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Electronic voting is a very useful but challenging internet-based protocol that despite many the-
oretical approaches and various implementations with different degrees of success, remains a con-
tentious topic due to issues in reliability and security. Here we present a quantum protocol that
exploits an untrusted source of multipartite entanglement to carry out an election without relying
on election authorities, simultaneous broadcasting or computational assumptions, and whose result
is publicly verifiable. The level of security depends directly on the fidelity of the shared multipar-
tite entangled quantum state, and the protocol can be readily implemented for a few voters with
state-of-the-art photonic technology.

Electronic voting, or e-voting, is a functionality
built on top of the Internet or any distributed net-
work that allows performing large-scale elections in
a secure and verified way, even in the presence of dis-
trusted authorities or dishonest agents. The benefits
of such a functionality include a faster and simpler
way to carry out elections resulting in higher pub-
lic participation (i.e., a higher number of voters),
reduction of election costs, and accessibility for peo-
ple with disabilities. Furthermore, e-voting offering
information-theoretic security guarantees in princi-
ple the security and honesty of the elections even in
the case of corrupted officials or a coalition of dishon-
est agents. However, the adoption of a protocol that
uses a public network to accomplish elections also
increases the possibilities for fraud by manipulating
the results or violating privacy [1]. Moreover, even
though it may not be possible for such a protocol to
be infringed, the agents would need to trust devices
and programs they did not author and, most likely,
not even understand [2]. Finally, it is also necessary
to take into account the cost of implementing the
elections with advanced technology.

Classical e-voting systems are based on computa-
tional assumptions and might not be secure against
quantum or other adversaries. Moreover, there have
been serious criticisms against commercial e-voting
systems due to insecurities [3]. In recent years, sev-
eral quantum e-voting protocols have been proposed,
announcing perfect security also in dishonest scenar-
ios. However, none of these was able to provide a
rigorous mathematical definition of the properties
required, such as privacy, verifiability, and correct-
ness, as well as to identify proper corruption mod-
els suitable for this scenario. As a matter of fact,
in [4], the authors discovered vulnerabilities in all
previously proposed quantum e-voting schemes. Let
us also mention the work in [5], where a lattice
based post-quantum cryptographic protocol achiev-
ing computational security was suggested. This may
however be undesirable for e-voting because pri-
vacy cannot be guaranteed in the long term. For
these reasons it is paramount to find schemes based
on information-theoretic security, rather than com-
putational assumptions, in order to ensure honest

elections also in the presence of dishonest authori-
ties with unbounded (or much bigger than publicly
known) computational power. This level of secu-
rity for an e-voting scheme was announced in [6],
which proposed a protocol exploiting only classical
resources. However, the requirement of a simultane-
ous broadcasting channel makes it impractical even
for a small number of voters, or turns the security
back to computational if the simultaneous broad-
casting channel is simulated via usual channels.

Here we describe and formalize several properties
required by an electronic voting system to be se-
cure and propose a quantum protocol that satisfies
these properties even in the presence of computa-
tionally unbounded adversaries and without neces-
sarily trusting the devices that execute the elections.
Another benchmark is that of practicality, in the
sense that we want the protocol to be implementable
with technology that is already or soon-to-be avail-
able and hence that it is possible to carry out a
demonstration at least for a few voters. Our pro-
tocol fulfils the above requirements, at the expense
on relying on the generation and manipulation of
a Greenberger-Horne-Zeilinger (GHZ) state with as
many particles as voters, which is the major limita-
tion to its scalability. We note, however, that here
the number of voters can refer not to the total num-
ber of voters in the election, but the number of voters
within each polling station, since, as in the classical
case, we can aspire to provide privacy of each vote
within each such polling station.

Our protocol utilises a multipartite entanglement
verification scheme [7–9] as a subroutine as well as
classical subroutines useful for anonymous transmis-
sion in communication networks. It is inspired by
the self tallying quantum anonymous voting protocol
proposed in [10], the particularity of which resides in
the absence of a tallier and any election authority.
Although this protocol was proven insecure in [4],
by employing the multipartite entanglement verifi-
cation scheme of [7] and simplifying the quantum
resource requirements using ideas of [6], we devise
an efficient quantum protocol and rigorously prove
its security. Furthermore, even though sharing an
N -party GHZ state for big N needed for large-scale
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elections is today still technologically out of reach,
we note that applications for small number of voters
are already feasible and important, and so are appli-
cations where one can use multiple small-scale GHZ
states to mimic an election with a large number of
polling stations. Similarly to the proposal of [10],
such a protocol can also be used as an anonymous
chat board, where one party can write a message
visible to anyone but no one can deduce who sent it
(similar to one party being able to vote without any-
one being able to deduce whose vote that is), or even
as a form of anonymous distributed computation.

Quantum e-voting protocol.–In the general setting
of our protocol, a source of N -qubit GHZ states,
|GHZ〉 = 1√

2
(|0〉⊗N

+ |1〉⊗N
), is situated at the cen-

tral node of a star-graph quantum network, whose
edges are the communication links needed for the
distribution of the entangled qubits to N agents.
Even though voters do not have to trust the mul-
tipartite entangled photon source, it should be ca-
pable of producing high fidelity quantum states to
pass the verification test at the heart of the protocol
in the honest case, and with a high enough rate to
ensure the elections can be performed in an efficient
way. Each agent only needs to be able to receive,
perform unitary operations, store for a short time,
and measure single photons. A particular feature
of our protocol is that it does not require talliers
or other election authorities, as all the votes are
announced publicly and anonymously and so each
voter can verify that the tally is correct. However,
as we will see later, if a voter detects malicious be-
haviour, they can abort the protocol using the ap-
propriate subroutine at the end of the election.

Let us now describe the protocol, referring to a
number of classical and quantum subroutines when
it is necessary. The pseudo-code of each of the sub-
routines is provided in Appendix A. We will assume
in the following that the election admits only two
possible candidates, ‘0’ and ‘1’, while the general-
ization to additional candidates is described later.

In the first phase of the protocol, each agent
k ∈ [N ] needs to obtain a secret, unique index
ωk ∈ [N ] that indicates the round the agent becomes
the voting agent. To do this, the agents perform the
UniqueIndex subroutine.

Subsequently, the second phase consists of as
many rounds as the voters and at each round one
agent votes according to the order based on the se-
cret indices shared in the first phase of the protocol.

Each voting round ℓ ∈ [N ] starts with the vot-
ing agent (namely the agent k who has received the
unique index ωk = ℓ) deciding repeatedly to per-
form one of two actions according to some random
coins they flip locally: Verification of the source or
Voting. The probability of this decision is guided by
a parameter M , which equals the number of coins,
so that the probability the coins return ‘all heads’
(which corresponds to Voting) is 2−M . In order to
notify everyone anonymously of the outcome of the

coin flip, all agents then perform a LogicalOr sub-
routine with input 0 except the voting agent whose
input depends on the result of the coin flip: if the re-
sult was not ‘all heads’ the agent inputs 1, announc-
ing anonymously Verification to the other agents,
otherwise the agent inputs 0 announcing Voting. For
the LogicalOr protocol performed in this phase, we
will assume for simplicity that if the voting agent
inputs 1, then the probability that the outcome is
1 is equal to 1, which corresponds to the choice of
a very small security parameter for this subroutine
(see Lemma 2 in Appendix A).

When Verification is announced, following the cor-
responding protocol, the voting agent first performs
the RandomAgent subroutine in order to choose a
verifier anonymously; this is necessary because the
verifier needs to communicate publicly with the
other agents so if their identity is the same as the
one of the voting agent, the voter’s privacy would
be violated. Then, they all proceed with the Veri-

fication test of the multipartite quantum state dis-
tributed by the untrusted (or just faulty) source. In
the ideal case, where the quantum state is created
and distributed with no errors and all the operations
are perfect, if the state does not pass the Verification
test the protocol is aborted. In any realistic imple-
mentation, however, the protocol cannot abort as
soon as there is any error. In practice, at each vot-
ing round, during the verification tests before Vot-

ing, each honest agent j counts the number of trials
and rejections when they are the verifier, computes

the practical parameter δj =
rejectionsj

trialsj
, and if this is

larger than a predetermined threshold δ, the entire
protocol is aborted.

When Voting is announced, the agents proceed
with the corresponding subrtoutine, which returns
an N -dimensional binary vector encoding the voting
agent’s preference. The underlying idea here is that
if all qubits of the shared GHZ state are measured
in the Hadamard basis, the sum of the outcomes
dk modulo 2 of all agents is always zero. Then, at
this round, all agents will just perform a Hadamard
measurement on their qubit, while the voting agent
k will XOR the outcome of the Hadamard measure-
ment with their vote intention vk. This implies that
when everyone follows the protocol, the parity of all
announced outcomes in the round is equal to the
vote intention vk.

Then, a new round starts, the (ℓ + 1)-th round,
where it is the turn of agent k′ with index ωk′ = ℓ+1
to be the voting agent. After all voting rounds have
completed and everyone has proceeded with Voting,
all agents publicly broadcast their own result vectors
and all together will form anN×N bulletin boardB.
By computing the parity of each row (corresponding
to each round) we get the vote vector E (since as
we said the parity of each row is equal to the vote
of the voting agent) from which the tally T can be
calculated easily by everybody. Since the indices
are unique and secret, each agent can verify that
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their vote is correct without revealing their choice.
If an agent wants to abort the protocol because of
suspected fraud (e.g., the tally does not agree with
their vote intention) they can input their objection
anonymously during the LogicalOr procedure that
follows, where the security parameter defines how
many agents on average should raise an objection
before the election is actually aborted.
The pseudo code for the entire protocol is given

below, while in Fig. 1 we provide a simple instance
of the voting procedure.

Protocol 1 Quantum e-voting

Input: N agent votes V = {vk}k∈[N], security
parameter S used in Phase 3, ǫ: distance from the
perfect GHZ state, δ: threshold for verification, η:
probability of failure of verification.
Output: The candidate with majority votes or Abort.
Resources: Classical communication, random numbers,
N-qubit GHZ source, quantum channels.
Description:

1: Phase 1 [getting unique secret indices]:
1. Agents perform UniqueIndex until each one re-

ceives a secret unique random index ωk.
2: Phase 2 [casting votes]:

For ℓ = 1 to N [voting round ℓ]:
(a) The voting agent is the agent k with ωk = ℓ.
(b) Repeat

(i) The source distributes to each of the N

agents one qubit of the GHZ state.
(ii) All agents j ∈ [N ] set rejectionsj =

trialsj = 0;
(iii) The voting agent tosses

log2

[

16Nǫ2

(ǫ2−4δ)2
ln

(

1
η

)]

coins;

(iv) The agents perform LogicalOr, where
output 1 indicates Verification and out-
put 0 indicates Voting, and where ev-
eryone except the voting agent inputs 0;
if the coin toss is ‘all heads’ the voting
agent also inputs 0, otherwise the voting
agent inputs 1;

(v) If Verification is chosen, the agents per-
form RandomAgent and the voting agent
picks anonymously an agent j ∈ [N ]
to be the verifier. Agent j updates
trialsj+ = 1 and if Verification outputs
reject: rejectionsj+ = 1.

until Voting is announced.

(c) If for any j ∈ [N ] δj =
rejectionsj

trialsj
> δ, the

protocol Aborts.
(d) Perform Voting. The outcome is one row of

the bulletin board B.
3: Phase 3 [verification of results]:

• All agents perform LogicalOr with security pa-
rameter S, and with input 1 if their vote is
not the same as the vote in the tally T for the
round in which they were the voting agent, else
with input 0.

• If LogicalOr outputs 1, Abort the protocol, else
the candidate with the majority votes accord-
ing to the tally wins the elections.

Quantum e-voting protocol analysis.–We now an-
alyze our quantum e-voting scheme and show that it

possesses a number of desired properties even in the
non-ideal case where the quantum source is imper-
fect or can be manipulated by colluding adversaries.

If the quantum states being used in the protocol
are perfect GHZ states and the agents behave hon-
estly, all the operations are anonymous and hence
the e-voting scheme is perfectly correct and private.
In any realistic scenario, however, the state used will
have some imperfections, due to the source itself, the
photon distribution, storage and measurement that
may result in some errors in the tally, for example
the sum of the outcomes of a round will not be 0
mod 2. We account for all the possible imperfections
assuming that the fidelity between the state used in
the protocol |ψ〉 and the perfect GHZ state |GHZ〉 is
F (|ψ〉 , |GHZ〉) =

√
1− ǫ2 for some ǫ > 0. Note that

the state produced by the source could be a mixed
state, but as discussed in [11], for the security it suf-
fices to upper bound the cheating probability of any
pure state, since this would also bound the cheating
probability for any mixed state. For this reason we
analyze below the case where the state produced by
the source is a pure state.

Since the source or the state itself can further be
intercepted and modified by an adversary in order to
gain advantage over the privacy of the honest vot-
ers, we need to implement a mechanism that allows
anyone to check the legitimacy of the state being
used with high probability. An efficient multipar-
tite entangled state verification protocol was devised
in [7, 8] and applied to an anonymous transmission
protocol in [11]. This is the Verification subroutine
used in the protocol (see Appendix A for details).
While in the ideal case we would abort the proto-
col as soon as the test failed once, in a realistic im-
plementation we need to keep track of the number
of failures and at the end check if the failures are
too many with respect to what was expected, which
would imply that there was a malicious manipula-
tion of the source. This is what is performed in
Phase 2 of the protocol.

In [7], the authors prove that the probability of a
state |ψ〉, whose trace distance with the GHZ state
is D(|ψ〉 , |GHZ〉) = ǫ, to pass the verification test
when an honest verifier is in the presence of dishon-
est agents who can perform local unitaries and com-
municate with each other is P (|ψ〉) ≤ 1− ǫ2/4. The
main idea of our practical e-voting protocol is that
the states produced by the source and potentially
manipulated by the dishonest agents will be verified
a large number of times in order to ensure that the
state that will be eventually used for the voting part
will be very close to the GHZ state. Then we will
prove that states close to the GHZ state offer almost
perfect privacy for the e-voting scheme.

We start by proving the following theorem that
in high level states that with high probability if the
verification procedure succeeds, then the state used
for the e-voting part must be close to the GHZ state:



4

d1 =









0
1
1
0









, d2 =









0
0
0
1









, d3 =









1
1
1
1









, d4 =









1
0
0
0









−→ B =









0 0 1 1

1 1 1 0
0 0 1 0
0 1 0 0









−→ E =









0
1
1
1









,T =

(

1
3

)

Figure 1: Example of the voting procedure according to our e-voting scheme with 4 voters who vote in the order
(4, 2, 1, 3). At the end of all rounds each voter has a list of 4 Hadamard measurement outcomes dk, and for each
round the four outcomes sum to 0 modulo 2. The voters express their vote by adding their vote (0 or 1) to the
row corresponding to their secret index (in bold), then broadcast the resulting vector and all together they form the
bulletin board B. Here the votes where (0, 1, 1, 1). Then they sum each row of B to compute the election vote set E,
from which is computed the tally T. In this example candidate ‘1’ won the election.

Theorem 1. Let Cǫ be the event that the protocol
does not abort and the state used for Voting is such
that F (|ψ〉 , |GHZ〉) ≤

√
1− ǫ2, for some ǫ > 0.

Then,

P (Cǫ) ≤ e−
2M (ǫ2−4δ)2

16Nǫ2 , (1)

where δ is the threshold for the ratio of rejections
over trials above which the protocol is aborted, M is
the number of coins the agent has to toss to choose
between Verification and Voting and N is the number
of agents.

The proof of Theorem 1 is provided in Appendix
B. Note that the honest voters do not know how
many corrupt agents there are and that if a dishon-
est agent is the verifier, the test always passes. We
can make the probability of using a state that is
ǫ-far in trace distance from the ideal one arbitrar-
ily small by increasing the number of repetitions, as
long as we have δ = (1 − α)ǫ2/4 for an α ∈ (0, 1);

more precisely, by taking M = log2

[

16N
α2ǫ2 ln

(

1
η

)]

we can make P (Cǫ) ≤ η for any small parameter
η > 0. Moreover, we see that for the same choices of
δ and M , we also have the property that the proto-
col accepts with high probability states that are a bit
closer to the perfect GHZ state, which is important
so that the protocol will not always abort. Indeed, it
is easy to see with Chernoff bounds that states that

are ǫ
√

1−α
1+α -away from the GHZ state have probabil-

ity almost 1 to pass the verification test, and thus,
a source that produces such states will be sufficient
for a successful election.

We assume for the remaining of the discus-
sion that with high probability F (|ψ〉 , |GHZ〉) ≥√
1− ǫ2. In this case, we prove that for each round

of the protocol, the identity of the voting agent re-
mains almost secret:

Theorem 2. At any round ℓ ∈ [N ] with voting agent
k (who has unique index ωk = ℓ), if the agents use
a state |ψ〉 such that F (|ψ〉 , |GHZ〉) ≥

√
1− ǫ2 to

perform Voting, then for the optimal strategy that
any subset of malicious agents D can use to guess

the identity of the voting agent k correctly, we have

∀j ∈WH , Pr[D guess j] =

{

1
H + ǫ for j = k
1−ǫ
H for j 6= k,

(2)
where WH is the set and H the number of honest
agents.

This theorem is simply based on Theorem 2 of
[11]. The difference is that, instead of a sender
who anonymously chooses between Verification and
Anonymous Transmission, we have a voting agent who
anonymously chooses between Verification and Vot-

ing. The probabilities for the other agents come from
the fact that all the agents that are not voting per-
form exactly the same transformation on the state,
so it is impossible for the dishonest parties to distin-
guish between them, hence the probability of guess-
ing their identity is the same. The proof of Theorem
2 is provided in Appendix C.
The last property we prove shows that if the

agents are all honest and use a state close to the
GHZ state for voting, then the probability there is
an error in the tally is small:

Theorem 3. If at round ℓ the agents are honest and
use a state |ψ〉 such that F (|ψ〉 , |GHZ〉) ≥

√
1− ǫ2

to perform Voting, then the probability that there
is an error in the tally in the ℓ-th round is upper
bounded by ǫ,

P er
ℓ ≤ ǫ. (3)

The proof of Theorem 3 is provided in Appendix
D. The above three theorems allow us to formal-
ize and prove a number of important properties for
our e-voting scheme, namely correctness, privacy,
authentication, no double voting, verifiability, and
receipt freeness. Note that in [12], the authors show
that there exist sets of properties that are incom-
patible in any voting system, meaning that not all
of them can be fulfilled simultaneously by any proto-
col. However, one can remove the incompatibility by
defining approximate versions for the properties or
making computational assumptions about the vot-
ers’ behaviour. Indeed, here, given that we want
to allow for imperfect sources of quantum states in
order to have a practical protocol that is robust to
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some level of noise, we define approximate versions
of some of these properties for our e-voting protocol,
as we explain in the following.
(σH , σD, γ)-Correctness. The correctness of a pro-

tocol implies that when no adversary interferes, the
election should be carried out correctly, and that in
the presence of adversaries, if the election tally is
far from the real votes, then the election is rejected
with high probability. These two requirements can
be expressed as two properties of the voting scheme:

• σH-completeness: if all agents are honest, the
election result is accepted with probability
more than σH ,

Pr[election accepted] ≥ σH . (4)

• (σD, γ)-soundness: the probability that the
election result is accepted, given that the set of
the votes E computed from the bulletin board
B resulting from the election is more than γ-
away from the real votes V, is smaller that
σD,

Pr
[

election accepted | 1
N ||V −E||1 ≥ γ

]

≤ σD.
(5)

The use of an imperfect state may result in some
errors in the final tally (see Theorem 3), and this
is why we define a notion of approximate correct-
ness. In particular, the probability that the e-voting
is validated is the probability that the LogicalOr sub-
routine in Phase 3 outputs 0 despite some voters
announcing a wrong entry in the tally. Note that
Theorem 3 ensures that at each round we can have
an error with probability at most ǫ, while it can also
be proven (see Lemma 2 in Appendix A) that dur-
ing LogicalOr, if j agents input 1 (which corresponds
to their vote being tallied wrongly) the probability
that LogicalOr outputs 0 is Sj , for the parameter S
defined by the e-voting protocol. Summing over all
the combinations we get:

Pr[election accepted] =
N
∑

j=0

Pr[j inputs 1] Pr[ LogicalOr outputs 0|j inputs 1] =

N
∑

j=0

(

N

j

)

ǫj(1 − ǫ)N−jSj = [1− ǫ(1− S)]
N
.

We can then define the σH parameter for our e-
voting protocol as

σH = [1− ǫ(1− S)]
N
, (6)

and we can see that by choosing S = 1−χ/(ǫN) for
some small constant χ we can make σH close to 1.
Consider now the events A =

{The protocol produced more than Nγ errors} for
0 ≤ γ ≤ 1 and B = {The elections are validated}.
Then we have P (B|A) ≤ SNγ and we can define the
σD parameter of our protocol as

σD = SNγ . (7)

If we assume that γ is a small fraction λ greater
than the expected number of errors, namely γ =
(1 + λ)[ǫ(1 − η) + η], we can make σD close to 0.
In conclusion, our e-voting protocol with inputs

S, ǫ, δ, η,N and for a small constant λ > 0, is
([1− ǫ(1− S)]N , SN(1+λ)[ǫ(1−η)+η], (1+λ)[ǫ(1−η)+
η])-correct, where the first parameter tends to 1 and
the second to 0 for an appropriate parameter S.
ζ-Privacy. The privacy of the election scheme im-

plies that each vote must remain secret with high
probability. More precisely, with high probability,
for any voter k, the probability that any subset of
malicious parties D that deviates from the honest
protocol can guess the vote vk of the voter is at
most ζ more than in the case they just have access to
the bulletin board and to their own votes. In other
words,

∀k, Pr[vk|D]− Pr[vk|B, vj ∈ VD] ≤ ζ. (8)

Theorems 1 and 2 ensure that by repeating the Ver-

ification test a significant number of times at each
voting round, the voting only happens with a shared
state that is close to a GHZ state, which guaran-
tees almost perfect anonymity. In practice, by hav-
ing each agent record the frequency of failures of
the test, they can deduce the practical parameter
δk =

rejectionsk
trialsk

and in case this is above the prede-
termined threshold δ, which is an input of the proto-
col, the protocol is aborted. Otherwise, the rounds
proceed normally and all agents vote. Note that δ is
linked to the expected fidelity of the state produced
by the GHZ source, as explained earlier.
We have also seen that by taking the appropriate

parameters, we can have that with probability at
least (1 − η), Eq. (35) from Theorem 2 holds. This
is the case the event Cǫ (see Theorem 1) is false. In
case Cǫ is true, which happens with probability at
most η, we can assume that the anonymity is totally
violated.
One needs to be careful here because the definition

of privacy is not the same as the one of anonymity.
More specifically, anonymity ensures that the hon-
est voters’ secret indices, or the round in which they
voted, remain secret, whereas privacy implies that
their vote remains a secret. Of course, the violation
of anonymity implies the disclosure of privacy, how-
ever a malicious agent can gather information about
someone’s vote also by looking at the distribution of
the other votes and the anonymity of the other vot-
ers. Taking Eq. (35) into account and considering
that among the H honest voters, H0 voted for can-
didate ‘0’ and the others H1 voted for candidate ‘1’,
such that H = H0 +H1, we have that the probabil-
ity of a subset of dishonest agents guessing correctly
the vote of agent k that is ‘0’ (same for ‘1’) is the
probability that they can guess that agent k is part
of the subset H0, in other words that agent k voted
in one of the rounds where the vote was cast as ‘0’.
Theorem 2 tells us how much the dishonest agents
can guess if a particular agent was the voter in a
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particular round, depending on whether the agent
was actually the voter or not. Hence, assuming that
the event Cǫ does not hold for any round, we have

Pr[D guesses vk = 0] = 1
H + ǫ+ (H0 − 1)1−ǫ

H =

= H0

H + H+1−H0

H ǫ ≤ P [vk = 0|B] + ǫ,

where we used the fact that H0

H is the distribution
of the votes given by the public bulletin board and
that H0 ≥ 1. Given that the event Cǫ happens for
each round with probability at most η we have that
for the final privacy,

Pr[D guesses vk = 0] ≤
≤ P [vk = 0|B] + (1− η)N ǫ+ (1 − (1− η)N ),

which proves Eq. (8) in the non-ideal case.

In conclusion, our e-voting protocol with inputs
S, ǫ, δ, η,N is ζ-private with ζ = (1 − η)N ǫ + (1 −
(1 − η)N ), which tends to 0 for small enough η and
ǫ.

Authentication. Only eligible voters are allowed to
vote. Our e-voting protocol as described here does
not provide authentication, which should be taken
care by the physical implementation of the protocol.
For electronic voting machines authentication might
be provided by an official ID, whereas for voting di-
rectly through the internet authentication would re-
quire some digital signature scheme.

Double voting. Each voter can vote at most once.
Double voting is taken care of easily if the number
of voters is known in advance, which in fact is nec-
essary in our scheme in order to prepare the shared
quantum state. If N agents declare they want to
vote, we will have an N × N bulletin board, each
row of which corresponds to one vote. A null vote
can be treated as an additional candidate and will
be discussed below. A dishonest voter might try
to intercept all the transcripts, modify the bulletin
board by adding a column and a row with another
vote without changing the sum of each row, but this
would result in a evident (N + 1) × (N + 1) ma-
trix that will be rejected by the honest voters. At
the same time, if a dishonest voter keeps the same
number of rows and columns but tries to vote at
a round where they are not supposed to be voting,
then either the vote will not change or if the vote
in the ballot changes from the intended vote of the
honest voting agent, then this will be captured by
the LogicalOr subroutine protocol in Phase 3 of the
protocol.

Verifiability. Each voter can verify that their vote
has been counted correctly. More precisely, a pro-
tocol is called verifiable if there exists a function g
specified by the protocol, such that every voter can
apply the function g on the bulletin board and a
private witness wk (the witness corresponds to the
vote and the secret voting index of the voter) and get
back 1 if and only if their vote was counted correctly.

In other words,

∃g s.t. ∀k ∃wk s.t. ∀B : (9)

g(B, wk) =1 ⇐⇒ vk was counted in the tally

The verifiability, thus, demands the existence of a
function that, given the bulletin board B and the
voter’s secret index ωk returns 1 if vk was counted
in the tally and 0 otherwise.
The verifiability is inherent in the protocol, as the

tally is performed by the voters themselves. The
bulletin board produced as an output of the protocol
is public and can always be checked by everyone,
however it appears as a random set of votes. Each
row j corresponds to the vote vk of agent k whose
secret unique index is ωk = j, and thus each agent
can easily verify their own vote and only that one. If
the vote in the bulletin board differs from the actual
intended vote vk, as a consequence of a dishonest
behaviour or an imperfection in the quantum state,
the agent can reject the result through the LogicalOr
subroutine in Phase 3.
Receipt freeness. A voter cannot prove how they

voted, in order to avoid vote selling. A receipt is a
witness wk defined as:

∃g s.t. ∀k ∃vk ∃!wk s.t. ∀B g(B, k, vk, wk) = 1
(10)

If there is no receipt, then the protocol is called
receipt-free. As long as their index stays secret all
the agents can always deterministically verify their
votes, without getting their privacy violated, and
without producing any receipt of their vote which
could be used for vote selling.
Additional candidates.–So far we assumed that

there were only two candidates, ‘0’ or ‘1’, which is
suitable for referendum type of elections.
We can easily deal with the case of more than two

candidates by repeating the e-voting protocol mul-
tiple times in sequence. In particular, if there are K
candidates, we can express each of them with a bi-
nary number of log2K digits and repeat the election
as many times, so that each vote set E corresponds
to one digit of the candidates (see Appendix E for
more details). The only properties that are affected
by the additional candidates are correctness and pri-
vacy. This is because they are the only ones that are
probabilistic and that actually depend on the use of
an imperfect state in the different rounds. Authen-
tication, double voting, verifiability and receipt free-
ness will thus remain unchanged even in the scenario
with many candidates. In particular, the correctness
is affected because repeating the elections multiple
times increases the probability of having an error at
some point. We can assume that the agents perform
the LogicalOr protocol with security parameter S to
notify an error only at the end of all the repetitions
of the elections. By Theorem 3, the probability that
for any agent at least one bit of the final tally will be
incorrect is ǫ∗ = 1− (1− ǫ)log2

K and thus the prob-
ability that the election is accepted after multiple
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rounds will be

Pr[election accepted] = [1−ǫ∗(1−S)]N = σ∗
H . (11)

The soundness, on the other hand, is not affected.
In fact, if any voter notices more than one incorrect
bit in their vote it will count as a single error.

The privacy of the protocol is affected as well.
From one point of view, since the number of bits
that the dishonest agents need to guess is larger, the
probability of violating the anonymity, and thus the
privacy, is actually smaller. If, however, we want
that each individual bit of the vote remains private,
the privacy is decreased by the fact of having multi-
ple rounds of elections. In this case, let us consider
the probability of the event X that at some round
the malicious agent guesses the preference of the
voter k and let us assume that this probability is up-
per bounded as P (X) ≤ ζ. If we repeat the elections
log2K times, the probability that event X is true at
least once will thus be at most ζ∗ = 1− (1−ζ)log2 K .
Hence, when dealing with multiple candidates our e-
voting protocol with inputs S, ǫ, δ, η,N is ζ∗-private
with ζ∗ = 1− (1− (1− η)N ǫ+ [1− (1− η)N )]log2

K ,
which tends to 0 for small enough η and ǫ.

Discussion.–We have described and analyzed a
practical quantum e-voting scheme and provided
approximate definitions of correctness and privacy,
which make it appropriate for realistic non-ideal sce-
narios. The quantum e-voting protocol that we
have described achieves information-theoretic secu-
rity without requiring trust in the quantum source
or in any election authority. Previously proposed
classical schemes, such as the one in Ref. [6], also
achieve information-theoretic security, however the
requirement of trusting authorities and simultaneous
broadcasting could make it impractical. A small-
scale election demonstration of our protocol can be
implemented with currently available quantum pho-
tonic platforms and with the improvement of these
technologies a voting scheme for board meetings and
similar scenarios may be attainable in the near fu-
ture. When GHZ states of a thousand photons, with
high fidelity and a reasonable repetition rate, be-
come available and can be well controlled, it will be
possible to implement the protocol at a metropolitan
level and then as a consequence, with a subdivision
into regular elections, at a national level. Although
this is certainly challenging, all the future applica-
tions of quantum information protocols will have to
meet similar obstacles and this protocol might be
one of the first practical use cases of quantum tech-
nologies to meet realization.
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Appendix A: Subroutines

We provide the details for each subroutine used in
the e-voting protocol. Before that we lay out some
useful notation.

• N : the total number of participants to the
election;

• W = {1, 2, . . . , N}: the set of all the voters.
WH and WD the sets of honest and dishonest
voters respectively;

• V = {vk}k∈W : the set of votes. Each voter
vk’s value is the index of the candidate for
which they want to vote;

• K: the number of eligible candidates;
• C = {0, 1, . . . ,K − 1}: the set of candidates.
We first assume C = {0, 1}; the generalization
to more candidates is shown in the dedicated
section.

• B = {bjk}: the bulletin board encodes all the
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anonymous votes to be tallied.
• E =

∑

k B is the set of votes resulting by sum-
ming the rows of the bulletin board. Errors or
dishonest players may induce some bk to be
different from vk.

• T = {ti}i∈C the tally, a vector whose elements
represent the number of votes for the corre-
sponding candidate. It can always be com-
puted as a vector valued function of the bul-
letin board f(B) = T.

• R = {ri}i∈C is the result of the elections with
the actual set of voters V. It is the histogram
of the real voters preferences.

Let un now take a look at the specific subroutines
employed in the Quantum e-voting protocol. The
LogicalOr, RandomBit and RandomAgent subroutines
are classical anonymous protocols taken from [6] and
used in [11]. In particular, the last two are based on
the first one, which performs the logical OR of all
the agents’ inputs. It will thus output 1 with high
probability if and only if at least one agent had input
1. The RandomBit subroutine employs the LogicalOr
to produce shared randomness, i.e., a random bit
publicly announced according to some probability
distribution. This can be used a number of times in
order to draw an agent at random among the voters
through RandomAgent.

Protocol 2 LogicalOR

Input: N agents, N boolean variables xi, security
parameter S = (1− 2−Γ)Σ ∈ (0, 1).

Output: y =
∨N

i xi.
Resources: Classical communication and random
numbers.
Description:

1: Decide N random orderings, such that each voter is
the last once. For each ordering repeat Σ times the
following.

2: Each voter k gives an input xk.
3: If xk = 0 set pk = 0, otherwise toss Γ coins and set

pk to 1 if the result is ‘all heads’ and to 0 otherwise.
4: Then each voter generates uniformly at random an

N-bit string rk = r1kr
2
k...r

N
k , such that

⊕N
i=1 r

i
k = pk.

5: Voter k sends rik to voter i for all i, keeping rkk for
themselves.

6: Each voter sums the received bits and broadcasts the
parity zi =

⊕N
k=1 r

i
k according to the ordering.

7: Compute the parity of the original bits y =
⊕

i zi.
8: From this everyone can also compute the parity of all

other inputs except their own wk =
⊕N

i=1(zi ⊗ rik).
9: Repeat Σ times from step 4: each time repeat with

pk as new inputs.
10: If at least once in the Σ repetitions for the various

orderings y = 1, this is the output of the protocol,
otherwise it is y = 0.

The LogicalOr functionality is implemented prob-
abilistically by assigning a random value pk to all
inputs xk = 1, while pk = 0 if xk = 0. Then the
parity of the pk is computed anonymously for vari-
ous orderings, such that each voter is last once, and

for repetitions for each ordering. Since the inputs
of the parity are random, if at least one voter has
input 1, the output of the parity will be 1 at least
once through all the repetitions. The orderings are
necessary for the voters to broadcast their computa-
tion asynchronously, while at the same time avoiding
that the last agent changes their output to corrupt
the result. This subroutine has two additional pa-
rameters as input Σ and Γ that in turn define the
security parameter S. Σ indicates the number of
times the protocol needs to be repeated for each or-
dering, while Γ specifies the number of coins that
each voter has to toss to assign the value pk, which
will be 1 only if the result is ‘all heads’. As a con-
sequence, the security parameter S = (1 − 2−Γ)Σ

can take any value in the open interval (0, 1) and
represents the probability of the protocol giving the
incorrect answer.
The following lemmas are taken from Ref. [6].

Lemma 1. (Reliability) No one can abort the Log-

icalOr protocol.

If someone refuses to broadcast, it is assumed that
the output of the protocol is 1.

Lemma 2. (Correctness) If all the inputs are xi =
0, the LogicalOr protocol outputs y = 0 with proba-
bility 1. If M agents input 1 in the protocol then we
will have y = 1 with probability at least P = 1−SM .

Lemma 3. (Privacy) The most an adversary can
know in the protocol is the logical Or of the other
participants.

These properties are also guaranteed in the fol-
lowing subroutines that are based on LogicalOr.

Protocol 3 RandomBit
Input: Security parameter S to be used in LogicalOR,
voting agent : probability distribution D.
Output: The voting agent anonymously announces a
random bit according to D.
Resources: Classical communication and random
numbers.
Description: Perform the LogicalOr with security
parameter S where the voting agent inputs a random
bit according to D and the other agents input 0.

Protocol 4 RandomAgent

Input: Security parameter S to be used in RandomBit,
voting agent : probability distribution D.
Output: The voting agent anonymously chooses a
random agent according to D.
Resources: Classical communication and random
numbers.
Description: Repeat RandomBit log2 N times.

UniqueIndex is used to anonymously distribute a
secret random index to each voter. Note that here it
is a classical protocol while in [10] it was necessary
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to use another entangled quantum state to achieve
the same goal. This protocol is polynomial in the
number of the operations and completely guaran-
tees the privacy. In order to achieve this function-
ality we proceed in the following way. The protocol
is composed of N rounds. In the first step of each
round all agents perform the LogicalOr protocol with
inputs 1 if they do not have an index yet and 0 oth-
erwise. If there is any agent with input 1 the output
of LogicalOr will be y = 1. Each agent with input
xk = 1 can verify at this point if there is a collision
by tracking the parity of all other inputs wk. If for
any of the Σ repetitions in every ordering wk 6= 0,
then they know that there is someone else with input
1. At the end of each LogicalOr everybody performs
another LogicalOr protocol that acts as an anony-
mous notification, in which they input 0, unless no
collision was detected. Everyone then repeats the
first LogicalOr; this time those who previously had
input 0 will stay the same, while the others toss a
coin and decide their inputs accordingly. This is re-
peated until there is only one agent j with input 1,
while wj = 0 throughout all repetitions of LogicalOr.
When the notification LogicalOr is performed, agent
j will be the only with input 1, announcing that
the index ωj was assigned and the round is over.
Then this is repeated from the first step, the agents
who already have an index always set their input to
0 and the protocol terminates when the last noti-
fication LogicalOr output is 0, announcing that all
indices have been assigned. If at any time y = 0,
then there is no one with input 1, and the protocol
should be repeated from the beginning of the last
LogicalOr, with the same inputs until someone gets
an index.

Protocol 5 UniqueIndex

Input: Security parameter S to be used in LogicalOR,
N random boolean variables xi.
Output: Each agent k has a secret unique index ωk.
Resources: Classical communication and random
numbers.
Description:

1: Beginning of round R = 1.
2: Perform LogicalOr with inputs xk = 0 if they already

have an index and xk = 1 if they do not.
3: If y = 0 repeat from step 2.
4: If an agent k has a bit xk = 1 and wk = 0 they

know they are the only one and has been assigned
the secret index corresponding to the round ωk = R,
otherwise there is a collision.

5: [notification] Everybody performs a LogicalOr with
input 0, unless they received the index in this round,
in which case they input 1.

6: If the output of LogicalOr is 0, no index was assigned
and we repeat from step 2.

7: If the output of LogicalOr is 1, the index was assigned
and we repeat from step 2 with R+ = 1.

8: Repeat from step 2 until all indices have been as-
signed.

Verification is the same protocol as in [7], where

a test is performed by all the agents and the quan-
tum state will pass it with a probability that grows
with the fidelity between the input state and an ideal
GHZ state.

Protocol 6 Verification
Input: A quantum state distributed and shared by N

parties, security parameter S for RandomAgent.
Output: If the state is a GHZ state → YES.
Resources: Classical communication, random
numbers, quantum state source, quantum channels.
Description:

1: Everyone executes RandomAgent to choose uniformly
at random one of the voters to be the verifier.

2: The verifier generates random angles θj ∈ [0, π) for
all agents including themselves, such that the sum is
a multiple of π. The angles are then sent out to all
the agents.

3: Agent j measures in the basis
[
∣

∣+θj

〉

,
∣

∣−θj

〉]

=
[

1√
2

(

|0〉 + eiθj |1〉
)

, 1√
2

(

|0〉 − eiθj |1〉
)

]

and publicly

broadcasts the result Yj = {0, 1}.
4: The state passes the verification test when the follow-

ing condition is satisfied: if the sum of the randomly
chosen angles is an even multiple of π, there must
be an even number of 1 outcomes for Yj , and if the
sum is an odd multiple of π, there must be an odd
number of 1 outcomes for Yj :

⊕

j Yj = 1
π

∑

i θi.

With Voting a voter can express their preferred
candidate. The state that will be used for vot-
ing is equivalent to a GHZ state up to a local
Hadamard transform applied by each agent to their
own particle. Once the GHZ state is measured in
the Hadamard basis, the outcomes will always sum
up to 0 mod 2. This can be seen by direct ap-

plication of the N -dimensional Hadamard H⊗N

=
H1⊗H2⊗ ...⊗HN , where each of the transforms Hj

acting on the 2-dimensional Hilbert space of the j-
th voter’s particle is expressed in the computational
basis as

Hj =
1√
2

[

(|0〉j + |1〉j) 〈0|j + (|0〉j − |1〉j) 〈1|j
]

.

It is easy to show that if we apply the Hadamard to
the GHZ state we obtain:

H⊗N

|GHZ〉 = 2−N

[

N
⊗

i=1

(

|0〉i + |1〉i
)

+
N
⊗

i=1

(

|0〉i − |1〉i
)

]

=

= 2−N







∑

{ki=0,1}N
i=1

|ki〉
⊗N

i +
∑

{ki=0,1}N
i=1

(−1)
∑

ki |ki〉
⊗N

i






=

= 2−N/2
∑

∑
ki=0mod2

|ki〉
⊗N

i .

So, by measuring each particle in the Hadamard
basis, we are assured that the sum of the outcomes
will be 0 modulo 2.
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Protocol 7 Voting

Input: Voting agent preference vk.
Output: All agents get one row of the bulletin board.
Resources: Classical communication, GHZ source,
quantum channels.
Description:

1: Each agent measures the state they received in the
Hadamard basis and records the outcome.

2: The outcomes of the measurement of each voter k is
dk. Then we know that

∑

k dk = 0 mod 2.
3: The voting agent performs an XOR between the out-

come dk and their vote vk: dk → Bk = dk⊕vk. How-
ever, this alone will still appear as a random string.

4: Every agent publicly broadcasts dk which gives one
line bk of the bulletin board B = {bk}.

Appendix B: Proof of Theorem 1

Here we prove the soundness of the Verification

protocol. For simplicity of the proof, recall that we
denote the ideal state by |Φn

0 〉, which can be obtained
from the GHZ state by applying a Hadamard and a
phase shift

√
Z to each qubit.

Theorem 1. Let Cǫ be the event that the protocol
does not abort and the state used for Voting is such
that F (|ψ〉 , |GHZ〉) ≤

√
1− ǫ2, for some ǫ > 0.

Then,

P (Cǫ) ≤ e−
2M (ǫ2−4δ)2

16Nǫ2 , (12)

where δ is the threshold for the ratio of rejections
over trials above which the protocol is aborted, M is
the number of coins the agent has to toss to choose
between Verification and Voting and N is the number
of agents.

Proof. During the protocol, each voter can trust only
themselves as they do not know who could be a col-
luding agent. Thus, although at each round of Verifi-
cation a verifier is chosen at random and could be an
honest voter, we will perform the following analysis
assuming we are in the worst case scenario in which
the voting agent is the only honest voter and can-
not trust anybody else. Thus the average number
of rounds of the Verification will be 〈D〉 = 2M/N .
In addition, if we take M large enough, we can
make the probability of having at least D = 2M/2N
rounds of Verification, arbitrarily close to 1. Thus, in
the following we will assume that D ≥ 2M/2N . In
any practical implementation of the protocol, how-
ever, the other honest agents will also assist the ver-
ification and if they count a ratio of rejections larger
than δ they can abort the elections, increasing the
soundness of the protocol.
Although we allow the malicious source to cre-

ate any state in any round and even entangle the
states between rounds, the optimal cheating strat-
egy, which maximizes the probability of the event
Cǫ, is to create in each round some pure state |Ψ〉

such that F ′(|Ψ〉) =
√
1− ǫ2, as proven in [7]. In

high level, one can first see that an entangled strat-
egy does not help, as it can be replaced by a strategy
sending unentangled states as follows. Given some
entangled state, for a given round, the probability
of passing the test and the fidelity of the state de-
pend only on the reduced state, conditioned on pass-
ing previous rounds. The same effect is achieved by
sending these mixed reduced states corresponding to
each round, without any entanglement.
Next, one sees that by providing a mixed state,

the source does not gain any advantage, as a mixed
state is a probabilistic mixture of pure states, and
the overall cheating probability of this mixed strat-
egy is just a weighted combination of the cheating
probabilities of each of the pure states. Then, ob-
viously this mixed strategy is worse than the strat-
egy that always sends the pure state that has the
maximum cheating probability of all states in the
mixture. Hence, one can continue the proof by only
considering strategies with pure states.
Moreover, since the adversary is just trying to

maximize the probability the state |Ψ〉 used for vot-
ing has F ′(|Ψ〉) =

√
1− ǫ2, it is clear that there

is no need to send any state with even smaller
F ′(|Ψ〉), since then the probability of failing the test
(and therefore the protocol aborting) would just in-
crease. Last, if in any round the source created a
state with higher F ′(|Ψ〉), then this certainly does
not contribute to the event Cǫ, and in fact it may
also cause the protocol to abort. Thus, to upper-
bound the probability of event Cǫ with respect to
the best attack a malicious source can perform, we
only need to consider the case where in each round
the malicious source creates some state |Ψ〉 such that
F ′(|Ψ〉) =

√
1− ǫ2.

The protocol takes as input a threshold parameter
δ, such that if during their round the voting agent
rejects the state more than a δ fraction, then they
abort the elections because the source is corrupted.
In the limit, the ratio of rejections will tend to the
probability of a single state ǫ-far in trace distance
from a GHZ to fail the Verification test in the pres-
ence of dishonest adversaries, which is [7]:

P (ǫ) ≥ ǫ2

4
. (13)

Thus, we can use a Chernoff inequality to bound
the probability that in D rounds of Verification with
a state ǫ-far the ratio of rejections of the voting agent
δk is smaller than δ, in which case the event Cǫ is
true. In particular, given that the expected number
of rejections is at least Dǫ2/4, the Chernoff bound
gives the following inequality

P (Cǫ) = P (δk ≤ δ) ≤ e−
D(ǫ2−4δ)2

8ǫ2 . (14)

If we substitute D ≥ 2M−1/N , we obtain the ex-
pression of Theorem 1.
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Appendix C: Proof of Theorem 2

Next, we prove the anonymity of the protocol as
in [11]. Once again, recall that we denote the ideal
state by |Φn

0 〉, which can be obtained from the GHZ
state by applying a Hadamard and a phase shift

√
Z

to each qubit. The voter’s transformation now be-
comes σxσz . Further, we also define the state:

|Φn
1 〉 =

1√
2n−1

[

∑

∆(y)=1 (mod 4)

|y〉 −
∑

∆(y)=3 (mod 4)

|y〉
]

,

(15)

and note that σxσz |Φn
0 〉 = |Φn

1 〉 , σxσz |Φn
1 〉 =

− |Φn
0 〉.

We consider two cases here: first, when all the
agents are honest (Lemma 4), and second, when we
have malicious agents who could apply some opera-
tion on their part of the state (Lemma 5).

Lemma 4. If all the agents are honest, and they
share a state |Ψ〉 such that F (|Ψ〉 , |Φn

0 〉) =
√
1− ǫ2,

then for every honest agent i, j who could be the
voter, we have that F (|Ψi〉 , |Ψj〉) ≥ 1 − ǫ2, where
|Ψi〉 is the state after agent i has applied the voter’s
transformation.

Proof. If we have F (|Ψ〉 , |Φn
0 〉) = |〈Ψ|Φn

0 〉|
2

=√
1− ǫ2, then similarly to [7] we can write the state

shared by all the agents as:

|Ψ〉 = (1− ǫ2)1/4 |Φn
0 〉+ ǫ1 |Φn

1 〉+
2n−1
∑

i=2

ǫi |Φn
i 〉 ,

(16)

where
∑2n−1

i=1 ǫ2i = 1 −
√
1− ǫ2. If agent i is the

voter, then they apply σxσz , and the state becomes:

|Ψi〉 = (1− ǫ2)1/4 |Φn
1 〉 − ǫ1 |Φn

0 〉+
2n−1
∑

i=2

ǫ′i |Φn
i 〉 .

(17)

Instead, if agent j is the voter and they apply σxσz ,
the state becomes:

|Ψj〉 = (1− ǫ2)1/4 |Φn
1 〉 − ǫ1 |Φn

0 〉+
2n−1
∑

i=2

ǫ′′i |Φn
i 〉 .

(18)

The fidelity is then given by:

F (|Ψi〉 , |Ψj〉) = |〈Ψi|Ψj〉|2 (19)

=

∣

∣

∣

∣

∣

√

1− ǫ2 + ǫ21 +
2n−1
∑

i=2

ǫ′iǫ
′′
i

∣

∣

∣

∣

∣

2

(20)

≥ 1− ǫ2. (21)

Lemma 5. If some of the agents are malicious, and
they share a state |Ψ〉 such that F ′(|Ψ〉) ≥

√
1− ǫ2,

then for every honest agent i, j who could be the
voter, we have that F (|Ψi〉 , |Ψj〉) ≥ 1 − ǫ2, where
|Ψi〉 is the state after agent i has applied the voter’s
transformation.

Proof. Recall that our fidelity measure is given by
F ′(|Ψ〉) = max

U
F (U |Ψ〉 , |Φn

0 〉). Let us now denote

by |Ψ′〉 = U |Ψ〉 the state after the operation U
which maximizes this fidelity has been applied. As
in [7], we can write this state in the most general
form as:

|Ψ′〉 =
∣

∣Φk
0

〉

|ψ0〉+
∣

∣Φk
1

〉

|ψ1〉+ |χ〉 , (22)

where note that |χ〉 contains both honest and mali-
cious parts, of which the honest part is orthogonal
to both

∣

∣Φk
0

〉

and
∣

∣Φk
1

〉

.
We want to find the closeness of the states

|Ψi〉 , |Ψj〉, which are the states after the σxσz op-
eration is applied to |Ψ′〉 by either agent i or j who
is the voter. These states are given by:

|Ψi〉 =
∣

∣Φk
1

〉

|ψ0〉 −
∣

∣Φk
0

〉

|ψ1〉+ |χ′〉 , (23)

|Ψj〉 =
∣

∣Φk
1

〉

|ψ0〉 −
∣

∣Φk
0

〉

|ψ1〉+ |χ′′〉 . (24)

The fidelity is then given by:

F (|Ψi〉 , |Ψj〉) = |〈Ψi|Ψj〉|2 (25)

= |〈ψ0|ψ0〉+ 〈ψ1|ψ1〉+ 〈χ′|χ′′〉|2.
(26)

However, although the overall state |Ψ′〉 is normal-
ized, the malicious agents’ part of the state is not.
Thus, we need to determine a bound on 〈ψ0|ψ0〉 and
〈ψ1|ψ1〉. We have:

F (|Ψ′〉 , |Φn
0 〉) = |〈Φn

0 |Ψ′〉|2 ≥
√

1− ǫ2. (27)

It was shown in [7] that we can write for any k, n:

|Φn
0 〉 =

1√
2

[

∣

∣Φk
0

〉 ∣

∣Φn−k
0

〉

−
∣

∣Φk
1

〉 ∣

∣Φn−k
1

〉

]

, (28)

and using this, we get:

1

2
|(
〈

Φn−k
0

∣

∣ψ0

〉

)2 + (
〈

Φn−k
1

∣

∣ψ1

〉

)2

− 2
〈

Φn−k
0

∣

∣ψ0

〉 〈

Φn−k
1

∣

∣ψ1

〉

| ≥
√

1− ǫ2. (29)

Using the triangle inequality, we have:

1

2

[

∣

∣

〈

Φn−k
0

∣

∣ψ0

〉∣

∣

2
+
∣

∣

〈

Φn−k
1

∣

∣ψ1

〉∣

∣

2
]

≥
√

1− ǫ2. (30)

Using the Cauchy-Schwarz inequality, we have:

〈ψ0|ψ0〉+ 〈ψ1|ψ1〉 ≥
∣

∣

〈

Φn−k
0

∣

∣ψ0

〉∣

∣

2
+
∣

∣

〈

Φn−k
1

∣

∣ψ1

〉∣

∣

2

(31)

≥
√

1− ǫ2. (32)
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Since the overall state |Ψ′〉 is normalized, we have
〈χ′|χ′′〉 ≤ 1 −

√
1− ǫ2. Thus, we get our expression

for fidelity as:

F (|Ψi〉 , |Ψj〉) = |〈ψ0|ψ0〉+ 〈ψ1|ψ1〉+ 〈χ′|χ′′〉|2
(33)

≥ 1− ǫ2. (34)

We are now ready to prove Theorem 2.

Theorem 2. At any round ℓ ∈ [N ] with voting agent
k (who has unique index ωk = ℓ), if the agents use
a state |ψ〉 such that F (|ψ〉 , |GHZ〉) ≥

√
1− ǫ2 to

perform Voting, then for the optimal strategy that
any subset of malicious agents D can use to guess
the identity of the voting agent k correctly, we have

∀j ∈WH , Pr[D guess j] =

{

1
H + ǫ for j = k
1−ǫ
H for j 6= k,

(35)
where WH is the set and H the number of honest
agents.

Proof. We will now show that if the agents share
close to the GHZ state, then the voter remains
anonymous. From Theorem 1, we saw that the
probability that the state used for voting satisfies
F ′(|Ψ〉) ≤

√
1− ǫ2 is given by Pr[Cǫ] ≤ η for the

honest agents, where η depends on the number of
runs of the verification protocol. Thus, by doing
enough runs, we can make this very small, and so
we have that the state used for voting will be close
to the GHZ state, as given by F ′(|Ψ〉) ≥

√
1− ǫ2.

From the previous proof, we see that if F ′(|Ψ〉) ≥√
1− ǫ2, the distance between the states if agent i

or j was the voter is D(|Ψi〉 , |Ψj〉) ≤ ǫ. A mali-
cious agent who wishes to guess the identity of the
voter would make some sort of measurement to do
so. Thus, we wish to find the maximum success
probability of a measurement that could distinguish
between the H states that are the result of the voter
(who can only be an honest agent) applying the σxσz
transformation.
The success probability of discriminating between

H states is given by
∑H

i=1 piTr(Πiρi). From Lemma
5, we know that the distance between any two states
after the voter’s transformation is upper-bounded by
ǫ. Thus, if we take |α〉 = |Ψj〉, then we know that
any of these H states is of distance ǫ away from this
same state |α〉.
For any POVM element P , we can write the trace

distance between two states ρ, σ as Tr
[

P (ρ − σ)
]

≤
D(ρ, σ). Thus, we have for a POVM element Πi and
for states |Ψi〉 , |α〉:

Tr(Πi |Ψi〉 〈Ψi|)− Tr(Πi |α〉 〈α|) ≤ ǫ. (36)

Assuming that each honest agent has an equal
chance of becoming the voter, the probability that

the malicious agents can guess the identity of the
voter is bounded by:

Pr[guess] =

H
∑

i=1

1

H
Tr(Πi |Ψi〉 〈Ψi|) (37)

≤ 1

H

H
∑

i=1

[

Tr(Πi |α〉 〈α|) + ǫ
]

(38)

=
1

H
Tr

[

H
∑

i=1

Πi |α〉 〈α|
]

+
1

H
Hǫ (39)

=
1

H
Tr(|α〉 〈α|) + ǫ (40)

=
1

H
+ ǫ. (41)

As we said, the probabilities for the other agents
come from the fact that all the agents that are not
voting perform exactly the same transformation on
the state, so it is impossible for the dishonest parties
to distinguish between them, hence the probability
of guessing their identity is the same.

Appendix D: Proof of Theorem 3

Theorem 3. If at round ℓ the agents are honest and
use a state |ψ〉 such that F (|ψ〉 , |GHZ〉) ≥

√
1− ǫ2

to perform Voting, then the probability that there
is an error in the tally in the ℓ-th round is upper
bounded by ǫ,

P er
ℓ ≤ ǫ. (42)

Proof. At each round, only one vote is declared. The
state |ψ〉 maximizing this probability can be at most
ǫ-far in trace distance. Knowing that Tr[Π(ρ−τ)] ≤
D(ρ, τ) for any POVM Π, the probability of having
one error using the state ρ = |ψ〉 〈ψ|, instead of the
correct state τ = |GHZ〉 〈GHZ| is

P er
ℓ = Tr[ΠℓH⊗N

ρ] ≤ Tr[ΠℓH⊗N

τ ] +D(ρ, τ) = ǫ,

where Πℓ is some operator that evaluates the dis-
tance from the correct ℓ-th output of the state mea-

sured in the Hadamard basis, H⊗N

is the product of
local Hadamard applied by each voter and we used
the fact that if we measure the correct state it is
impossible to have an error.

Appendix E: Additional candidates

If there are K candidates, each candidate iden-
tifier will have log2K digits and each election can
provide the preference for at most 1 digit of each
voter. If we repeat the whole protocol log2K times,
keeping the same secret index for each voter at all
times, we end up with a greater election votes vec-
tor E = E

(1)
E

(2)...E(log
2
K) formed by the election
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vote vector of each election by summing the row of
the corresponding bulletin board E

(i) =
∑

k B
(i).

So the sub-election 1 will result in a vector E
(1) =

e
(1)
ω1
e
(1)
ω2
...e

(1)
ωN , where e

(1)
ωk

is the value of the first digit
of the preference of voter k, with secret index ωk,
and so on for all the other sub-elections. If we want
to perform an election with 3 candidates and 7 vot-
ers, allowing also the possibility of a null vote, which
will be candidate (0, 0), we need to carry out 2 sub-
elections, and result in the following table:

E =





















0 0
1 0
1 1
0 0
0 0
1 1
0 1





















,

where two agents voted for candidate 3, candidates
1 and 2 received one vote each and the rest of the
voters decided not to express a preference.


