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Compression of Plenoptic Point Cloud Attributes
Using 6-D Point Clouds and 6-D Transforms

Maja Krivokuća, Ehsan Miandji, Christine Guillemot, Philip A. Chou

Abstract—In this paper, we introduce a novel 6-D represen-
tation of plenoptic point clouds, enabling joint, non-separable
transform coding of plenoptic signals defined along both spatial
and angular (viewpoint) dimensions. This 6-D representation,
which is built in a global coordinate system, can be used
in both multi-camera studio capture and video fly-by capture
scenarios, with various viewpoint (camera) arrangements and
densities. We show that both the Region-Adaptive Hierarchical
Transform (RAHT) and the Graph Fourier Transform (GFT)
can be extended to the proposed 6-D representation to enable
the non-separable transform coding. Our method is applicable
to plenoptic data with either dense or sparse sets of viewpoints,
and to complete or incomplete plenoptic data, while the state-
of-the-art RAHT-KLT method, which is separable in spatial
and angular dimensions, is applicable only to complete plenoptic
data. The “complete” plenoptic data refers to data that has, for
each spatial point, one colour for every viewpoint (ignoring any
occlusions), while “incomplete” data has colours only for the
visible surface points at each viewpoint. We demonstrate that
the proposed 6-D RAHT and 6-D GFT compression methods are
able to outperform the state-of-the-art RAHT-KLT method on 3-
D objects with various levels of surface specularity, and captured
with different camera arrangements and different degrees of
viewpoint sparsity.

I. INTRODUCTION

A 3-D point cloud is a set of points in 3-dimensional
(3-D) Euclidean space, R3, where each point has a spatial
position (x, y, z), and optionally other per-point attributes,
most typically colour. The set of all the point positions is
called the point cloud’s geometry and defines the 3-D object’s
shape. In a standard point cloud that contains colour attributes,
each point is associated with one colour, usually represented
as one (R, G, B) triplet. This representation can be sufficient
for a 3-D object whose surface is Lambertian [1] or nearly
Lambertian - that is, the colour of a point on the object’s
surface appears the same, or almost the same, regardless of the
viewpoint of the observer. But for objects whose surfaces are
reflective and therefore contain areas where the colour appears
different depending on the viewing angle, one colour per point
is insufficient. For this reason, a new generation of point cloud
has recently emerged: the plenoptic point cloud [2, 3, 4, 5,
6]. In a plenoptic point cloud, each spatial point (x, y, z)
is associated with multiple colour values, to represent the
colour of that point as viewed from different directions. This
is essentially a discretised representation of the 5-D plenoptic
function [7]:

P (x, y, z, θ, φ), (1)

where P is the radiance observed for every possible spatial
position (x, y, z), with every viewing angle (θ, φ), where θ is
the azimuth and φ the elevation.

Along with the added realism and richness of visual data
that is possible with a plenoptic point cloud comes the
additional burden of efficiently representing and coding the
multiple colour attributes associated with each point. Standard
point cloud geometry and attribute compression have been
studied for a number of years now (e.g., see [8] for a
recent survey), and have also recently been adopted into the
standardisation activities of both MPEG [9, 10] and JPEG
[11]. However, the compression of plenoptic point clouds
remains a challenging and open research problem, which has
only recently begun to receive attention. The few existing
plenoptic point cloud compression methods usually rely either
on the fact that a dense set of captured viewpoints will be
available per spatial point, normally in a uniform arrangement,
or that the set of viewpoints will be complete - that is,
each spatial point will have a colour for each viewpoint,
even if that spatial point is not visible from every viewpoint.
However, in real-life point cloud captures, the more likely
scenario is a sparse, sometimes irregularly spaced, set of
camera viewpoints being used to capture a 3-D object (or
scene), with occlusions making each spatial point visible only
from certain viewpoints. The existing compression algorithms
also either tackle the correlation across viewpoints and across
spatial points separately, e.g., RAHT-KLT [4] or the methods
used for Surface Light Field compression in [5, 6], or they only
tackle one of these dimensions and not the other, e.g., [12].
Other methods, such as the one in [13], project the input point
cloud onto 2-D video frames and use standard video coding
techniques, which may not be suitable for applications where
coding the point cloud directly in its 3-D domain is more
appropriate. Section II will provide a more detailed review of
existing techniques for plenoptic point cloud compression. In
all cases, the existing compression methods treat the spatial
and angular (viewpoint) dimensions separably.

In this paper, we propose a novel plenoptic point cloud
representation, as a 6-D point cloud, enabling efficient joint
spatio-angular compression of its colour attributes. The 6-D
representation results from embedding the last two of the 5-D
plenoptic coordinates (x, y, z, θ, φ) into a 3-D space as the
coordinates (xa, ya, za) on the unit sphere. This results in the
6-D representation (x, y, z, xa, ya, za), where the a superscript
stands for “angular”. We propose compression schemes for the
plenoptic colour data associated with the 6-D spatio-angular
points in our representation, making use of both the Region-
Adaptive Hierarchical Transform (RAHT) [14, 15] and the
Graph Fourier Transform (GFT) [16, 17].

We demonstrate the advantages of the proposed represen-
tation for plenoptic point cloud data with various degrees of
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surface specularity, viewpoint sparsity, and camera arrange-
ments. We also show that it allows us to handle so-called
incomplete viewpoint data, i.e., data for which not all spatial
points are visible from all viewpoints. In summary, our main
contributions are as follows:

1) We introduce the notion of identifying and encoding
only the “valid” colour data for plenoptic point clouds
- we term such data incomplete. This means that for
each spatial point, only the colours for the viewpoints
from which this spatial point is visible are encoded.
Therefore, different spatial points may have plenoptic
colour vectors of different lengths, and these colour
vectors may correspond to different viewpoints. This
is in contrast to previous work (notably [3, 4]), where
the coding of plenoptic point clouds requires complete
viewpoint data, i.e., a colour value for every viewpoint,
per spatial point, ignoring any occlusions.1

2) We introduce a 6-D global scene coordinate system for
plenoptic point cloud representation, which enables the
encoding of incomplete viewpoint data, by treating the
plenoptic point cloud as a 6-D point cloud.

3) We show that the state-of-the-art method for non-
plenoptic point cloud attribute coding, RAHT [14, 15],
can be applied non-separably to our 6-D spatio-angular
space to encode plenoptic colour values, without requir-
ing a complete set of viewpoints. Therefore we con-
tribute an extended 6-D version of the RAHT method,
which is shown to achieve excellent rate-distortion
performance for plenoptic datasets with various levels
of surface specularity, captured from various camera
arrangements and viewpoint densities.

4) We also propose an extension of the GFT compression
algorithm to our 6-D spatio-angular space, and show that
it is likewise able to work non-separably on incomplete
plenoptic colour data to achieve similar rate-distortion
performance as our 6-D RAHT. While the idea of
using graphs to compress point cloud attributes is not
new (e.g., [18, 19]), to the best of our knowledge the
proposed method is the first time the GFT has been
applied in 6-D spatio-angular space and for the purpose
of compressing plenoptic point cloud attributes.

5) We demonstrate that the proposed 6-D representation al-
lowing joint spatio-angular processing and compression,
yields better rate-distortion performance than separate
spatial and angular processing, in particular in compari-
son with the state-of-the-art RAHT-KLT method [4], and
in the presence of high surface specularity. Similarly, we
show that there is value (in terms of large rate-distortion
gains) in encoding just the incomplete plenoptic data

1Note that throughout this paper, an occluded or invisible spatial point,
relative to a given camera viewpoint, will refer to a spatial point on a 3-
D object surface, which cannot be seen from that camera, because that part
of the 3-D object surface is occluded from the camera’s view. Hence this
spatial point does not have a colour attribute corresponding to that camera
direction. Also note that, for simplicity, “viewpoint” will be used somewhat
interchangeably with “view direction”, to indicate both, the angular direction
of a capturing camera in 3-D space and also the rendering viewpoint of the
3-D object. This latter point will be explained more precisely near the end of
Section VI-B.

instead of the complete data.
The rest of the paper is organised as follows. In Section II,

we summarise the relevant existing methods in the literature,
pertaining to plenoptic point cloud or Surface Light Field
(SLF) compression. In Section III, we introduce our proposed
6-D point cloud framework. In Sections IV and V, we explain,
respectively, our extensions of the RAHT and GFT compres-
sion methods to the proposed 6-D space. In Section VI, we
describe the plenoptic data that we use for testing our ideas in
this paper. In Section VII, we summarise our experimental
procedure and key results, in Section VIII we discuss the
complexity of the proposed approach, and in Section IX we
conclude the paper.

II. RELATED WORK

In [4], the plenoptic point cloud is represented as a col-
lection of vectors. For each surface point pi in a finite set of
points {pi|i ∈ [1, Np]} in R3 (where Np is the total number of
spatial points), with a finite number of viewpoints Nc (equal
to the number of camera viewpoints that were used to capture
the 3-D object), this point’s spatial position and colours are
represented as a vector

pi = [xi, yi, zi, R
1
i , G

1
i , B

1
i , . . . , R

Nc
i , GNc

i , BNc
i ], (2)

where [R1
i , . . . , B

Nc
i ] is the plenoptic or multi-view colour

vector. The authors propose to compress these plenoptic colour
vectors by four possible extensions to the Region-Adaptive Hi-
erarchical Transform (RAHT) [14, 15] colour coding method:
RAHT-1, RAHT-2, RAHT-KLT, and RAHT-DCT. In RAHT-1
and RAHT-2, the camera positions are projected onto a 2-D
plane, then subdivided using a quadtree to obtain one camera
position per square. RAHT is applied on the colours associated
with each camera position in this quadtree arrangement, which
produces Nc RAHT coefficients per voxel. Then RAHT is ad-
ditionally applied across the voxel spatial coordinates by either
considering each DC coefficient produced in the first RAHT
transform as the colour of the corresponding voxel, then ap-
plying RAHT over all the voxels (RAHT-1), or by considering
each of the Nc RAHT coefficients per voxel as that voxel’s
colour in one of Nc separate point clouds (sharing the same
geometry), which are then encoded separately using RAHT
(RAHT-2). In RAHT-KLT, an Nc × Nc covariance matrix is
computed for each colour channel C (Y, U, V channels were
used in [4]), then the eigenvectors of each covariance matrix
are computed through a Singular Value Decomposition (SVD)
and are used to perform a Karhunen-Loève Transform (KLT)
on each colour vector c(n) = [C1(n), C2(n), ..., CNc(n)]

T for
each point n in the point cloud, for each colour channel C.
The Np×3 matrix of KLT-transformed vectors for each of the
Nc viewpoints is then encoded with RAHT. In RAHT-DCT,
the KLT is replaced by the DCT, after first rearranging the
plenoptic colours for each voxel to follow a pre-determined
spiral path around a sphere. The RAHT-KLT approach was
shown in [4] to produce the best results. Note, however, that all
of these approaches process the spatial and angular dimensions
separably. This leads to the requirement that there should be
a complete set of viewpoints (i.e., a colour value for each
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viewpoint, per spatial point, regardless of whether or not that
spatial point is visible from every viewpoint). Completing the
viewpoints to use these methods means that redundant data
needs to be encoded, because certain spatial points will not be
visible from certain viewpoints due to occlusions.

In [20], it was shown that the rate-distortion performance
of RAHT-KLT can be further improved by performing a prior
subdivision of the plenoptic point cloud into clusters based on
similar colour values (e.g., by using k-means), followed by a
separation of each cluster into specular and diffuse components
(e.g., by using Robust Principal Component Analysis [21]),
then coding each component separately with RAHT-KLT.

In [5, 6], the plenoptic point cloud is considered in the
framework of a Surface Light Field (SLF) representation. The
SLF can be considered a function f(ω|p), such that for a
point p on the surface, f(ω|p) represents the colour of a light
ray starting at p and emanating outwards in direction ω [6].
Each surface point p therefore has a “view map”, or “colour
map”, which describes the colour of p as seen from different
viewpoints, similar to a lenslet representation in light field
imaging [22]. Since in a point cloud, the (x, y, z) points are
defined directly on the surface of a 3-D object, we can say
that the plenoptic point cloud is equivalent to a SLF. In [5, 6],
input light field images are mapped to a point cloud geometry
to obtain a SLF, then the points’ view maps are encoded using
a B-Spline wavelet basis and the transform coefficients are
compressed spatially using existing point cloud codecs. Note
again that separable processing is used.

Other methods also exist in the literature, which com-
press Surface Light Fields, but not explicitly considering a
point cloud representation. For example, in [23], the SLF is
represented as a collection of local Hemispherical Radiance
Distribution Functions (HRDFs) at each surface point of a 3-
D object or scene. Spatial correlation across surface points is
taken into account by clustering points with similar HRDFs
using k-means, then per-cluster dictionaries of separable trans-
forms are learned. The success of the separable method in
[23], as well as the separable methods in [5, 6], relies on
having a complete set of recorded view directions arranged
in a predictable (uniform) manner, per spatial point. However,
this may not be applicable to real-life capture scenarios, where
only a sparse set of captured viewpoints may be available and
those viewpoints may be irregularly spaced.

Some older algorithms exist for SLF compression as well,
which propose various techniques for compressing the SLF
“colour maps” (mainly using quite standard image compres-
sion techniques), but without any spatial compression, e.g.,
[24, 25, 26].

There also exist a few methods in the literature that apply a
video-based framework to compress plenoptic point clouds.
In [12], the MPEG V-PCC [9] Test Model is extended to
be able to handle multiple colour values per point, but the
correlations across the different viewpoints are not taken into
account. In [27], the authors reduce the memory requirements
of their method in [12], by encoding only a subset of all the
available viewpoints for different regions of the point cloud,
depending on how much surface specularity is present in each
region. In [13], the authors propose to extend the MPEG V-

PCC codec to plenoptic point clouds by projecting the point
cloud at each viewpoint onto 2-D video frames, then using the
Multiview extension of HEVC (MV-HEVC) [28] to encode the
multiview attributes. However, these video-based methods may
not be suitable for applications using rendering from the 3-D
point cloud, where it makes more sense to directly encode the
3-D point cloud. It should also be noted that these methods,
like all those mentioned earlier, process spatial and angular
dimensions separably, and hence require complete data.

III. PROPOSED FRAMEWORK

Let us consider a 5-D plenoptic point cloud (or Sur-
face Light Field) consisting of spatio-angular points pi =
(xi, yi, zi, θi, φi) and their attributes fi, for i = 1, . . . , N .
Typical attributes are the colour components of each point,
e.g., fi = (Ri, Gi, Bi). The spatio-angular points in the 5-D
point cloud can be represented as a list as:

x1, y1, z1, θ1, φ1
...

xi, yi, zi, θi, φi
...

xN , yN , zN , θN , φN .

(3)

As an example, illustrated in Fig. 1 (right), the first 7 spatio-
angular points belong to the same surface point s1, and the
next 8 spatio-angular points belong to the surface point s2.
That is, the triples (xi, yi, zi) are identical for i = 1, . . . , 7,
and take another value for i = 8, . . . , 15. In general, the
list of spatio-angular points may be partitioned into sets
of angular directions, each set corresponding to a different
spatial point. Each spatial point can have different angu-
lar directions, and different numbers of angular directions.
Each spatio-angular point will also have colour attributes
associated with it, such that it becomes an 8-D vector:
pi = (xi, yi, zi, θi, φi, C1i, C2i, C3i), where C1, C2, and C3
represent different colour channels in a given colour space. In
this paper, we will refer to such a vector as an 8-D attributed
point.

Our objective is to compress 5-D plenoptic point clouds.
There are two parts to this problem: compressing the set of
spatio-angular points (xi, yi, zi, θi, φi), i = 1, . . . , N (i.e., the
point cloud’s geometry and angular directions), and compress-
ing the per-point, per-direction attributes fi, i = 1, . . . , N .
In our work, we assume that the geometry has already been
compressed and is available to both the encoder and decoder,
and that the angular directions are likewise known at the
decoder.2 So our goal is to compress the colour attributes,

2We make no particular assumptions about which method for geometry
coding or coding of angular directions is used. In theory, any existing point
cloud geometry coding method could be used for the spatial positions, e.g., see
[8] and related references therein. For encoding and transmitting the angular
directions, an investigation on how to best do this is outside the scope of our
current manuscript, but it would make an interesting (and important) future
research topic. We also do not make any assumptions on whether the coding
of the spatio-angular positions should done on the 5-D points (x, y, z, θ, φ)
(or the 6-D points (x, y, z, xa, ya, za)), or separately for the geometry and
angular directions. Again, such investigations are beyond the scope of our
current manuscript, but should be looked into in the future.
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given the geometry and angular directions. A convenient
way to represent and organise the 5-D spatio-angular points
pi = (xi, yi, zi, θi, φi), having any real value for the spatial
coordinates (xi, yi, zi) and the angular coordinates (θi, φi), is
to embed the 2-D angular coordinates into 3-D coordinates on
the surface of a sphere, and then to hierarchically partition the
resulting 6-D space using Morton codes.

A. 6-D Representation of the 5-D Point Cloud

We embed the 2-D space of angular coordinates (θ, φ) into
a 3-D space of coordinates (xa, ya, za) on the surface of a
sphere, in order to preserve the angular geometry independent
of the coordinate system. Specifically, for each view direction
(θ, φ), we compute the coordinates (xa, ya, za) on the surface
of a unit sphere as:

xa = cos(φ) cos(θ),
ya = cos(φ) sin(θ),

za = sin(φ).
(4)

Note that the “a” in (xa, ya, za) above stands for “angular”, to
differentiate these angular coordinates from the spatial (x, y, z)
coordinates of the surface points.

B. Morton Code Computation

Morton codes provide an ordering along a Z-shaped space-
filling curve [29], allowing multi-dimensional data to be
mapped to one dimension while preserving locality of the data
points. This makes them convenient to use for hierarchical
subdivision of space, e.g., into quadtrees or octrees, or higher-
dimensional blocks (e.g., see Section V-A). Here, we apply
them to our 6-D space of spatio-angular points. In order to
compute a Morton code for each spatio-angular point, we
need to ensure first that the spatial and angular coordinates
fit into a suitable integer range. This generally requires a
rescaling, translation, and rounding of the original spatial and
angular coordinates. For each Cartesian coordinate ci (where
ci represents either xi, yi, zi, xai , yai , or zai ), and given a
rescaling range of [cmin, cmax], ci can be rescaled, translated,
and rounded into the range [cmin, cmax] as:

ci
′ =

⌊
(cmax − cmin)× (ci −min c)

Rangemax
+ cmin

⌉
, (5)

where min c indicates the minimum of all the corresponding
c values (e.g., if c represents the spatial coordinate x, then
this would be the minimum of all the input x values), and
Rangemax represents the maximum out of the input x, y and
z ranges (if c is a spatial coordinate) or the maximum out of
the input xa, ya and za ranges (if c is an angular coordinate).
For example, if c is a spatial coordinate, then:

(6)Rangemax

=max ((maxx−minx), (maxy −miny), (max z −min z)).

We do this to ensure that the scaling is uniform across all
three axes in the spatial dimension and all three axes in the
angular dimension, thereby preserving the aspect ratio of the
input 3-D object. Note that the rescaling range [cmin, cmax]
may be different for the spatial and angular coordinates.

A separate Morton code Mi is computed for the integer
version of each input 6-D spatio-angular point (computed as
explained above), by interleaving the bits of the corresponding
6-D vector pi

′ = (xi
′, yi
′, zi
′, xai

′, yai
′, zai

′) as follows:
1) We need to use the same number of bits for each of the

6 coordinates in pi
′, to enable correct interleaving of

the bits for the Morton code. So, the total Morton code
length will be equal to 6 times the maximum number
of bits used for any coordinate in pi

′. For example,
if the integer spatial coordinates (xi

′, yi
′, zi
′) are in

the range [0, 255] and the integer angular coordinates
(xai
′, yai

′, zai
′) are in the range [0, 7], then the maximum

number of bits needed for any coordinate is 8, so the
length of each Morton code should be 6 × 8 = 48
bits. To be represented in a long integer on a modern
computer, the maximum possible length of a Morton
code is 64 bits, limiting the number of bits of each of
the six coordinates in pi

′ to 10 bits.
2) For each pi

′, compute its Morton code by starting with
the MSB (most significant bit) of xi′, followed by the
MSB of yi′, then the MSBs of zi′, xai

′, yai
′, and zai

′,
in that order. Then move on to the second MSB of xi′,
followed by the second MSB of yi′, and so on, until
we have accounted for all the bits of each of the 6
coordinates.

3) Repeat steps 1 and 2 for each input 6-D vector pi
′

(where i = 1, ..., N ). In the end, there will be N Morton
codes in total, and each Morton code will be an integer.

4) Sort the computed Morton codes in ascending order, and
sort the corresponding 6-D pi

′ vectors in the same order.
5) Some Morton codes may be duplicated. This is because

some 6-D vectors pi
′ may end up being identical after

rescaling of their original coordinates into a fixed range.
Since we want to have only a unique set of Morton
codes (i.e., a unique set of spatio-angular points), we
average the coordinate and attribute values for the spatio-
angular points which have the same Morton code. The
final set of 6-D spatio-angular points may therefore be
smaller than the original number of spatio-angular points
in the input data. In this case, there would inherently be
some loss after compression, as we would not be able
to recover exactly the colour values of all the original
(before rescaling) spatio-angular points, whose coordi-
nates and colours were averaged before compression
(see Section VII for further explanation).

Note that the Morton codes are computed firstly for a
complete set of viewpoints, i.e., given a set of all the captured
viewpoints, and all the spatial points, we compute the Morton
code for every possible spatio-angular point. Afterwards, we
discard the Morton codes that correspond to the “invalid”
spatio-angular points, i.e., those for which the corresponding
spatial point is not visible from the corresponding viewpoint.
We term the resulting set of 6-D points, plus their correspond-
ing attribute values, incomplete viewpoint data.

IV. 6-D SPATIO-ANGULAR RAHT EXTENSION

The Region-Adaptive Hierarchical Transform (or RAHT)
[14, 15] and its variants [30, 31, 32, 33, 34, 19] are the
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current state-of-the-art method for point cloud attribute coding,
recently having been integrated into the MPEG Point Cloud
Coding (G-PCC) standard [9, 10].

Although there are many ways to understand RAHT (e.g.,
[30, 34]), perhaps most relevant to this paper is to understand
RAHT as a transform on a binary tree-structured subdivision
of space into rectangular cuboids, or blocks Bb,m comprising
all points in space whose Morton codes have a b-bit prefix
equal to m = m0m1 · · ·mb−1. Block Bb,m is the parent of
its child blocks Bb+1,m0 and Bb+1,m1, which are siblings.
Thus blocks are identified with nodes in a binary tree. Block
Bb,m corresponds to a node at level b of the tree, whose path
from the root node is given by the block’s b-bit Morton prefix
m. The root of the tree is at level b = 0, while the leaves of the
tree are at level b = bmax. The leaves of the tree correspond to
the points in the point cloud, ordered by their Morton codes. A
block at any level that contains no points in the point cloud are
pruned from the tree, as they are unoccupied. All remaining
blocks are occupied. The weight wb,m of a block Bb,m is the
number of points in the point cloud that are contained by the
block, i.e., the number of points in the point cloud that have
the b-bit prefix m.

RAHT’s forward transform proceeds from the leaves to the
root, while its inverse transform proceeds from the root to the
leaves. In the forward transform, for each block Bb,m with
occupied children Bb+1,m0 and Bb+1,m1, RAHT computes
the Givens rotation[

Fb,m

Gb,m

]
=

[
a b
−b a

] [
Fb+1,m0

Fb+1,m1

]
, (7)

where

a =

√
wb+1,m0

wb+1,m0 + wb+1,m1
b =

√
wb+1,m1

wb+1,m0 + wb+1,m1
.

(8)
Note that a2 + b2 = 1 and hence (7) is an orthonormal
transform. The coefficients Fbmax,m at the leaves are initialized
to the attributes of the points. It can be seen by induction
that Fb,m for any block Bb,m is equal to the average of the
attributes of the points in Bb,m, scaled up by the square root of
the number of points in Bb,m. Thus F0,∅ is the DC coefficient
of the transform, while {Gb,m} are the AC coefficients. The
entire transform is orthonormal because it is composed of
orthonormal Givens rotations. Hence all coefficients may be
quantized in the transform domain without blowing up the
quantization error in the signal domain. The inverse transform
simply computes coefficients from the root to the leaves using
the inverse of (7).

To extend RAHT to our 6-D spatio-angular space, it is
sufficient to simply extend the Morton codes to 6 dimensions.
Instead of the Morton codes representing only the (integer)
spatial coordinates of the input point cloud, they now repre-
sent the (integer) spatio-angular coordinates, as detailed in
Section III-B. The inputs to RAHT are then the sorted 6-D
Morton codes (with duplicates and “invalid” points removed)
and the colours of the corresponding 6-D spatio-angular points.
The resulting RAHT transform coefficients are uniformly
quantized, sorted according to their weights as in [15], and

encoded (separately for each colour channel) by using the Run-
Length Golomb-Rice (RLGR) entropy coder [35].

V. 6-D SPATIO-ANGULAR GRAPH FOURIER TRANSFORM

In this section, we explain the extension of the well-known
Graph Fourier Transform (GFT) to our proposed 6-D spatio-
angular space, and the application of this 6-D GFT to the
compression of colour vectors in plenoptic point clouds.

A. 6-D Block Subdivision

We use the Morton codes computed in Section III-B to
subdivide the input plenoptic point cloud into blocks in 6-D
space defined by the integer spatial coordinates (x′, y′, z′) and
the integer angular coordinates (xa′, ya′, za′). The 6-D spatio-
angular points whose Morton codes have the same prefix (i.e.,
the same MSBs) belong in the same 6-D block. The more
significant bits that we consider as the prefix, the smaller the
6-D blocks will be. If we wish to split along each of the six
axes in 6-D space, the number of most significant bits that
we consider must be a multiple of 6. The block subdivision is
necessary in order to provide reasonably-sized subspaces on
which to construct the graphs that we will use for efficient
representation and compression of the plenoptic colour data.
Note that we process only the occupied 6-D blocks.

B. Blockwise 6-D Graph Construction

We construct a separate graph in each of the 6-D blocks
described in Section V-A. For a block containing a set of
nodes V = {vi, i = 1, ..., n} and a set of edges E =
{ej , j = 1, ...,m}, we construct a graph G = (V,E). Each
node vi of the graph represents the 6-D spatio-angular location
(xi
′, yi
′, zi
′, xai

′, yai
′, zai

′) of the corresponding 6-D point that
is found inside the same block. Note that since we wish to use
the graph for point cloud attribute compression, we consider
only the spatio-angular coordinates (xi

′, yi
′, zi
′, xai

′, yai
′, zai

′),
and not the colour values, for the construction of the graph.
The colours are considered signals defined over the graph
nodes. We assume that the geometry data has already been
compressed and transmitted separately to the decoder, and that
the decoder knows the locations of the viewpoints, so that
the graphs can be constructed independently at the encoder
and decoder ends. Also note that the spatio-angular points
corresponding to the graph nodes in each block are only the
“valid” points, representing incomplete viewpoint data (see
Section III-B).

Within each 6-D block, we create a fully connected graph.
This means that every graph node (spatio-angular point) inside
the block is connected to every other graph node inside the
same block. The graph edges are also weighted, and the weight
of the edge between two nodes is computed as the inverse of
the total squared distance d2 between them (i.e., 1/d2). To
compute the squared distance d(vi, vk)

2 between two graph
nodes vi and vk (where i 6= k), we consider a linear combina-
tion of the squared Euclidean distance between these nodes’
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spatial coordinates, ds(vi, vk)2, and the squared Euclidean
distance between their angular coordinates, da(vi, vk)2, as:

ds(vi, vk)
2 = (xi

′ − xk′)2 + (yi
′ − yk′)2 + (zi

′ − zk′)2,
da(vi, vk)

2 = (xai
′ − xak

′)2 + (yai
′ − yak

′)2 + (zai
′ − zak

′)2,
d(vi, vk)

2 = ds(vi, vk)
2 + da(vi, vk)

2.
(9)

The n×n adjacency matrix A in each 6-D block therefore
consists of the inverse distance values 1/d(vi, vk)2 in locations
(i, k) and (k, i) where the corresponding nodes vi and vk are
connected to each other. If a block contains only one node, its
adjacency matrix is set to 0. The n× n degrees matrix D in
each 6-D block is computed as the sum of the weights in A
across each row (or column). These sums are placed on the
main diagonal of D, while other locations in D have values
of 0. Finally, the n×n graph Laplacian matrix L in each 6-D
block is computed as:

L = D−A. (10)

Note that A, D, and therefore L, are all symmetric matrices.
This means that every row and column of L sums to zero.

C. Graph Laplacian Analysis and Synthesis

Both the analysis and synthesis of the input plenoptic
attribute data are performed by using an orthonormal basis
consisting of the unit-norm eigenvectors of the graph Lapla-
cian matrix computed in (10). Note that since the encoder
and decoder are both assumed to have access to the input
point cloud geometry and viewpoint locations a priori, the
Laplacian eigenvectors can be computed independently at each
end. The graph Laplacian matrix L is positive semi-definite,
meaning that all of its eigenvalues are non-negative and real.
The number of eigenvalues with a value of 0 indicates the
number of connected components in the corresponding graph.
Since we use a fully connected graph inside each 6-D block,
the graph for each block has only one connected component
(and therefore one DC coefficient – see below).

We sort the set of Laplacian eigenvalues for each 6-D block
in order of increasing magnitude. We then sort their corre-
sponding eigenvectors in the same order. Since the Laplacian
eigenvalues are considered analogous to the frequencies of
their corresponding basis vectors (eigenvectors) [36, 37], this
arrangement effectively puts all the lowest-frequency basis
vectors first, followed by increasingly higher-frequency basis
vectors. The eigenvectors corresponding to the 0 eigenvalue
can thus be considered to represent “DC” basis vectors.

At the encoder, we decompose the n × 3 matrix of colour
vectors, c, corresponding to the n graph nodes within a 6-D
block, onto the basis of n × n unit-norm eigenvectors Φ for
that block, ordered according to their eigenvalues as explained
above. This produces a set of 3 × n spectral coefficients (n
coefficients per colour channel), γ, for this block:

γ = cTΦ. (11)

For the work in this paper, prior to entropy coding, we first
uniformly quantize all the spectral coefficients resulting from
the 6-D GFT, then we order the quantized coefficients accord-
ing to the 6-D blocks’ Morton codes. The DC coefficients

(for all the blocks, in Morton order) are placed first, followed
by the AC coefficients (for all the blocks, in Morton order).
We then entropy-code the ordered coefficients separately per
colour channel, using the RLGR entropy coder [35] similary
as for 6-D RAHT (see Section IV).

At the decoder, the recovered set of all the dequantized GFT
coefficients γ̂ are used to reconstruct the colour values for the
graph nodes in the corresponding 6-D block:

ĉT = γ̂ΦT . (12)

VI. PLENOPTIC DATA PREPARATION

In order to test our ideas, we consider synthetic Surface
Light Field data with an HRDF representation [23], which
simulates complex surface reflectance properties on differ-
ent levels of surface roughness, with different-coloured light
sources that reflect off the object surfaces. Such data offers
much more complexity to test our proposed ideas than, for
example, the 8iVSLF data [2], which does not have a lot of
variation in colour across the different viewpoints, has light
sources with only a single colour (white), and does not enable
us to vary the surface specularity or the viewpoint density. By
placing the HRDF data into our proposed 6-D representation,
we are able to simulate various realistic data capture scenarios
with different levels of viewpoint density and different camera
arrangements. For the work in this paper, we will demonstrate
our results on the two most common plenoptic point cloud (or
SLF) capture scanarios: a multi-camera studio capture, where
there is a collection of stationary cameras to capture the scene
simultaneously, and video fly-by capture, where a static scene
is captured by a single camera that moves in a trajectory
throughout the scene. The latter is equivalent to capturing
each frame by a stationary camera at a different location. For
realistic capture scenarios, only a sparse collection of angular
directions are sampled for each surface point, as illustrated in
Fig. 1 (left) for the video fly-by scenario, and Fig. 1 (right) for
the multi-camera studio scenario. In the multi-camera studio
scenario, the collection of directions (θ, φ) from which a
surface point is captured corresponds to the number of cameras
that see the point. If there are 12 cameras, and a surface point
is visible to 7 of these (and occluded in 5), then there are 7
directions for which there is valid data. The number of valid
samples generally vary from point to point. In the video fly-
by scanario, the collection of directions (θ, φ) from which a
surface point is captured corresponds to the trajectory of the
camera relative to the point. If the point appears in 30 video
frames, then there are 30 directions for which there is valid
data.

A. Synthetic Data HRDF Representation

The synthetically-generated SLF datasets used in our ex-
periments are variations (i.e., with different surface roughness
values) of the Bunny and Gold Sphere used in [23]. In these
datasets, each surface point s = (x, y, z) has values for the
radiance at outgoing angles a = (θ`, φ`) (where ` stands for
“local”) on a regular grid, as illustrated in the example in
Fig. 2 (left) for two surface points s1 and s2. The HRDF
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Fig. 1: For realistic data capture, examples of HRDF angular sampling
patterns for two spatial points (1 and 2). Left: Data collected by video
fly-by. Right: Data collected in a multi-camera studio. In an HRDF
represenation, angular directions are generally different for different
spatial points, as they are in a local coordinate system.

Fig. 2: Examples of HRDF angular sampling patterns for two spatial
points (1 and 2). Left: Original HRDF parameterization in a local
coordinate system. Right: HRDF re-parameterized into a global
coordinate system, in which half the angular directions are invalid,
but a different half depending on the spatial point.

angular parameters θ` and φ` are in a coordinate system that is
local to each surface point, where θ` ∈ [−π, π] is the azimuth,
and φ` ∈ [0, π/2] is the elevation above the horizon as seen
from the surface point, with φ` = π/2 corresponding to the
direction normal to the surface at the point. Using these local
coordinates, the HRDF at each point can be represented by an
image in [−π, π]× [0, π/2].

The local coordinates allow the HRDFs at all the points
to be represented by images on the same domain, [−π, π] ×
[0, π/2], but those images may not be well correlated across
surface points, because the coordinate system changes from
point to point. To address this, we re-parameterize the local
hemispherical coordinates of the HRDF into global spherical
coordinates. Let us call the re-parameterized HRDFs, SRDFs
(Spherical Radiance Distribution Functions). Though there
are many different ways to parameterize SRDFs, in this
paper we focus on a longitude-latitude global parameteriza-
tion. Let us use the symbols (θ, φ) as the global angular
coordinates, with θ ∈ [−π, π] being the azimuth (longitude)
and φ ∈ [−π/2, π/2] being the elevation (latitude), with the
understanding that they are global coordinates (shared by all
surface points) rather than local. We explain the details of
this local to global reparameterization in Section VI-B. Note
that the conversion of the local HRDF Surface Light Field
representation into a global coordinate system also allows us to
simulate a real capture in a multi-camera studio environment,
or a video fly-by capture (see the examples in Figs. 3 and 6).

A side effect of putting the RDF (Radiance Distribution

Function) into global coordinates is that only about half of the
angular directions are valid for each point, so if we represent
a point’s RDF as an image, we have to keep track of which
angular directions are valid and which are invalid for each
point, as illustrated in the example in Fig. 2 (right). Rather
than representing the collection of SRDFs with images, and
keeping track of valid and invalid data in those images, we
can represent the collection of SRDFs as a list of valid data
only, in a 5-D or 6-D point cloud, as introduced in Section III.

B. Local HRDF to Global Viewmap Reparameterization

For each surface point s = (x, y, z), we sample the RDF
on a regular grid of view directions, called a viewmap. If the
viewmap has dimensions vmaph × vmapw, then its (i, j)th
view direction has global angular coordinates

θ = 2π[i/(vmaph − 1)]− π,
φ = π[j/(vmapw − 1)]− π/2, (13)

for i = 0, . . . , vmaph − 1 and j = 0, . . . , vmapw − 1. These
global angular coordinates correspond to 3-D coordinates
(xa, ya, za) on the surface of a unit sphere, according to (4).
In turn, (xa, ya, za) correspond to local angular coordinates
(θ`, φ`) at the surface point s, as follows. We use the local
coordinate system at s given by the local coordinate basis
n̂, t̂, b̂, where n̂ is the unit vector normal to the surface at s,
t̂ is a specified unit vector tangent to the surface at s, and b̂
is a unit vector perpendicular to both t̂ and n̂, known as the
bitangent vector. Specifically,

n = (xa, ya, za) · n̂,
t = (xa, ya, za) · t̂,
b = (xa, ya, za) · b̂

(14)

are the coefficients of the unit vector (xa, ya, za) in the basis
n̂, t̂, b̂. In turn, these coefficients map to the local angular
coordinates (θ`, φ`) as:

θ` = arctan 2(t, b),
φ` = arcsin (n).

(15)

We use the coordinates (θ`, φ`) to index into the HRDF to
sample the radiance at surface point s. However, if n < 0 (or
φ` < 0), this indicates that s is not visible (i.e., is occluded)
in that view direction. In that case, we represent the radiance
in that direction in the viewmap as NaN, rather than as the
radiance sampled from the HRDF.

For a camera located at position c = (xc, yc, zc), the appear-
ance of the surface point s = (x, y, z), if it is not occluded,
is given by the RDF at s in view direction a = (xa, ya, za),
where

a = (c− s)/||c− s||. (16)

If the camera is very far away from the object, this view
direction is approximately constant,

a ≈ c/||c||, (17)

for all points s in the point cloud. Thus, for convenience in this
paper, in our experiments we will assume that all cameras are
very far away from the object, and therefore that the (i, j)th
view direction in the view map for point s and the (i, j)th
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Fig. 3: SLF for the Bunny from [23], reparameterized to our global spherical viewmap representation, using a viewmap size of 64x32 (top
row) and 16x8 (bottom row). The selected viewpoint and surface point are coloured in blue in the first two images in each row. The third
image in each row is the global viewmap in 2-D image form, with the black areas representing viewpoint locations from which the selected
surface point is not visible (these have an “NaN” colour value). The last image in each row is the 3-D version of the corresponding 2-D
viewmap, and in these images only the colours for the valid viewpoints are shown.

view direction in the view map for any other point s′ refer to
views of the points from the same camera, or viewpoint. This
will allow us to streamline the discussion by referring to the
angular direction a = (xa, ya, za), or alternatively (θ, φ), both
as the view direction and as the camera viewpoint.3

Fig. 3 shows two examples of the resulting global viewmap
representation, using the process described above with dif-
ferent chosen camera viewpoint densities on the sphere, for
the Bunny dataset that was used in [23]. Fig. 4 shows that if
we rotate the Bunny rendered from viewpoint (3,5) in Fig. 3
(bottom row) to a different viewpoint, the Bunny is hollow at
the back, because we only record the spatial points that are
visible from each viewpoint.

VII. EXPERIMENTAL PROCEDURE AND RESULTS

In this section, we present results for 5 different versions of
the Bunny and 6 different versions of the Gold Sphere. Each
version corresponds to a different surface roughness value
(specularity is approximately 1/roughness), as shown in Fig. 5.
We also consider 4 different camera viewpoint arrangements:
32x16, 16x8, 4x3, and 32x1, as shown in Fig. 6. The first 3

3This is by no means an assumption or limitation of our non-separable
framework, which naturally handles the case where each spatial point may
have its own angular direction to the same camera viewpoint. In contrast,
separable approaches such as [4] separate the data by space along one axis
and by camera along another axis. This constraint may be undesirable when
the colour of a point is determined more by the view direction than by the
camera identity, as would be the case for highly reflective surfaces, when
the environment is reflected from each surface point according to the view
direction relative to the surface normal.

Fig. 4: Bunny from viewpoint direction (3,5) in Fig. 3 (bottom row),
rotated to a different viewpoint.

arrangements in Fig. 6 simulate multi-camera studio capture
environments, with different levels of viewpoint density, and
the 32x1 arrangement simulates a video fly-by capture.

We present results for all the Bunny and Gold Sphere
datasets using a spatial rescaling range (i.e., for the (x, y, z)
coordinates) of [0, 1023], obtained through the rescaling
process described in Section III-B. Note that after rescaling to
this range, the Bunny still has 25360 unique spatial positions,
while the Gold Sphere now has 62325 unique spatial points.
For all the results where we compare our 6-D methods to
RAHT-KLT [4], we use RLGR entropy coding [35] for the
RAHT-KLT coefficients, similarly to what is done for the 6-
D RAHT and 6-D GFT coefficients (see Sections IV and V).
We also use uniform scalar quantization stepsizes of [1, 2,
4, 8, 16, 32, 64], to obtain the different rate-distortion (R-D)
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Fig. 5: Top row: Bunny with different surface roughness values (left to right): 0.5, 0.05, 0.01, 0.005, 0.001. Bottom row: Gold Sphere with
different surface roughness values (left to right): 0.5, 0.05, 0.01, 0.005, 0.002, 0.001. Number of unique spatial points before rescaling: for
Bunny = 25360; for Gold Sphere = 62529.

Fig. 6: Tested viewmap arrangements (left to right): 32x16, 16x8,
4x3, 32x1.

points on all the presented R-D plots. Bitrates are measured
with respect to the original number of 8-D attributed points
in the input datasets (see Section III), before any spatial or
angular rescaling and before the removal of invalid points
(see Section III-B). When measuring the PSNR, however, the
rescaling is taken into account, as it is part of the compression
methods. For 6-D RAHT and 6-D GFT, since the spatio-
angular rescaling produces a smaller number of attributed
points than before rescaling and the colours of any attributed
points with identical Morton codes (i.e., identical spatio-
angular positions) after rescaling are averaged before being
compressed (see Section III-B), in the 6-D RAHT and 6-D
GFT reconstructions we simply copy the same reconstructed
colour value to all the original (before rescaling) spatio-
angular points that end up having the same Morton code after
rescaling. RAHT-KLT, on the other hand, does not depend on
the angular rescaling, as it does not require the computation of
6-D Morton codes. RAHT-KLT may require only the rescaling
of the spatial (x, y, z) coordinates, if they are not already in
an integer range. Therefore, for RAHT-KLT, we also average
the colours of all the spatio-angular points that end up being
identical after rescaling of the spatial coordinates, and we pass
these colour values as input to RAHT-KLT. For the RAHT-
KLT reconstruction, similarly to the case for 6-D RAHT and
6-D GFT, we simply copy the same reconstructed colour value
to all the original (before rescaling) spatio-angular points that
end up being the same after spatial rescaling. This means that
both RAHT-KLT and our 6-D methods suffer some loss due

to coordinate rescaling, more so for the 6-D methods because
they require a rescaling in the angular dimension as well.

Finally, since 6-D RAHT and 6-D GFT can work on the
incomplete viewpoint data, they reconstruct only the valid
(visible) viewpoint colours for each spatial point. RAHT-KLT
works only on the complete viewpoint data and therefore re-
constructs a colour for every viewpoint (visible and invisible),
for each spatial point. To ensure a fair PSNR comparison, we
consider only the valid colour values that are reconstructed by
all the methods, and ignore the invalid values. The reference
for PSNR computation is thus the set of original colour
values, corresponding to the original attributed points before
coordinate rescaling, and considering only the valid attributed
points.

1) Impact of angular scaling: We first investigate the
impact of angular rescaling, given a chosen suitable spatial
rescaling range, on the rate-distortion performance of 6-D
RAHT, for datasets with different surface specularities and
different simulated camera arrangements. We compare the
results to RAHT-KLT in each case, which is independent of
the angular rescaling. Due to space limitations in the paper, we
present here only the Y PSNR plots, but we have observed that
the Cb and Cr plots (the input data is in YCbCr colour space)
follow similar patterns. In Figs. 7 and 10, we see that when
a suitable angular rescaling range is chosen for 6-D RAHT,
the performance improvement over RAHT-KLT is significant.
For the denser viewmap arrangements of 32x16 and 16x8,
as well as for the video fly-by simulation arrangement of
32x1, 6-D RAHT is generally able to achieve between 5-10
dB better PSNR than RAHT-KLT at a similar (low) bitrate,
and an even greater improvement than that at the higher
bitrates. For the much sparser viewpoint arrangement of 4x3,
the improvement of 6-D RAHT over RAHT-KLT is smaller,
but nevertheless ranging between around 2 dB at the lowest
bitrates up to around 10 dB at the highest bitrates. We also see
in Fig. 7 that the 6-D RAHT performance generally continues
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to improve from angular rescaling ranges of 0-0 to 0-511, and
then begins to worsen. This indicates that the most suitable
angular rescaling range for this dataset is 0-511 (except for the
4x3 viewpoint arrangement, where the best angular rescaling
range seems to be 0-1023). For the Gold Sphere in Fig. 10, we
see that the best angular rescaling range tends to be 0-1023.
Figs. 7 and 10 also demonstrate that when too small an angular
scaling range is used, the PSNR saturates at a low value,
because the chosen angular scaling does not allow enough
different viewpoints to be represented to be able to accurately
reconstruct the plenoptic colour values on the highly specular
object surfaces. In general, our observations from Figs. 7 and
10 indicate that for a fixed spatial scale, the angular scale
trades off the spatial and angular resolutions of the 3-D object.
Since for the Bunny and Gold Sphere, there is little variation
in colour across the different spatial points relative to the vari-
ation in colour in the angular dimension, the optimal angular
scales are quite high. Furthermore, we see that the density of
viewpoints also has an effect on the optimal angular scale:
for the denser viewpoint arrangements in Figs. 7 and 10, the
differences in R-D performance between the different angular
scales are more gradual and more evident than the differences
in R-D performance for the sparser viewpoint arrangement
4x3, because the denser viewpoint arrangements allow more
correlations between points in the angular dimension.

2) Impact of specularity: Figs. 9 and 12 show the results
on the Bunny and Gold Sphere, respectively, with different
surface roughness values, when we use the “optimal” angular
scaling range found in Figs. 7 and 10 (respectively). We see
that, as expected, the smaller the surface roughness in the input
data (i.e., the greater the surface specularity), the more bits
are required to encode the plenoptic colour vectors to achieve
a similar reconstruction quality. We also see that at all of
the tested surface roughness values, 6-D RAHT significantly
outperforms RAHT-KLT. Furthermore, the examples in Figs. 8
and 11 demonstrate visually that 6-D RAHT is able reproduce
the colours on the 3-D objects more faithfully and smoothly
than RAHT-KLT at a similar bitrate. Note that the reconstruc-
tions in Figs. 8 and 11 show only the visible surface points,
and their corresponding colours, at the selected viewpoint.

3) Comparative assessment of 6-D GFT, 6-D RAHT, and
RAHT-KLT: Fig. 13 compares 6-D GFT to 6-D RAHT and
RAHT-KLT, for different GFT block sizes, using the same
angular rescaling range for 6-D RAHT and 6-D GFT that
produced the best 6-D RAHT results for the Bunny in Fig. 7.
We see that the 6-D GFT performs similarly to 6-D RAHT, but
6-D RAHT usually has the best performance. For the 6-D GFT,
our experiments show that the smaller block sizes generally
afford better R-D performance at the low bitrates and the larger
blocksizes at the higher bitrates. Perhaps this is because a
smaller block size allows local geometric properties of the
point cloud to be captured better, and at the lowest bitrates
where there is the coarsest quantization, this better localised
capturing of the point cloud geometry helps to offset the
large reconstruction error caused by the coarse quantization,
resulting in a slightly higher PSNR than for a larger blocksize
at a similar bitrate. In all the cases, however, there is a clear
performance difference between the 6-D methods and RAHT-

KLT. We have found that the R-D results presented in Fig. 13
are also representative of the R-D results when using different
viewmap arrangements and different surface roughness values
for the Bunny, and we have observed similar patterns for the
Gold Sphere dataset.

VIII. COMPLEXITY OF THE PROPOSED APPROACH

For the proposed approach, some example runtimes for the
key algorithm steps in the conversion of the input plenoptic
point cloud into our global viewmap representation and as-
sociated 6-D space, are shown in Table I, below. The times
in Table I have been taken from our prototype MATLAB
implementation and are not intended to be optimal; they
are simply intended to give the reader an idea of the time
complexity of different key parts of the proposed algorithm.

Key Algorithm Steps Approximate Time Taken (s)
(Global Viewmap Arrangement) 32x16 16x8 4x3 32x1

Local HRDF to global SLF conversion 7.42 2.52 0.79 1.10
Creating complete and incomplete sets of

8-D attributed points 1.94 1.19 0.95 1.00
Spatial and angular point rescaling 2.70 0.61 0.07 0.17

Morton code comp. & related processing 13.82 3.19 0.29 0.84

TABLE I: Approximate times taken for processing the Bunny dataset
from Fig. 13, in MATLAB R2018b, on a 64-bit Dell Latitude 7480
laptop with an Intel Core i7-7600U CPU (2 cores), an integrated Intel
HD Graphics 620 graphics card, and a Windows 10 operating system.

We see in Table I that the most time-consuming part of the pro-
posed algorithm for converting an input plenoptic point cloud
(in HRDF representation) into our proposed 6-D framework is
usually the Morton code computation and related processing
(see Section III-B for the algorithmic details). While there
exist a number of different methods for implementing a
Morton code computation, in our current prototype this is
implemented as a simple for-loop to access different bits of the
input (rescaled) 6-D coordinates in order to interleave them.
This means that our algorithm has approximately linear time
complexity with respect to the number of input spatio-angular
points, as is confirmed by the example runtimes presented in
Table I. Note that for the examples in Tables I-III, the number
of input spatial points remains constant, so it is the number
of viewing directions (in the global viewmap arrangement)
that causes the variation in runtimes. In terms of data (space)
complexity, this is also linear with respect to the number of
input spatio-angular points.

In Table II, we provide some example times for 6-D RAHT
encoding and decoding on the Bunny from Fig. 13. We
see that both the encoder and decoder execute very quickly
(particularly the decoder) and that they are almost linear in
time complexity relative to the number of input spatio-angular
points.

Approximate Time Taken (s)
(Global Viewmap Arrangement) 32x16 16x8 4x3 32x1

6-D RAHT Encoder 16.75 3.73 0.19 1.21
6-D RAHT Decoder 4.62 0.97 0.04 0.29

TABLE II: Approximate times taken for 6-D RAHT encoding and
decoding of the Bunny dataset from Fig. 13, on the same computer
system as for Table I.
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Fig. 7: R-D curves for 6-D RAHT (valid viewpoints) using different angular scales, versus RAHT-KLT (valid + invalid viewpoints), for
Bunny with surface roughness 0.01 and spatial rescaling 0-1023, using global viewmap sizes (left to right): 32x16, 16x8, 4x3, 32x1.

Fig. 8: Comparing reconstructions of Bunny from Fig. 7 at viewpoint arrangement 16x8, at similar bitrates for 6-D RAHT and RAHT-KLT,
using an angular rescaling of 0-511 for 6-D RAHT. Left to right: Input, 6-D RAHT reconstruction at 0.7 bpp and PSNR 30.8 dB, RAHT-KLT
reconstruction at 0.8 bpp and PSNR 25.4 dB, 6-D RAHT reconstruction at 1.4 bpp and PSNR 41.6 dB, RAHT-KLT reconstruction at 1.4
bpp and PSNR 30.7 dB.

Fig. 9: R-D curves for 6-D RAHT (valid viewpoints) versus RAHT-KLT (valid + invalid viewpoints), for Bunny with different surface
roughness values, spatial rescaling 0-1023, and the best angular scale for 6-D RAHT shown in Fig. 7, using global viewmap sizes (left to
right): 32x16, 16x8, 4x3, 32x1. Angular scales used (left to right): 0-511, 0-511, 0-1023, 0-511.

In Table III, we present some example runtimes for key
steps in our proposed 6-D GFT algorithm, again for the
Bunny from Fig. 13. We see in Table III that the most time-
consuming operations by far are the graph construction and
eigenvector/eigenvalue computations across all the 6-D blocks,
and that these times increase approximately linearly with the
number of spatio-angular points. In fact, the graph construction
is what consumes most of the time here, rather than the
eigenvector/eigenvalue computations, which are usually very
fast (almost negligible, or a few seconds per block at the most
for the tests in this paper). The main reasons why the graph

construction is so time-consuming are that: (i) in our current
prototype implementation, we have a sequential processing for
the blocks, which can be very time-consuming when there
is a large number of blocks to process, and (ii) we use a
fully weighted graph, where each node is connected to every
other node within a block (see Section V-B), so we must
compute the distance between each node and every other
node in the same block. In our current implementation, we
have reduced the time complexity of the latter operation from
O(n2) to O(n) (where n is the number of spatio-angular
points in a block), by using highly vectorised code. We also



IEEE TRANSACTIONS ON MULTIMEDIA, SUBMITTED FOR POSSIBLE PUBLICATION 12

Fig. 10: R-D curves for 6-D RAHT (valid viewpoints) using different angular scales, versus RAHT-KLT (valid + invalid viewpoints), for
Gold Sphere with surface roughness 0.002 and spatial rescaling 0-1023, using global viewmap sizes (left to right): 32x16, 16x8, 4x3, 32x1.

Fig. 11: Comparing reconstructions of Gold Sphere from Fig. 10 at viewpoint arrangement 32x16, at similar bitrates for 6-D RAHT and
RAHT-KLT, using an angular rescaling of 0-1023 for 6-D RAHT. Left to right: Input, 6-D RAHT reconstruction at 0.4 bpp and PSNR
33.2 dB, RAHT-KLT reconstruction at 0.5 bpp and PSNR 26.1 dB, 6-D RAHT reconstruction at 1.0 bpp and PSNR 41.7 dB, RAHT-KLT
reconstruction at 1.1 bpp and PSNR 30.4 dB.

Fig. 12: R-D curves for 6-D RAHT (valid viewpoints) versus RAHT-KLT (valid + invalid viewpoints), for Gold Sphere with different surface
roughness values, spatial rescaling 0-1023, and the best angular scale for 6-D RAHT shown in Fig. 10, using global viewmap sizes (left to
right): 32x16, 16x8, 4x3, 32x1. The same angular scale (0-1023) was used for all the 6-D RAHT graphs in this figure.

believe that the total runtime for the graph construction across
all the blocks could be dramatically improved by having
a parallel-processing implementation that is optimised for
dealing with a large number of blocks. In fact, we see in
Table III that the smaller block sizes lead to significantly
larger total processing times for the graph construction than
the larger block sizes, simply because when the block sizes
are smaller there is a significantly larger number of them to

process. The latter observation generally also applies to the
colour analysis (decomposition on the eigenvector basis) at the
encoder and the colour synthesis (reconstruction) operations at
the decoder, which are currently applied sequentially across all
the blocks. In fact, both the analysis and synthesis per block
are very fast (negligible time taken), but for the results in
Table III we decided to trade off time complexity and data
complexity: instead of storing the set of eigenvectors for all
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Fig. 13: (Top row) R-D curves for 6-D GFT (valid viewpoints) versus
6-D RAHT (valid viewpoints) versus RAHT-KLT (valid + invalid
viewpoints), for Bunny with surface roughness 0.01, spatial rescaling
0-1023, and angular rescaling 0-511 (for 6-D RAHT and 6-D GFT),
using different blocksizes for the GFT, and viewpoint arrangement
16x8 (left) and 32x1 (right). (Bottom row) Bunny reconstructions
from viewpoint arrangement 32x1, showing (left to right): Input, 6-
D RAHT reconstruction at 0.9 bpp and PSNR 30.8 dB, 6-D GFT
reconstruction using block size 2566 at 1.0 bpp and PSNR 30.2 dB,
RAHT-KLT reconstruction at 0.8 bpp and PSNR 24.6 dB.

the 6-D blocks in memory, we save them to disk and then
load the corresponding set of eigenvectors per block when
we process that block, both at the encoder and decoder ends.
The loading of the eigenvectors normally takes around 1 s
per block (or very slightly longer for larger blocks), but again
since these operations are currently sequential, the time adds
up over many blocks. All of the runtimes shown in Table III
should therefore be considered exemplary prototypes only, as
there is significant room for improvement in terms of speed
optimisations.

Based on the results presented in this paper, as well as the
complexity analysis in the current section, it seems that be-
tween 6-D RAHT and 6-D GFT, using 6-D RAHT may be the
best option to achieve both, better rate-distortion performance
(e.g., see Fig. 13) and faster speed of codec execution.

6-D GFT Key Algorithm Steps Approximate Time Taken (All Blocks) (s)
(Global Viewmap Arrangement) 32x16 16x8 4x3 32x1

6-D block subdivision [blk size = 3416] 0.58 0.12 0.01 0.04
6-D block subdivision [blk size = 2566] 0.57 0.14 0.01 0.05

Graph construction + eig. comp. [blk size = 3416] 7601.12 669.22 56.93 186.68
Graph construction + eig. comp. [blk size = 2566] 15143.79 3849.02 284.85 963.35

Colour analysis and encoding [blk size = 3416] 1657.98 357.91 22.42 108.25
Colour analysis and encoding [blk size = 2566] 8709.55 1119.98 74.19 283.64

Colour decoding and synthesis [blk size = 3416] 787.64 96.15 5.41 15.69
Colour decoding and synthesis [blk size = 2566] 563.53 149.66 14.47 50.03

TABLE III: Approximate times taken for key steps of the 6-D GFT
encoding and decoding of the Bunny dataset from Fig. 13, on the
same computer system as for Tables I and II.

IX. CONCLUSION

In this paper, we introduced a 6-D representation for the
joint (non-separable) spatio-angular compression of the colour
attributes of plenoptic point clouds. Our representation consid-
ers a plenoptic point cloud as a set of spatio-angular locations
(x, y, z, xa, ya, za) with associated colour values, where only
the “valid” colour data (i.e., only for the spatial positions that
are visible from each viewpoint) is represented and encoded,
rather than encoding the colours for all the viewpoints as is
done by the current state-of-the-art plenoptic colour coding
method, RAHT-KLT [4]. We also proposed extensions of the
well-known RAHT [14, 15] and GFT compression methods to
our 6-D spatio angular space. These 6-D methods have been
tested on synthetic SLF data with various degrees of surface
specularity, illuminated with different-coloured light sources,
and captured with different simulated camera arrangements
and different viewpoint densities. In all these scenarios, we
have demonstrated significant rate-distortion improvements
over the state-of-the-art. As a next step for future work, we
would like to investigate how non-synthetic plenoptic datasets,
such as the 8iVSLF data [2], can be placed into our 6-D
framework and compressed using the proposed 6-D methods.
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[18] C. Zhang, D. Florêncio, and C. Loop. “Point Cloud At-
tribute Compression with Graph Transform”. In: IEEE
Int. Conf. on Image Processing (ICIP). 2014, pp. 2066–
2070.

[19] E. Pavez et al. “Region Adaptive Graph Fourier Trans-
form for 3D Point Clouds”. In: IEEE Int. Conf. on
Image Processing (ICIP). 2020, pp. 2726–2730.
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