〈CD〉 − β |〈CL〉| , (9)

where the operator 〈·〉 indicates the sliding average over one vortex shedding period T [14, 44, 46] or347

over one action time-step δtact [41, 48, 43, 45]. The parameter β varies in a range from 0.2 to 1 in348

the papers reviewed in this section, and prevents the network to achieve efficient drag reduction by349

relying on a large induced lift, as it is damageable in many practical applications. Whenever a different350

reward is used, penalization terms associated with the cost of the control are rarely considered (with351

reference [32] being an exception), as it has been found customary to explicitly bound the actuation352

amplitude for the control to remain small compared to the system relevant physical quantities. Of353

particular interest is the recent approach of [47] exploiting dynamic mode decomposition to design a354

reward function based on mode amplitudes, that has led to efficient control strategies, although the355

proposed approach supposes additional reward tuning compared to (9).356

While the considered number of free action parameters nact remains limited to 3 at most, the number357

of probes used to collect observations varies considerably from one contribution to another, even for358

similar setups. The baseline configuration consists of a certain number of velocity or pressure probes,359

uniformly distributed in the vicinity of the cylinder as well as in its wake region, as illustrated in figure360

7. The sensitivity of the learned control strategy to the probes distribution has been briefly studied in361

[14]. A subsequent, more complete analysis has been performed in [46], where the authors evidence a362

critical impact on the control performance, the information provided by sensors positioned in the near363

wake being reportedly more relevant for learning than that of sensors positioned further downstream.364

This can be attributed to the fact that, by observing the flow closely downstream of the cylinder, the365

agent is able to observe the consequences of its actions right after they were taken, while more distant366

sensors provide a delayed feedback that can be more difficult to interpret. To circumvent this issue,367

the authors in [46] introduce a specific method, called sparse PPO-CMA, in which an optimal set of368

sensors is automatically selected during the learning process. Another notable approach is that of [39],369

where only one probe is used downstream of the cylinder, collecting observations at a higher rate than370

the action time-step δtact, and stacking them into a single observation vector when feeding them to371

the agent. In all relevant contributions, pressure or velocity are used indifferently as observations.372

13

Figure 7: Typical probe array for observation collection in the context of drag reduction appli-
cation on a 2D cylinder at moderate Reynolds numbers. Although the amount and position of probes
vary, many contributions position probes in the vicinity of the obstacle and downstream of it. Insights
on the impact of this choice regarding the performance of the agent can be found in [14] and [46].

As stated previously, the frequency at which the agent is allowed to provide new actions to the en-373

vironment is defined by an action time-step δtact, that must be larger than the numerical simulation374

time-step δt (for the agent to be able to observe the effects of its actions on the environment), but375

smaller than the characteristic time scale δtphy of the physical process to be controlled (for the actions376

taken to be able to significantly alter the flow dynamics). Considerations about numerical stability377

and accuracy of the numerical flow solution call for δt� δtphy, meaning that the user has considerable378

leeway to adjust the action time step within these two bounds. In the reviewed contributions, the ratio379

of the action time-step to the physical time scale (δtact/δtphy) is in a range of a few tens (i.e. , a few380

tens of actions are taken per vortex shedding period). Meanwhile, the ratio of the action time-step to381

the simulation time-step (δtact/δt) varies considerably with the Reynolds number, as it is set to a few382

tens at Re = 100 [14, 41, 46], but increases up to a few hundreds at higher Reynolds values [43, 48, 45].383

Between each interaction with the environment, an interpolation scheme is usually exploited to avoid384

abrupt control changes in the environment, which could cause numerical instabilities. A simple lin-385

ear interpolation is generally used [43], as the exponential decay initially considered in [14] has been386

subsequently found to yield significant discontinuities in the lift computation.387

Finally, the agent architecture networks are also consistent between the different studies, with two fully-388

connected layers used in all cases. While seven contributions appear to use pretty large layer sizes [14,389

39, 43, 45, 46, 47], smaller networks are successfully used for problems of similar dimensionalities [41,390

44]. To the best knowledge of the authors, no large-scale study of the impact of the network architecture391

on the final agent performance was performed, and this choice remains most often empirical. Of392

particular interest is the use of a tailored single-step method in [32], that allows performing passive393

control with extremely small networks (see section 2.4), which is because the agent is not required to394

learn a complex state-action relation, but only a transformation from a constant input state to a given395

action.396

4.2 Conjugate heat transfer397

Although conjugate heat transfer systems governed by the coupled Navier–Stokes and heat equations398

seem natural candidates to extend the scope the DRL methodology and to increase the complexity of399

the targeted applications, the field has received little initial attention from the community. However,400

it may be starting gaining ground with two studies of DRL-based thermal control over the past two401

years.402

In [49], the authors consider the closed-loop control of natural convection in a 2-D Rayleigh-Bénard403

convection cell simulated with an in-house lattice-Boltzmann code at Rayleigh numbers (based on the404

time-averaged temperature difference between the upper and lower plates) ranging from Ra = 103405

(just before the onset of convection) to 107 (mild turbulence). The set-up, synthesized in figure 8, is406

as follows: the upper plate and the time-averaged lower plate temperature distributions are assumed407

constant. A discrete PPO agent whose implementation relies on OpenAI’s stable-baselines [64] is408

14

T = Tc

−C

0

+C

Figure 8: Illustration of the Rayleigh-Bénard convection control setup as presented in [49].
The top wall temperature is set to a constant temperature T = Tc, while the bottom temperature
profile is cut in 10 segments on which the temperature can take values equal to Th +C or Th−C. On
the left and right walls, adiabatic conditions are imposed. Finally, the temperature and velocity fields
are collected on a grid of probes equispaced in the computational domain.

then used to provide (after a normalization step) a zero-mean, piecewise-constant lower temperature409

fluctuation with the intent to reduce the convective effects. The actor is a fully-connected neural410

network with two hidden layers of width 64, and the instantaneous reward is defined as the opposite of411

the instantaneous Nusselt number Nu, which spurs the agent to minimize the convective effects at play.412

As in drag reduction applications, an array of probes is uniformy distributed over the computational413

domain to collect observations, under the form of both the temperature and velocity fields.414

A particularity of this implementation is the systematic use of the four most recent observations in415

the state buffer passed to the agent, an approach similar to that of [39], although the authors do416

not provide insights about the impact of this choice on the agent performance. The agent is able417

to entirely stabilize the convective flow up to Ra = 105, and consistently outperform state-of-the-art418

linear approaches (proportional and proportional-derivative controllers) up to Ra = 107. Finally, the419

authors also illustrate the controllability limits of the system using the simplified Lorenz attractor420

system. By introducing a tunable artificial delay in the control, they show that exceeding half the421

Lyapunov time in delay results in a highly degraded performance of the learned control.422

Passive control of a similar Rayleigh-Bénard natural convection problem is performed in [33] with423

the single-step approach presented in section 2.4. Compared to [49], the authors report excellent424

control efficiency using much smaller networks (two hidden layers of width 2 vs. 64) and less parallel425

environments (8 vs. 512) at Ra = 104, a value for which the optimal control determined in [49] ends up426

being actually time-independent (unlike at higher Rayleigh numbers). The authors then use the same427

approach and network architecture to minimize open-loop the inhomogeneity of temperature gradients428

across the surface of two and three-dimensional hot workpieces under impingement cooling in a closed429

cavity, identifying either optimal positions for cold air injectors relative to a fixed workpiece position,430

or optimal workpiece position relative to a fixed injector distribution (see illustration in figure 9).431

15

Figure 9: Passive control of 3D forced convection in the context of workpiece cooling,
reproduced from [33]. The positions of the three injectors are optimised in order to minimize the
local temperature gradients in the workpiece during the cooling process.

4.3 Shape optimization432

Shape optimization is another field fundamentally interrelated with flow control, that can seem as a433

natural domain application for the DRL techniques covered above. Nonetheless, it is worth noticing434

that shape optimization generally consists in determining a fixed shape meeting a set of required criteria435

(e.g. high lift-to-drag ratio, low pressure loss). This is not per se the original purpose of DRL, that aims436

at identifying optimal state-to-action relations (by means of neural network training) and is thus best437

suited to dynamically manipulate a deformable shape. Two approaches exist in the literature in the438

context of DRL-based shape optimization, a first one that directly optimizes state-independent shape439

parameters (hence, direct shape optimization [16]) and a second one that incrementally modifies an440

initial shape into an optimal one (hence, incremental shape optimization [54, 55, 56]). The conceptual441

differences between these two approaches are illustrated in figure 10, and their implementations are442

detailed in the following paragraphs.3443

s0 Agent s∗

(a) Direct shape optimization.

si Agent ∆si

(b) Incremental shape optimization.

Figure 10: Direct and incremental DRL-based shape optimization techniques present in the
literature. In direct shape optimization (left), the agent is used as a proxy to optimize a direct mapping
from a constant, initial state vector s0 to the optimal state s∗, using a degenerate, single-step DRL
algorithm. In incremental shape optimization (right), the agent learns the adequate mapping from the
current state vector si to an incremental modification to apply to the latter, hence determining a path
of incremental deformations to apply from s0 to s∗. In both cases, multiple episodes are required for
the agent to converge.

In direct shape optimization, the agent is used as a proxy to optimize a direct mapping from a constant,444

initial state vector s0 to the optimal state s∗. This approach is implemented in [16] using single-step445

DRL (the degenerate class of DRL algorithms intended to optimize state-independent agent behavior)446

to design 2-D aerodynamic profiles without any a priori knowledge, feeding systematically an initial447

circle as input to the agent in single-step episodes (hence the adjective stateless). In practice, the448

shapes are described by a set of Bézier curves connecting the same number of control points, each with449

3Although not directly included in the scope of the current review, it is worth mentioning the work from
Lampton et al. [66], who considered the use of standard Q-learning method for shape optimization in 2008. In
this contribution, optimization of airfoil geometries with four free parameters is considered, and the optimal
policy is obtained by updating a Q-table in a temporal-difference fashion.

16

Figure 11: Shapes of optimal lift-to-drag ratio obtained with direct shape optimization with
3 free parameters (left), 9 free parameters (center) and 12 free parameters (right), reproduced from
[16]. The shape parameterization relies on Bézier curves joining control points, the agent controlling
their position and local curvature radius. These shapes were obtained by learning an optimal mapping
from a simple cylinder.

3 free parameters (2 coordinates, plus a local curvature radius). As shown in figure 11, the agent is450

able to design airfoil-like shapes maximizing the lift-to-drag ratio at Reynolds numbers of about a few451

hundred, which takes between one and three thousand CFD evaluations (i.e. single-step episodes) for452

problem dimensionality ranging from 3 to 12, respectively.453

The literature proposes three other DRL-based shape optimization contributions conversely relying on454

incremental shape transformations, with the incremental modifications in [54, 56] taking the current455

geometric parameters as input (of dimension 8 and 10, respectively), while the input states in [55]456

consist in a distribution of wall Mach number (of dimension 4). In all three contributions, a pre-457

trained surrogate or a simplified model is used, either for full agent training, or to perform an initial458

learning phase before re-training on a CFD environment using transfer learning. A key difference lies459

in the fact that the authors in [54, 56] always use the same input state and consequently produce a460

single optimized shape per training, while [55] relies on a set of input states randomly selected at the461

beginning of each episode, meaning that the trained agent can be successfully re-used in production462

on out-of-training input shapes.463

From an algorithmic point of view, the choices are in line with those reported in the previous sections.464

All algorithms are actor-critic, either PPO [55] or DDPG [54, 56], using fully-connected networks with465

2 or 3 layers of width from 200 to 512 neurons per layer, except for [16]. As it represents an arbitrary466

design choice in this specific application, the number of steps per episode is low, ranging from 5 to467

20. A simple reward signal based on the lift-to-drag ratio is used in [54] and [16], but more complex468

designs were used in the other two contributions. In [55], the instantaneous reward is based on the469

difference of drag between the current and the previous generation, while [56] exploits a complex reward470

expression based on the results of a principal component analysis. Overall, it is extremely difficult to471

draw conclusions from these different approaches. Moving forward, a careful performance comparison472

between direct and incremental approaches constitutes a topic of outmost importance, but a more473

specific study focused on reward design could also be of great practical interest.474

4.4 Swimming475

The control of swimmers has been a pioneering field for applying deep reinforcement learning to fluid476

mechanics problems, with a couple of contributions [12, 13] building on early seminal studies focusing477

RL for schooling [67, 68]. In [12], the kinematics of two swimmers in a leader-follower configuration are478

analyzed based on 2-D simulations of viscous incompressible flows. The first fish (leader) swims with479

a steady gait and the second fish (follower) uses DRL to adapt its behaviour dynamically to account480

for the effects of the wake encountered. The retained algorithm is DQN (see section 2.3.1), with input481

states made up of the lateral displacements and orientation of the follower compared to leader, as482

well as the two most recent actions, and the tail-beat status. An ε-greedy strategy is used to perform483

exploration, with randomness decaying from 0.5 to 0.1 over the course of learning. The reward design484

17

Figure 12: Coordinated schooling of three swimmers, reproduced from [13]. The two followers
interact with both rows of the wake shedding to increase their swimming efficiency.

is straightforward, and increasingly penalizes the follower when it strays too far away from the leader485

path:486

rt = 1− 2 |∆y|
L

, (10)

where ∆y is the aforementioned deviation, and L is the length of the swimmer. It takes roughly 100 000487

transitions to learn the optimal behavior, and the results indicate that swimming in synchronized488

tandem (with the follower seeking to maintain its position in the center of the leader’s wake, and its489

head synchronized with the vortices shed by the leader) can yield up to about 30% reduction in energy490

expenditure for the follower.491

Reference [13] is a follow-up of [12] extended to 3-D schooling configurations, as illustrated in figure492

12. A key contribution of this study is the use of a recurrent neural network, as the authors advertise493

(and demonstrate by providing performance comparisons with standard feedforward neural network)494

a greatly accelerated learning process using long-short term memory (LSTM) cells to encode the495

unsteadiness of the value function, which in turn is found to enable far more robust smart-swimmers.496

The retained recurrent network is composed of three layers of fully-connected LSTM units. The DQN497

algorithm with Adam optimizer is used to perform training in a temporal-difference manner, using498

again an ε-greedy exploration, with randomness decaying from 1 to 0.1. The training procedure requires499

46 000 transitions (a reduction by roughly 50% with respect to the LSTM-less 2-D case). The results500

support the conjecture that swimming in formation is energetically advantageous, with the trained501

fishes showing collective energy-savings behaviors by appropriately placing themselves in appropriate502

locations in the wake of other swimmers and interacting judiciously with their shed vortices. An almost503

identical set-up (i.e. DQN algorithm exploiting an LSTM-based agent) is used in [52], to tackle a series504

of different swimming problems, namely (i) point-to-point travel in quiescent flow, with reward based505

on normalized distance to target, (ii) holding a steady position in a rotating fluid flow, with reward506

based on averaged translation velocity of the fish center of mass, and (iii) holding a steady position507

in a Karman vortex street. The authors also emphasize the necessity to provide richer information508

to the agent to reduce variability over multiple episodes. The retained approach consists in feeding509

the agent with informations about the fish dynamics over the last four periods (e.g. , depending on510

the case, distance to objective, orientation of the swimmer, mean swimming velocities) and to add the511

actions taken over the same history steps, which indeed is found to yield stable learning and efficient512

swimming strategies.513

4.5 Microfluidics514

Micro-fluidics is one of the first fluid dynamics problems tackled with deep reinforcement learning515

techniques, but the related literature has since stalled to a single contribution from 2019 [50] (along516

with an additional experimental study [51] reviewed in section 5). In [50], the authors consider the517

18

Figure 13: Rigid body control using steerable fluid jets, reproduced from [57]. Here, the
goal is to push the ball back and forth from one jet to another.

inverse design problem of flow sculpting, in which a relevant sequence of micro-pillars is designed518

to controllably deform an initial flow field into a desired one. A double-DQN agent (section 2.3.1)519

is used that implements a convolutional policy, the full flow map being passed as input state [27].520

The agent network is composed of three convolutional/max-pooling layers followed by three batch-521

norm/fully-connected layers. The DDQN is supplemented with an experience replay method [69]. The522

implemented reward is based on a pixel match rate (PMR) that measures the similarity of the current523

flow with the target flow. This contribution also contains an interesting analysis comparing DDQN524

performance with that of canonical methods, e.g. , genetic algorithms and brute force approaches.525

4.6 Other applications526

This section connects to other contributions of the literature applying DRL to more restricted domains,527

e.g. , turbulence model generation [59], sloshing suppression [58] or instability mitigation in fluids [15],528

among others. It is worth insisting that the scarcity of publications on these topics does not reflect a529

lack of interest or priority, but rather the suddenness with which DRL has opened up new opportunities530

for a wide range of applications, as was already clear from the previous sections.531

4.6.1 Flow control532

In an early contribution by Ma et al. in 2018 [57], a TRPO (section 2.3.4) agent learns to play533

different games (from rigid body balancing to complex music-playing games) based on the control of534

rigid body by steerable fluid jets, as illustrated in figure 13. Regarding the environment, the Navier–535

Stokes equations are marched in time using a grid-based fluid-solid solver with adaptive refinement. A536

convolutional auto-encoder trained on-the-fly is used to efficiently extract fluid flow features from the537

environment. After their dimensionality has been reduced to an acceptable range, those are combined538

with rigid body features and serve as input for the agent, which is shown to significantly improve the539

learning speed compared to using rigid body features only. The state vector, whose size is lower than540

100 elements, is fed to a standard fully-connected network of size [128, 64, 64, 32], which yields typical541

training times in a range from 2 to 20 hours, depending of the game played.542

Another under-represented type of application is the control of sloshing in tanks, despite obvious543

practical interest for engineering applications, such as liquid carriers in ground, marine, or air transport544

vehicles, as well as in earthquake excited water supply towers. Reference [58] is the only contribution545

in the field, that considers suppressing sloshing in a tank initially submitted to a sinusoidal excitation546

using two active controlled horizontal baffles. The comparison of two policy-gradient algorithms,547

namely PPO (section 2.3.4) and TD3 (section 2.3.6) is a key contribution of this study. The state548

information consists of the positions of the baffles, as well as the elevation and vertical velocities of two549

additional probes in the tank. Given such inputs, the agent provides in return the horizontal velocities550

to be applied to the baffles. For both algorithms, the actor is composed of a fully-connected network551

with two layers of width 64. Actions are taken by the agent every 30 numerical time-steps, one episode552

consisting in 200 actions, linearly interpolated from one time-step to the following. The reward is553

equal to the time-averaged sloshing height, plus a penalization term to limit the displacements of the554

baffles. Good convergence is reported both for PPO and TD3, although learning proves to be more555

stable using TD3, as shown in figure 14. With direct learning, the authors notice a lack of robustness556

when applying the learned strategy beyond the largest time used during training, which they show can557

be overcome using behavior cloning to pre-train the agent.558

Another noteworthy contribution is that of Belus et al. [15], that introduces a technique based on559

invariants intended for problems with large dimensional (up to 20) actions spaces. In this study, a560

19

Figure 14: Performance comparison of PPO and TD3 for sloshing suppression task, repro-
duced from [58]. Although similar performance levels are obtained, the learning process proves to
be more stable for TD3.

PPO agent (section 2.3.4) is used to mitigate the natural instabilities developping in a 1-D falling561

liquid film using small jets blowing orthogonally to the flow direction. The number of jets and their562

positions can vary, leading to different levels in control complexity. A three-layer, fully-connected563

network of size [128, 64, 64] is used, with actions provided every 50 numerical time-steps to a variable564

number of jets, based on local inputs recorded in the vicinity of each jet. Finally, the reward function565

steers the agent to alleviate the waves arising from the instability of the flow. Three training methods566

are compared, that differ by their ability to handle a large number of control jets: (i) local states are567

concatenated and flattened before being fed to the actor, its output dimensionality being equal to the568

number of jets; (ii) a similar approach is used, but instead of being flattened, the input states are fed569

as is to a convolutional network; (iii) the vicinity of each jet is considered a local environment and used570

to provide some states and a reward to a unique agent. This latter approach relies on the translational571

invariance of the physical problem. It significantly enhances the amount of experience collected by572

the agent during an episode, which the authors show allows tackling large dimensional action spaces573

without increasing the amount of simulation time, as shown in figure 15.574

4.6.2 Turbulence modeling575

An approach somehow similar to that in [15] is used in another study by Novati et al. [59] to adjust576

the coefficients of an eddy viscosity closure model in the attempt to reproduce the energy spectrum of577

DNS computations. To this end, multiple agents are dispatched in the computational domain, with578

each agent controlling locally the dissipation coefficient of the Smagorinsky SGS model. The provided579

states are a blend of local (invariants of the gradient and Hessian of the velocity field) and global580

quantities (modes of the energy spectrum, rate of viscous dissipation, total dissipation). Two types581

of reward are proposed, based either on the Germano identity, or on a distance to a pre-computed582

DNS spectrum. The agent uses the remember-and-forget experience replay method, in which networks583

update are performed within a trust region, using a buffer holding the most recent transitions collected584

by the policy (which supposedly greatly improves the sample efficiency by enabling data to be reused585

multiple times for training) while dismissing those actions too unlikely under the current policy. The586

network parameters are shared between agents, and their aggregated experiences are collected in a587

shared dataset used for training.588

20

(a) Näıve training method (b) Training approach based on invariance

Figure 15: Learning curves obtained with the näıve learning technique (left) and with the
invariance-based approach (right), reproduced from [15]. On the left figure, it can be seen that
increasing the number of jets significantly increases learning time, here counted in number of actions.
On the right figure, similar training times (counted in simulation steps) are required, whatever the
number of jets (and therefore the action space dimension) used to control the instability.

5 Experimental fluid dynamics589

The coupling of DRL and experimental fluid mechanics remains insufficiently explored, with only 3 out590

of the 32 papers compiled in this review applying DRL for experimental flow control purposes. Besides591

the possibly limited access to experimental devices for DRL practitionners, this is likely because several592

challenges such as controllability (the ability to efficiently reach a given state), observability (the ability593

to reliably measure changes in the state), sensitivity (to noise and system uncertainty) and system594

delays (see section 3) become increasingly important in experimental setups, even though they have595

received little attention in the context of idealized numerical environments.596

5.1 Drag reduction597

In [60], a drag reduction problem similar to that in figure 5c is considered, where an agent is given598

control over the angular velocity of two rotating cylinders located in the wake of a fixed principal599

cylinder. The Reynolds number is about Re = 104, and the agent is allowed to interact with the600

environment every 0.1 s. An entire episode last 40 s, plus additional time consumption for initialisation601

(4s, the time needed to wash out the transient before collecting any data) and for the reset procedure602

(2 mn, the time needed for the entire system to come back to rest). Overall, an experimental episode603

lasts between 3 and 4 mn. A TD3 agent (section 2.3.6) based on Tensorflow is used, the updates being604

performed only between episodes with a reward function similar to (9). The states provided to the605

agent are the drag and lift coefficients measured on the main cylinder and the two control cylinders (an606

approach noticeably different from that described in section 4.1). A key outcome of this study is the607

necessity to high pass filter the experimental states before they are fed to the agent, as a comparison of608

the performance with and without providing beforehand the experimental states as input to a Kalman609

filter shows that the agent is essentially unable to learn an efficient strategy without the filtering stage.610

Additional experiments are also performed to account for the power loss due to the friction of the611

control cylinders612

5.2 Flow separation613

In [61], a DQN agent (section 2.3.1) learns to perform flow reattachment behind a NACA0015 airfoil614

by controlling the burst frequency of a plasma actuator at Re = 6.3× 104. Two different angles of615

attack are considered, namely 12◦ and 15◦. The states provided to the agent consist of the unfiltered616

time-series data of the pressure at the surface of the airfoil, recorded through a set of 29 holes with617

high-frequency sensors, eventually downsampled to a total of 80 values. The actions are selected among618

21

a set of pre-defined burst frequencies, that includes four different values as well as an ”off” choice. The619

reward is zero if the flow is not attached, and one if it is attached, as determined from the pressure620

coefficient at the trailing edge of the airfoil. The DQN agent achieves a satisfactory learning at the621

first angle of attack of 12◦, with efficient strategies available after as little as 200 episodes, although622

not more efficient that a naive open-loop control with adequately selected burst frequency. Conversely,623

the agent significantly outperforms the naive open-loop design at the second angle of 15◦, but learning624

is then much more challenging and takes about up to 800 episodes.625

5.3 Microfluidics626

The problem considered in [51] relates to the performance of microfluidics experiment platforms when627

operated on extended periods of time. To overcome degraded flow stability beyond a certain timescale,628

the authors introduce a DRL agent to adjust the flow conditions and maintain the experiment operabil-629

ity in an experimental device. Two low-Reynolds applications are considered, namely the positioning630

of an interface between two miscible flows, and the dynamic control of the size of water-in-oil droplets631

within a segmented flow. On both applications, the performances of a DQN [25] agent and a model-632

free episodic control (MFEC) [70] are compared, although it must be noted that the algorithm run633

with different interaction frequencies (250 actions per episode for DQN, vs. 150 for MFEC) due to634

equipment limitations. Observations are obtained from a high-speed camera and processed into an635

84× 84 pixels frame. In the first experiment, the reward is obtained calculating the distance between636

the current observed interface and its target position, while in the second experiment it is computed637

from the estimated radii of the generated droplets. The authors find that DQN requires a considerable638

amount of frames (approximately 145 000 in the first experiment) to surpass human-level performance,639

albeit with large-scale fluctuations, while MFEC equires a reasonable number of frames to improve640

and reach a stable level of performance (approximately 11 000 frames in the first experiment), but does641

not reach the peak performance of DQN in the first case.642

6 Transversal remarks643

The contents of previous sections, although presented per application, helps identify trends regarding644

several technical aspects of state-of-the-art contributions in DRL for fluid flow problems. The present645

section underlines some of the latter, and raises open questions regarding possible future improvements646

in the field.647

6.1 Taking on the challenges648

Based on this review, we deem there is a good understanding of the key issues relevant to fluid649

flow problems. Many of the compiled references are primarily aimed at proving either feasibility650

in such or such sub-domain, or beyond state-of-the-art performance of such or such algorithm, but651

several milestone contributions assess the ability of novel developments to increase the complexity of652

the problems presented to the DRL agent. Among the challenges listed in section 3, computational653

efficiency [40], stochasticity [32, 49, 48] and partial observability [46] have received the most attention,654

but robustness and delays remain largely ignored (save for the unique combination of stochasticity655

and post-action time delays examined in [49]), even though real-world environments likely feature all656

mechanisms in strong interaction one with another.657

A lot has been achieved in a short period of time, but many related issues remain to be addressed for658

which the RL literature provides a number of a off-the-shelf methods already proved fruitful in different659

context (mostly robotics), that could help reach even higher levels of performance and robustness.660

Typical examples include learning a model of the environment in such a way that errors in the model do661

not degrade the asymptotic performance [71, 72], or wrapping redundant states into equivalent classes662

of canonical spaces [73] to increase the data efficiency; using data augmentation and randomization663

techniques to train over a wide distribution of states [74, 75] or partitioning the initial state distribution664

and training different policies later to be merged [76] to alleviate stochasticity; optimizing for worst665

case expected return objectives [77] or pursuing soft-robustness [78] to improve robustness; using the666

frameworks of partially observable Markov decision process [79] and delay-aware Markov Decision667

Process [80] to account for partial observability and delayed dynamics.668

22

Table 4: Usage frequency of different DRL algorithms in the articles considered in the
present review. The colours represent the popularity of the method in the domain, a darker colour
indicating a more frequent usage. PPO is obviously the most spread method, most probably due to
several open-source releases.

DQN DDQN A2C PPO TRPO DDPG TD3 PPO-1/PBO Others

4 2 1 10 1 3 2 3 3

6.2 Providing guidelines for the selection of the DRL algorithm669

An obvious preference for policy gradient techniques appears from the review, with PPO the clear-cut670

go-to algorithm; see table 4. This is noteworthy because PPO is an on-policy algorithm, that updates671

the policy used to generate the training data (in contrast to off-policy algorithms, that also learn from672

data generated with other policies). PPO is generally acknowledged to improve the sample efficiency673

of regular actor-critic techniques, but there could be a fad component to this rise to prominence674

(partly attributable to the early open-source code release of several projects relying on this technique675

[14, 40, 43]), given that off-policy methods are expected to have even higher sample efficiency, and that676

most authors fail to explain the rationale for choosing a particular algorithm over another. Given the677

high CPU requirements of CFD solvers (that remains an important limitation regarding the application678

of DRL to 3-D flows of engineering importance), this calls for more careful, consistent and systematic679

testing of state-of-the-art on- and off-policy techniques in a fluid mechanics context. At the time of680

writing, only two such comparison studies are available in the literature, namely PPO vs. TD3 in [58],681

and DQN vs. MFEC in [51].682

6.3 Fighting the reproducibility crisis683

DRL a very fast-moving field, and as the number of contributions is growing, it becomes harder684

and harder to make a proper comparison between DRL algorithms, all the more so as a bevy of685

algorithms have been developed, to be used from dedicated libraries (e.g. Tensorforce [62], Stable686

Baselines [64], OpenAI Baselines [63]) or implemented in-house (which relates to 10 out of the 32687

reviewed contributions). Compounding the matter are the high amount of time needed to train DRL688

agents, that creates a high barrier for reevaluation of previous work,; the general lack of complete689

information regarding the network architecture (e.g. size and depth of the hidden layers, activation690

functions, normalization, initialization) and training procedure (e.g. optimizer, batch size, number of691

epoch per update, update frequency, learning rate); and (for numerical environments) the additional692

variance in the numerical solutions themselves.693

Encouraging the open sourcing of appropriate code on public git repositories is thus a critical step694

to ensure the reproducibility and durability of the developments, to maximize their impact, and to695

ultimately help establish DRL as a mature and stable technique for the analysis and design of complex696

flow systems. In this respect, it is disappointing to note that only 9 out of the 32 studies compiled in697

this review have come with such open-source releases [14, 41, 43, 44, 45, 40, 16, 59, 15]. Creating and698

providing exhaustive benchmark datasets and metrics is another alternative that would certainly add699

value to the community, and lay the ground for solid further developments in the field.700

6.4 Other research gaps701

The present review has also allowed us to identify several other important gaps to consider when702

evaluating the progress of DRL for practically meaningful fluid mechanics.703

◦ Network architecture: almost all provided references use fully-connected networks, with two or three704

hidden layers, each holding a number of neurons in the range from a few tens to a few hundreds.705

Nonetheless, our review did not reveal any large-scale study of the impact of the network architecture706

on the agent performance, and the choice remains most often empirical. The single-step method used707

in [32] is especially interesting in this regards, as it succeeds in learning optimal state-independent708

policies from extremely small networks. It should also be noted that the successful use of LSTM cells709

instead of regular fully-connected networks was advertised in swimming applications [13, 52], and that710

23

additional comparative experiments on different problems could lead to a more systematic use of such711

architectures.712

◦ State space dimensionality: in some cases, state selection seems arbitrary, which can lead to either713

(i) incomplete observations or (ii) a too large inputs to the actor, which can be detrimental to learning.714

Specific methods have been proposed to tackle this issue, either by adding an intelligent state selection715

mechanism [46], or by exploiting state compression [57]. Shall they be pursued further, such efforts716

could lead to systematic techniques for state input from CFD environments.717

◦ Action space dimensionality: in most contributions, the dimension of the action space remained718

limited, usually between 1 and 3. In this context, Belus et al. showed that exploiting the physical719

invariants of the problem was a particularly efficient way to tackle action spaces of larger dimensions720

(up to 20) [15].721

◦ Time granularity: the frequency at which the agent interacts with its environment is usually set722

based on physical considerations, but the ratio of the typical physical time scale to the action time-723

step remains highly variable from one contribution to another (even for very similar cases; see table 3).724

Since this hyper-parameter can dramatically affect the attainable performance of the agent and the725

difficulty of the learning task (too large intervals lead to inefficient actions, while too small intervals726

hinder the learning process), the development of systematic selection criteria is another aspect that727

could benefit the community and help close the gap with real-world testing.728

7 Conclusion729

In the present review, the contributions of the last six years in the field of deep reinforcement learning730

applied to fluid mechanics problems were presented. The type of application, its complexity, the choice731

of control methods as well as their associated technical choices were analyzed and compared across732

the different contributions. Several trends and general rules of thumb currently in use in the domain733

were pointed out, while unusual choices and techniques were highlighted. This systematic work aims734

at providing a general frame of the existing usages and techniques to the researchers working in the735

domain, but also to help newcomers identify standard approaches and state-of-the-art performance736

level in the field of DRL-based control for fluid dynamics.737

Overall, impressive performances were observed in multiple complex control tasks. Yet, a large amount738

of technical questions remain unanswered, and serious efforts remain to be provided by the community739

in order to efficiently tackle cases of industrial-level complexity within reasonable time. In the pursue740

of this goal, the access to efficient CFD solvers and to large computational resources remains an issue741

to many teams. In this perspective, the ability to successfully transfer agents from numerical to742

experimental environments remains to be explored more thoroughly, as the literature dealing with the743

coupling of DRL with experimental configurations remains, to this day, extremely scarce. It makes no744

doubt that the upcoming years will see the mastering of these obstacles, supported by the constant745

progress made in the DRL field and driven by the numerous industrial challenges that could benefit746

from it.747

Acknowledgements748

This work is supported by the Carnot M.I.N.E.S. Institute through the M.I.N.D.S. project.749

References750

[1] W. Rawat and Z. Wang. Deep convolutional neural networks for image classification: a compre-751

hensive review. Neural Computation, 29:2352–2449, 2017.752

[2] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi. A survey of the recent architectures of deep753

convolutional neural networks. Artificial Intelligence Review, pages 2352–2449, 2020.754

[3] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan. Speech recognition using deep neural755

networks: a systematic review. IEEE Access, 7:19143–19165, 2019.756

[4] J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye. A review on generative adversarial networks: algo-757

rithms, theory, and applications. arXiv preprint arXiv:2001.06937, 2020.758

24

[5] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel. Asymmetric actor critic759

for image-based robot learning. arXiv preprint arXiv:1710.06542, 2017.760

[6] D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau, A. Courville, and Y. Bengio. An761

actor-critic algorithm for sequence prediction. arXiv preprint arXiv:1607.07086, 2016.762

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.763

Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.764

[8] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,765

M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and766

D. Hassabis. Mastering the game of Go without human knowledge. Nature, 550, 2017.767

[9] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D. Lam, A. Bewley, and768

A. Shah. Learning to drive in a day. arXiv preprint arXiv:1807.00412, 2018.769

[10] A. Bewley, J. Rigley, Y. Liu, J. Hawke, R. Shen, V.-D. Lam, and A. Kendall. Learning to drive770

from simulation without real world labels. arXiv preprint arXiv:1812.03823, 2018.771

[11] W. Knight. Google just gave control over data center cool-772

ing to an AI. http://www.technologyreview.com/s/611902/773

google-just-gave-control-over-data-center-cooling-to-an-ai/, 2018.774

[12] G. Novati, S. Verma, D. Alexeev, D. Rossinelli, W. M. van Rees, and P. Koumoutsakos. Syn-775

chronisation through learning for two self-propelled swimmers. Bioinspiration & Biomimetics,776

12(3):036001, 2017.777

[13] S. Verma, G. Novati, and P. Koumoutsakos. Efficient collective swimming by harnessing vor-778

tices through deep reinforcement learning. Proceedings of the National Academy of Sciences,779

115(23):5849–5854, 2018.780

[14] J. Rabault, M. Kuchta, A. Jensen, U. Réglade, and N. Cerardi. Artificial neural networks trained781

through deep reinforcement learning discover control strategies for active flow control. Journal of782

Fluid Mechanics, 865:281–302, 2019.783

[15] V. Belus, J. Rabault, J. Viquerat, Z. Che, E. Hachem, and U. Reglade. Exploiting locality and784

translational invariance to design effective deep reinforcement learning control of the 1-dimensional785

unstable falling liquid film. AIP Advances, 9(12):125014, 2019.786

[16] J. Viquerat, J. Rabault, A. Kuhnle, H. Ghraieb, A. Larcher, and E. Hachem. Direct shape787

optimization through deep reinforcement learning. Journal of Computational Physics, 428:110080,788

2021.789

[17] P. Garnier, J. Viquerat, J. Rabault, A. Larcher, A. Kuhnle, and E. Hachem. A review on deep790

reinforcement learning for fluid mechanics. Computers & Fluids, 225:104973, 2021.791

[18] W. Zhang J. Rabault, F. Ren. Deep reinforcement learning in fluid mechanics: A promising792

method for both active flow control and shape optimization. Journal of Hydrodynamics, 32:234–793

246, 2020.794

[19] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,795

MA, 2018.796

[20] R. Bellman and S. E. Dreyfus. Applied dynamic programming. Princeton University Press797

Princeton, N.J, 1962.798

[21] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement799

learning. Machine Learning, 8(3):229–256, 1992.800

[22] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal ap-801

proximators. Neural Networks, 2(5):359–366, 1989.802

[23] H. T. Siegelmann and E. D. Sontag. On the computational power of neural nets. Journal of803

Computer and System Sciences, 50(1):132–150, 1995.804

[24] I. Goodfellow, Y. Bengio, and A. Courville. The Deep Learning Book. MIT Press, 2017.805

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-806

miller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,807

D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforce-808

ment learning. Nature, 518, 2015.809

25

http://www.technologyreview.com/s/611902/google-just-gave-control-over-data-center-cooling-to-an-ai/
http://www.technologyreview.com/s/611902/google-just-gave-control-over-data-center-cooling-to-an-ai/
http://www.technologyreview.com/s/611902/google-just-gave-control-over-data-center-cooling-to-an-ai/

[26] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. arXiv preprint810

arXiv:1511.05952, 2016.811

[27] H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning. arXiv812

preprint arXiv:1509.06461, 2015.813

[28] V. Mnih, A. Puigdomènech Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver,814

and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. arXiv preprint815

arXiv:1602.01783, 2016.816

[29] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. Trust region policy optimization.817

arXiv preprint arXiv:1502.05477, 2015.818

[30] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization819

algorithms. arXiv preprint arXiv:1707.06347, 2017.820

[31] S.Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic821

methods. arXiv preprint arXiv:1802.09477, 2018.822

[32] H. Ghraieb, J. Viquerat, A. Larcher, P. Meliga, and E. Hachem. Single-step deep reinforcement823

learning for open-loop control of laminar and turbulent flows. arXiv preprint arXiv:2006.02979,824

2020.825

[33] E. Hachem, H. Ghraieb, J. Viquerat, A. Larcher, and P. Meliga. Deep reinforcement learning826

for the control of conjugate heat transfer with application to workpiece cooling. arXiv preprint827

arXiv:2011.15035, 2020.828

[34] N. Hansen. The cma evolution strategy: a rtutorial. arXiv preprint arXiv:1604.00772, 2016.829

[35] J. Viquerat, R. Duvigneau, P. Meliga, A. Kuhnle, and E. Hachem. Policy-based optimization:830

single-step policy gradient method seen as an evolution strategy. arXiv preprint arXiv:2104.06175,831

2021.832

[36] G. Dulac-Arnold, D. Mankowitz, and T. Hester. Challenges of real-world reinforcement learning.833

arXiv preprint arXiv:1904.12901, 2019.834

[37] G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li, C. Paduraru, S. Gowal, and T. Hester.835

Challenges of real-world reinforcement learning: definitions, benchmarks and analysis. Machine836

Learning, pages 1–50, 2021.837

[38] J. J. Garau-Luis, E. Crawley, and B. Cameron. Evaluating the progress of deep reinforcement838

learning in the real world: aligning domain-agnostic and domain-specific research. arXiv preprint839

arXiv:2107.03015, 2021.840

[39] H. Koizumi, S. Tsutsumi, and E. Shima. Feedback control of karman vortex shedding from a841

cylinder using deep reinforcement learning. 2018 Flow Control Conference, 2018.842

[40] J. Rabault and A. Kuhnle. Accelerating deep reinforcement learning strategies of flow control843

through a multi-environment approach. Physics of Fluids, 31(9):094105, 2019.844

[41] M. Tokarev, E. Palkin, and R. Mullyadzhanov. Deep reinforcement learning control of cylinder845

flow using rotary oscillations at low reynolds number. Energies, 13(22), 2020.846

[42] H. Xu, W. Zhang, J. Deng, and J. Rabault. Active flow control with rotating cylinders by847

an artificial neural network trained by deep reinforcement learning. Journal of Hydrodynamics,848

32:254–258, 2020.849

[43] H. Tang, J. Rabault, A. Kuhnle, Y. Wang, and T. Wang. Robust active flow control over a850

range of reynolds numbers using an artificial neural network trained through deep reinforcement851

learning. Physics of Fluids, 32(5):053605, 2020.852

[44] M. A. Elhawary. Deep reinforcement learning for active flow control around a circular cylinder853

using unsteady-mode plasma actuators. arXiv preprint arXiv:2012.10165, 2020.854

[45] M. Holm. Using deep reinforcement learning for active flow control. Master’s thesis, University855

of Oslo, 2020.856

[46] R. Paris, S. Beneddine, and J. Dandois. Robust flow control and optimal sensor placement using857

deep reinforcement learning. arXiv preprint arXiv:2006.11005, 2020.858

[47] S. Qin, S. Wang, and G. Sun. An application of data driven reward of deep reinforcement learning859

by dynamic mode decomposition in active flow control. arXiv preprint arXiv:2106.06176, 2021.860

26

[48] F. Ren, J. Rabault, and H. Tang. Applying deep reinforcement learning to active flow control in861

weakly turbulent conditions. Physics of Fluids, 33(3):037121, 2021.862

[49] G. Beintema, A. Corbetta, L. Biferale, and F. Toschi. Controlling rayleigh–bénard convection via863

reinforcement learning. Journal of Turbulence, 21(9-10):585–605, 2020.864

[50] X. Y. Lee, A. Balu, D. Stoecklein, B. Ganapathysubramanian, and S. Sarkar. A case study of865

deep reinforcement learning for engineering design: application to microfluidic devices for flow866

sculpting. Journal of Mechanical Design, 141(11), 2019.867

[51] O. J. Dressler, P. D. Howes, J. Choo, and A. J. deMello. Reinforcement learning for dynamic868

microfluidic control. ACS Omega, 3(8):10084–10091, 2018.869

[52] Y. Zhu, F.-B. Tian, J. Young, J. C. Liao, and J. C. S. Lai. A numerical study of fish adaption870

behaviors in complex environments with a deep reinforcement learning and immersed bound-871

ary–lattice boltzmann method. Nature Scientific Reports, 11(1691), 2021.872

[53] L. Yan, X. Chang, R. Tian, N. Wang, L. Zhang, and W. Liu. A numerical simulation method873

for bionic fish self-propelled swimming under control based on deep reinforcement learning.874

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering875

Science, 234(17):3397–3415, 2020.876

[54] X. Yan, J. Zhu, M. Kuang, and X. Wang. Aerodynamic shape optimization using a novel optimizer877

based on machine learning techniques. Aerospace Science and Technology, 86:826–835, 2019.878

[55] R. Li, Y. Zhang, and H. Chen. Learning the aerodynamic design of supercritical airfoils through879

deep reinforcement learning. arXiv preprint arXiv:2010.03651, 2020.880

[56] S. Qin, S. Wang, L. Wang, C. Wang, G. Sun, and Y. Zhong. Multi-objective optimization of881

cascade blade profile based on reinforcement learning. Applied Sciences, 11(1), 2021.882

[57] P. Ma, Y. Tian, Z. Pan, B. Ren, and D. Manocha. Fluid directed rigid body control using deep883

reinforcement learning. ACM Transactions on Graphics, 37(4), 2018.884

[58] Y. Xie and X. Zhao. Sloshing suppression with active controlled baffles through deep reinforcement885

learning–expert demonstrations–behavior cloning process. Physics of Fluids, 33(1):017115, 2021.886

[59] G. Novati, H. L. de Laroussilhe, and P. Koumoutsakos. Automating turbulence modelling by887

multi-agent reinforcement learning. Nature Machine Intelligence, 3:87–96, 2021.888

[60] D. Fan, L. Yang, Z. Wang, M. S. Triantafyllou, and G. E. Karniadakis. Reinforcement learning889

for bluff body active flow control in experiments and simulations. Proceedings of the National890

Academy of Sciences, 117(42):26091–26098, 2020.891

[61] S. Shimomura, S. Sekimoto, A. Oyama, K. Fujii, and H. Nishida. Closed-loop flow separation892

control using the deep q-network over airfoil. AIAA Journal, 58(10):4260–4270, 2020.893

[62] A. Kuhnle, M. Schaarschmidt, and K. Fricke. Tensorforce: a tensorflow library for applied rein-894

forcement learning. https://github.com/tensorforce/tensorforce, 2017.895

[63] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,896

Y. Wu, and P. Zhokhov. Openai baselines. https://github.com/openai/baselines, 2017.897

[64] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse,898

O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu. Stable899

baselines. https://github.com/hill-a/stable-baselines, 2018.900

[65] M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring,901

M. E. Rognes, and G. N. Wells. The fenics project version 1.5. Archive of Numerical Software,902

3(100), 2015.903

[66] A. Lampton, A. Niksch, and J. Valasek. Morphing airfoils with four morphing parameters. In904

AIAA Guidance, Navigation and Control Conference and Exhibit, 2008.905

[67] M. Gazzola, B. Hejazialhosseini, and P. Koumoutsakos. Reinforcement learning and wavelet906

adapted vortex methods for simulations of self-propelled swimmers. SIAM Journal of Scientific907

Computing, 36:622–639, 2014.908

[68] M. Gazzola, A. A. Tchieu, D. Alexeev, A. de Brauer, and P. Koumoutsakos. Learning to school909

in the presence of hydrodynamic interactions. Journal of Fluid Mechanics, 789:726–749, 2016.910

27

https://github.com/tensorforce/tensorforce
https://github.com/openai/baselines
https://github.com/hill-a/stable-baselines

[69] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,911

P. Abbeel, and W. Zaremba. Hindsight experience replay. arXiv preprint arXiv:1707.01495, 2018.912

[70] C. Blundell, B. Uria, A. Pritzel, Y. Li, A. Ruderman, Joel Z Leibo, Jack Rae, Daan Wierstra,913

and Demis Hassabis. Model-free episodic control. arXiv preprint arXiv:1606.04460, 2016.914

[71] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of915

trials using probabilistic dynamics models. arXiv preprint arXiv:1805.12114, 2018.916

[72] J. Buckman, D; Hafner, G. Tucker, E. Brevdo, and H. Lee. Sample-efficient reinforcement learning917

with stochastic ensemble value expansion. arXiv preprint arXiv:1807.01675, 2018.918

[73] C. Wu, A. Kreidieh, E. Vinitsky, and A. M. Bayen. Emergent behaviors in mixed-autonomy919

traffic. In Conference on Robot Learning, pages 398–407, 2017.920

[74] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization921

for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ922

international conference on intelligent robots and systems (IROS), pages 23–30, 2017.923

[75] K. Lee, K. Lee, J. Shin, and H. Lee. Network randomization: A simple technique for generalization924

in deep reinforcement learning. arXiv preprint arXiv:1910.05396, 2019.925

[76] D. Ghosh, A. Singh, A. Rajeswaran, V. Kumar, and S. Levine. Divide-and-conquer reinforcement926

learning. arXiv preprint arXiv:1711.09874, 2017.927

[77] D. J. Mankowitz, N. Levine, R. Jeong, Y. Shi, J. Kay, A. Abdolmaleki, J. T. Springenberg,928

T. Mann, T. Hester, and M. Riedmiller. Robust reinforcement learning for continuous control929

with model misspecification. arXiv preprint arXiv:1906.07516, 2019.930

[78] E. Derman, D. J. Mankowitz, T. A. Mann, and S. Mannor. Soft-robust actor-critic policy-gradient.931

arXiv preprint arXiv:1803.04848, 2018.932

[79] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally in partially observable933

stochastic domains. In AAAI, volume 94, pages 1023–1028, 1994.934

[80] B. Chen, M. Xu, L. Li, and D. Zhao. Delay-aware model-based reinforcement learning for contin-935

uous control. Neurocomputing, 450:119–128, 2021.936

28

	Introduction
	Deep reinforcement learning
	Reinforcement learning
	Value-based methods
	Policy-based methods

	Deep reinforcement learning
	DRL algorithms
	Deep and double deep Q-networks (DQN and DDQN)
	Vanilla deep policy gradient
	Advantage actor-critic (A2C)
	Trust-region and proximal policy optimization (TRPO and PPO)
	Deep deterministic policy gradient (DDPG)
	Twin-delayed DDPG (TD3)

	Single-step DRL

	Open challenges
	DRL for computational fluid dynamics
	Drag reduction
	Conjugate heat transfer
	Shape optimization
	Swimming
	Microfluidics
	Other applications
	Flow control
	Turbulence modeling

	Experimental fluid dynamics
	Drag reduction
	Flow separation
	Microfluidics

	Transversal remarks
	Taking on the challenges
	Providing guidelines for the selection of the DRL algorithm
	Fighting the reproducibility crisis
	Other research gaps

	Conclusion

