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Abstract. Supplier selection problems have been considered widely in literature; 

however, considering the availability and reliability of the products provided by 

suppliers has been investigated less. In this regard, the presented work addresses 

a supplier selection problem in which the reliability of the parts is one of their 

main factors for supplier selection. This paper develops a multiobjective mathe-

matical goal programming model to allocate the system's components orders to 

the suppliers. The model minimizes the system construction costs and maximizes 

the probability of working the system in nominal and half capacity. The similarity 

of the ordered components affects their delivery lead times and prices. The model 

determines the optimal solution for an industrial system composed of 4 parts. The 

proposed approach includes using the reliability block diagram to develop the 

Markov chain model. A multiobjective binary nonlinear mathematical program 

uses the Markov model to select the optimal components suppliers. Solving the 

model by goal programming approach provides the possibility of reflecting the 

decision-maker opinion relative to the construction cost's importance compared 

to system availability.    

Keywords: Reliability block diagram(RBD), goal programming, concurrent en-

gineering, Markov chain 

1 Introduction 

This paper presents a multiobjective approach to determine the components suppliers 

for making the feedwater system (FWS) of heat-recovery steam-generator boilers used 

in combined cycle power plants. A nonlinear binary goal programming model uses the 

Markov chain results to optimizes total costs, including components price, system 

construction delays penalty, and the system's availability.   

Many kinds of research applied optimization approaches such as integer program-

ming, mixed integer programming, nonlinear programming, and heuristics to deal with 

serial-parallel and multistate systems' availability and supplier selection in supply 

chains. Levitin et al. determined the optimal versions of components and redundancy 

of different subsystems in multistate series-parallel systems [1]. Rui and et al. improved 

design configuration by developing a reliability optimization algorithm [2]. Yi and et 
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al. view a reliability optimization problem by selecting components reliability among 

different alternative levels when the system's overall performance is a function of each 

part's failure rate [3]. Montoro-Cazorla et al. studied a system subjected to shocks gov-

erned by a Poisson process, and the internal failures and the inspection times exponen-

tially distributed [4]. Ge et al. developed an optimization model to determine critical 

components' reliability in a serial system [5]. Carpitella et al. developed a mathematical 

model for calculating a k-out-of-n system's stationary availability using the Markov 

chain model [6]. Chambari et al. proposed a bi-objective simulation-based and a cus-

tomized NSGA-II optimization algorithm for a redundancy allocation problem [7]. Es-

Sadqi et al. attempted to find the optimal system configuration that maximizes the avail-

ability and minimizes the investment cost. They evaluated the genetic algorithm and 

the constraint programming performance and proposed a new optimization method 

based on forwarding checking as a solver [8]. Sawik investigated a multi-period sup-

plier selection problem in a supply chain with disruption and delay risks and then pro-

posed a dynamic portfolio approach. This approach helps decision-makers decide on 

the suppliers of finished products, but it does not discuss the availability of the ordered 

parts [9]. Chen et al. developed a model to consider supplier selection and project 

scheduling simultaneously. They studied multiple concurrent projects that were inde-

pendent operationally but with similar suppliers, when these projects' activities began 

as their needed resources became available. Then, this model was solved using a math-

ematical programming-based heuristic [10]. Bodaghi et al. introduced a weighted fuzzy 

multiobjective model to address supplier selection, customer order scheduling, and or-

der quantity allocation in supply chains. They considered the reliability of on-time de-

livery of customer orders and evaluated the flexibility of suppliers [11]. Yoon et al. 

incorporated supplier selection with risk mitigation policies and utilized multiobjective 

optimization-based simulation for their model[12]. They showed that the use of up-

stream and downstream strategies simultaneously leads to better results. Cui et al. in-

vestigated sustainable supplier selection in deferent multitier supply chain structures 

and combined fuzzy set theory, stepwise weight assessment ratio analysis, plus a Bayes-

ian network to propose their model [13].          

The previous researches did not consider the life cycle cost, reliability, and availa-

bility of the system simultaneously. This paper attempts to consider more real wolds 

parameters by developing a multiobjective mathematical goal programming model for 

assigning system component orders to the suppliers. This model minimizes system con-

struction costs and maximizes the likelihood of the system operating at nominal and 

half-load capacity, while the similarity of the ordered components leads to change their 

delivery time and price. Using the proposed approach to select the components supplier 

of a typical industrial system illustrates the model application for an industrial system. 

The following sections explain this model and solve it for a numerical example and 

discuss the results.   



3 

2 The proposed model  

The discussed problem concerns selecting the suppliers for critical components of FWS 

(Figure 1). 

 

 

Fig 1. Studied series-parallel system 

 

Component B, C, and D are feedwater pumps. Each of them provides 50% of the nom-

inal system capacity, and component A is the instrumentation device that controls the 

overall system parameters. Several suppliers offer different qualities (i.e., failure and 

repair rates), prices, and delivery lead times. The availability of the system depends on 

the reliability and reparability of its components. Also, suppliers offer incremental 

quantity discounts; however, large orders result in higher delivery lead time. During the 

system exploitation phase, the system may be in one of three states, according to the 

failure of its components: working at nominal capacity (NC), half capacity (HC), and 

shutdown (SD). NC occurs when A and at least two out of B, C, and D are working. 

HC occurs when A and only one out of B, C, and D are working. SD results from failure 

of A or all B, C, and D. Figure (2) illustrates the Markov model of all possible states 

for this system. In this figure, oval, trapezoid, and rectangular forms represent NC, HC, 

and SD. Operation of components B, C, and D are identical, and ordering one of them 

to supplier j, delivery lead time, and the price will be 𝐿𝐵𝑗  and 𝐶𝐵𝑗, respectively. By 

ordering two components among these components to supplier j, the unit price and de-

livery lead time of each of them will be 𝐶𝐵𝑗
′  and 𝐿𝐵𝑗

′ , respectively. Finally, by ordering 

all these three components to supplier j, price and delivery time values will be 𝐶𝐵𝑗
"  and 

𝐿𝐵𝑗
" , respectively. Assembling B, C, D should begin after A, and simultaneous assembly 

of B, C, D does not change their assembly times. Times and costs of assembling pro-

cesses are deterministic and known and independent from the quality of the compo-

nents. Deterministic weighting factors express the goals' importance. 
 

A 
2 out 

of 3 
End Start 

B 

C 

D 
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S1: ABCD(l1-3, µ3-1)

(l1-2, µ2-1)

S2: AbCD (l2-6, µ6-2) S11: Abcd(l6-11, µ11-6)
S6: AbcD

(l2-5, µ5-2)  
S5: AbCd

(l5-11, µ11-5)  

S4: ABcD(l1-4, µ4-1) (l4-7, µ7-4)

(l7-11, µ11-7)  (l4-6, µ6-4)

S9: abCD

(l2-9, µ9-2)  

S3: ABCd

(l3-15, µ15-3)

(l3-5, µ5-3)

S8: abCd

(l5-8, µ8-5)  

S15: aBcd

(l7-15, µ15-7)

S14: aBcD

(l4-14, µ14-4)

S13: aBCD

S12: aBCd

(l3-12, µ12-3)
(l1-13, µ13-1)

S10: abcD

(l2-9, µ9-2)  

S7: ABcd

 
Fig 2. The system's Markov model Diagram  

3 The mathematical model  

The model indices, parameters, and decision variables are as follows: 

𝑖 = 𝐴, 𝐵, 𝐶, 𝐷 : The components 

𝑗 = 1, 2, . . . , 𝐽 : The components' suppliers 

𝑘 = 1, 2, … , 𝐾 : The assembly process 

𝑙 = 1,2, … , 𝐿 : The system states 

𝑚 = 1, 2, 3: The goals 

𝐶𝐴𝑗= Purchasing price of A from supplier j 

𝐶𝐵𝑗= Unit price of B, C, or D from supplier j when purchasing separately 

𝐶𝐵𝑗
′  = Unit price of purchasing two of B, C, and D from supplier j 

𝐶𝐵𝑗
"  = Unit price of purchasing similar B, C, and D from supplier j 

𝑅𝑖𝑗= reliability of component i offered by supplier j 

R = Minimum requested system's reliability 

T = System construction completion deadline 

B = The maximum available budget for purchasing components 

n = Number of components (n=4) 

𝐶𝐷= Daily delay penalty for system construction  

𝐿𝐴𝑗= Delivery lead time of component A from the supplier j 

𝐿𝐵𝑗= Delivery lead time of ordering one of B, C, or D from the supplier j  

𝐿𝐵𝑗
′  = Delivery lead time of ordering two similar components among B, C, or D to 

supplier j 

𝐿𝐵𝑗
"  = Delivery lead time of ordering all components B, C, and D to supplier j 
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𝐹𝐴𝑘= Time of process k for assembling component A 

𝐹𝐵𝑘= The time of process k for assembling each of components B, C or d 

𝐾𝐴= Set of required processes for assembling component A 

𝐾𝐵= Required assembly processes on components B, C, and D 

𝜇𝑖𝑗 = The rate of repair of component i, offered by supplier j   

λ𝑖𝑗  = The rate of failure of component i, offered by supplier j 

𝑏𝑚= The value of goal m 

𝑤𝑚= The weighting factor of the undesirable deviation from goal m 

𝐴1= The components purchase cost 

𝐴2= The total construction delay penalty  

𝑦𝑖𝑗= Binary variable with values 1, if component i is ordered from supplier j, and 

zero otherwise. 

𝑅𝑖= reliability of component i 

𝑅𝑒= reliability of the entire system 

𝑃0 = Expected percentage of time of SD during the system exploitation phase 

𝑃50= Expected percentage of time of HC during the system exploitation phase 

𝑆𝑙 = Expected percentage of time that the system spends in state l   

𝜇𝑖 = The rate of repair of component i  

λ𝑖  = The rate of failure of component i 

𝑇𝑐= Completion time of the system construction  

𝑇𝑐
𝑖 = Completion time of assembling component i 

𝑇𝐵 = The time of delivery of all components B, C, and D 

𝑑𝑚
+  , 𝑑𝑚

−  = Positive and negative deviations from goal m 

Equations (1) to (35) show the objective function and constraints of the model. 

 

𝑀𝑖𝑛 𝑍 = 𝑤1𝑑1
+ + 𝑤2𝑑2

+  + 𝑤3𝑑3
+ (1) 

Subjected to:  

𝐴1 = ∑ 𝑦𝐵𝑗𝑦𝐶𝑗𝑦𝐷𝑗(3𝐶𝐵𝑗
" )

3

𝑗=1

+ ∑ (𝑦𝐵𝑗𝑦𝐶𝑗(1 − 𝑦𝐷𝑗) + 𝑦𝐵𝑗𝑦𝐷𝑗(1 − 𝑦𝐶𝑗)  
3

𝑗=1

+  𝑦𝐶𝑗𝑦𝐷𝑗(1 − 𝑦𝐵𝑗)) × (2𝐶𝐵𝑗
′ )  

+ ∑ (𝑦𝐵𝑗(1 − 𝑦𝐶𝑗)(1 − 𝑦𝐷𝑗)
3

𝑗=1

+ 𝑦𝐶𝑗(1 − 𝑦𝐵𝑗)(1 − 𝑦𝐷𝑗) + 𝑦𝐷𝑗(1 − 𝑦𝐵𝑗)(1 − 𝑦𝐶𝑗))  

× 𝐶𝐵𝑗 + ∑ 𝑦𝐴𝑗𝐶𝐴𝑗

3

𝑗=1
 

(2) 

𝑃0 = 𝑆8 + 𝑆9 + 𝑆10 + 𝑆11 + 𝑆12 + 𝑆13 + 𝑆14 + 𝑆15 (3) 

𝑃50 = 𝑆5 + 𝑆6 + 𝑆7 (4) 
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𝑃0 − 𝑑2
+ = 𝑏2 (5) 

𝑃50 − 𝑑3
+ = 𝑏3 (6) 

𝑇𝐴 = ∑ 𝑦𝐴𝑗𝐿𝐴𝑗

3

𝑗=1

+ ∑ 𝐹𝐴𝑘

𝑘∈𝑘𝐴

 

(7) 

𝑇𝐵 = ∑ 𝑦𝐵𝑗𝑦𝐶𝑗𝑦𝐷𝑗𝐿𝐵𝑗
"  

3

𝑗=1

+ (∑ (𝑦𝐵𝑗𝑦𝐶𝑗(1 − 𝑦𝐷𝑗) + 𝑦𝐵𝑗𝑦𝐷𝑗(1 − 𝑦𝐶𝑗)  
3

𝑗=1

+  𝑦𝐶𝑗𝑦𝐷𝑗(1 − 𝑦𝐵𝑗)) × 𝑀𝑎𝑥( 𝐿𝐵𝑗 , 𝐿𝐵𝑗
′ ))  

+  (∑ (𝑦𝐵𝑗(1 − 𝑦𝐶𝑗)(1 − 𝑦𝐷𝑗)
3

𝑗=1

+  𝑦𝐶𝑗(1 − 𝑦𝐵𝑗)(1 − 𝑦𝐷𝑗) +  𝑦𝐷𝑗(1 − 𝑦𝐵𝑗)(1 − 𝑦𝐶𝑗))  

× 𝑀𝑎𝑥( 𝐿𝐵𝑗 , 𝐿𝐵𝑗
′ )) 

(8) 

𝑇𝐶 = max ( 𝑇𝐵, 𝑇𝐴 ) + ∑ 𝐹𝐵𝑘

𝑘∈𝑘𝐵

 
(9) 

𝐴2 = max (0, 𝑇𝑐 − 𝑇)𝐶𝐷 (10) 

𝐴1 + 𝐴2 − 𝑑1
+ = 𝑏1 (11) 

𝐴1  ≤ 𝐵 (12) 

µi =  ∑ 𝑌𝑖𝑗µ𝑖𝑗  3
𝑗=1       ∀𝑖 (13) 

λi =  ∑ 𝑌𝑖𝑗λ𝑖𝑗  3
𝑗=1         ∀𝑖 (14) 

∑ 𝑦𝑖𝑗 = 1 
3

𝑗=1
         ∀𝑖 

(15) 

𝑦𝑖𝑗 ∈ {0.1}     ∀𝑖,j (16) 

(λ1 + λ2 + λ3 + λ4)S1 = µ2S2 + µ4S3 + µ3S4 + µ1S13 (17) 

(λ1 + µ2 + λ3 + λ4)S2 = λ2S1 + µ4S5 + µ3S6 + µ1S9 (18) 

(λ1 + µ4 + λ3 + λ2)S3 = λ4S1 + µ2S5 + µ1S12 + µ3S7 (19) 

(λ1 + µ3 + λ2 + λ4)S4 = λ3S1 + µ4S7 + µ2S6 + µ1S14 (20) 

(λ1 + µ2 + λ3 + µ4)S5 = λ4S2 + λ2S3 + µ3S11 + µ1S8 (21) 

(λ1 + µ2 + λ4 + µ3)S6 = λ3S2 + λ2S4 + µ4S11 + µ1S10 (22) 

(λ1 + µ3 + λ2 + µ4)S7 = λ4S4 + λ3S3 + µ2S11 + µ1S15 (23) 

µ1S8 = λ1S5 (24) 

µ1S9 = λ1S2 (25) 

µ1S10 = λ1S6 (26) 

(µ2 + µ3 + µ4)S11 = λ4S6 + λ2S7 + λ3S5 (27) 

µ1S12 = λ1S3 (28) 

µ1S13 = λ1S1 (29) 
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µ1S14 = λ1S4 (30) 

µ1S15 = λ1S7 (31) 

∑ 𝑆𝑙 = 1 
15

𝑙=1
 

(32) 

𝑅𝑒 = 1 − 𝑃0 (33) 

𝑅𝑒 ≥ 𝑅 (34) 

𝑃100 = 𝑆1 + 𝑆2 + 𝑆3 + 𝑆4 (35) 

The objective function (1) minimizes a weighted summation of deviations from the 

goals. Equation (2) calculates total purchasing costs according to their suppliers' com-

ponents' similarity and the offered price. Equations (3) and (4) calculate the SD and HC 

proportion time, respectively. Equations (5) and (6) calculate deviations from the sec-

ond and third goals. Equation (7) is the assembly time of component A by adding its 

delivery lead time and times of its assembly processes. According to their suppliers and 

order sizes, equation (8) calculates the delivery lead time of all B, C, and D. Supposing 

that larger orders increase delivery lead time, this equation can be written, simplifies 

this equation by removing the max operators. Constraint (9) calculates the completion 

time of the system construction project by adding the possible earliest time of starting 

assembly processes of components B, C, and D, with the time of these processes. The 

max operator indicates these processes can begin after delivering B, C, and D and com-

pleting A's assembly. Equation (10) calculates the construction delay penalty by multi-

plication the daily delay penalty by the difference between the project's end time and 

its deadline. Equation (11) calculates the total construction cost by adding the compo-

nent purchasing price and construction delay penalty. The model ignores the assem-

blies' processes' costs because they are constant and independent from decision varia-

bles. Constraint (12) limits the maximum components' purchasing cost to a predefined 

level. Equations (13) and (14) determine the components' failure and repair rates, re-

spectively, considering their suppliers. Equation (15) indicates that the supplier for each 

element is unique. Constraint (16) determines the domain of binary variables. Con-

straints (17) to (32) are Markova processes equilibrium equations, written according to 

figure (2), and ensure that the sum of the input streams to each state, in the long term, 

is equal to the sum of the output streams and the sum of all times ratio is 1. Constraint 

(33) calculates the entire system's reliability as the proportion of times it is not shutting 

down, and equation (34) ensures the requested minimum level of system reliability. 

Constraint (35) calculates the ratio of times that the system will work at nominal capac-

ity states. It facilitates the analyses of the results. 

4 Numerical results 

Table (1) presents the problem parameter values, and table (2) shows the optimal 

solution. The optimal reliability is 0.99, 0.9, 0.9, and 0.95 for A, B, C, and D, 

respectively. Component A does not have any redundant components, making 

component A more critical. The entire system's reliability is about 0.85 (i.e., the system 

works at NC and HC modes, 55% and 29.7% of the time, respectively) and 0.15% of 
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the times the system is at SD state. Deviation from the second and third goals is very 

high, resulting from the relative importance (i.e., higher weighted factor) of the first 

goal. Components' purchase price and the project delay penalty are so high that ordering 

higher reliability components is not justifiable despite a sufficient purchase budget.  

 
Table 1. The model parameters values  

Para. Value  Para. Value  Para. Value 

B 1200  n 4  𝑅 0.8 

 𝑅𝑖1 0.9   𝑅𝑖2 0.95   𝑅𝑖3 0.99 

µ𝑖1 0.05   µ𝑖2 0.07  µ𝑖3 0.1 

λ𝑖1 0.05   λ𝑖2 0.03  λ𝑖3 0.01 

𝑏1 6100  𝑏2 0.05  𝑏3 0.05 

𝑤1 0.01  𝑤2 200  𝑤3 40 

𝑇 75  𝐶𝐷 300    

 

Assembly 

process (k) 
1 2 3 4 5 

𝐹Ak 3 5 7 4 2 

𝐹Bk   6 13 16 5 - 
 

 

 Supplier (j) 

 1 2 3 

Relia-

bility 
0.9 0.95 0.99 

    

 CAj 200 220 240 

 CBj 300 340 380 

CBj
′  250 280 320 

CBj
"  200 240 280 

 LAj 5 7 17 

 LBj 6 19 31 

L𝐵j
′  8 24 37 

LBj
"  12 30 42 

 
Table 2. The model's optimal solution 

Decision 

variable 
Value 

Decision 

variable 
Value 

𝑨𝟏 1080 𝑅1 0.99 

𝑨𝟐 5100 𝑅2 0.9 

𝑹𝒆 0.847 𝑅3 0.9 

𝑷𝟓𝟎 0.297 𝑅4 0.95 

𝑷𝟎 0.153 𝑍 31.363 

𝒅𝟏
+ 80 𝑇𝑐 92 

𝒅𝟑
+ 0.247 𝑑2

+ 0.103 
 

5 Discussion 

This paper uses goal programming as a multiobjective decision-making approach to 

optimize the systems' design configuration by considering the system life cycle's 

parameters. The model objective is achieving a sufficiently low construction cost and 

increasing the system's availability during its exploitation. These objectives are defined 

based on the supply chain's criteria and alternatives.   

Considering the components' constant failure and repair rates justifies using the ex-

ponential distribution function as a memoryless probability distribution. This assump-

tion is required to use the Markov model. Otherwise, system simulation models may 
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create the same results. However, integrating the simulation model in the goal program 

model will remain a modeling challenge. Using the more appropriate probability distri-

butions (e.g., the Normal distribution function) improves the model's result. The goals' 

weighting factors express the decision-maker opinion relative to the construction cost's 

importance compared to system availability. Reducing construction costs is a short-

term objective, leads to decreasing the system availability and customer satisfaction. 

 Varying the goals' weighting factors changes the priorities between the system con-

struction cost and system availability. The model applicability can be improved, by 

considering uncertainty in the model parameters, such as component repair and failure 

rates and system costs. Besides, the goal weighting factors may express as fuzzy num-

bers or linguistic variables. Future research may also model the effect of using similar 

components on their repair rates and system availability. 

6 Conclusions 

This paper developed a nonlinear binary goal programming model to select suppliers 

of an industrial system's components. The model minimizes the system's life cycle cost, 

including the cost of purchasing price and the construction delay penalty, and 

maximizes the system's availability concurrently. The numerical results illustrate the 

effect of the order sizes on the components' prices and delivery lead times. They also 

show how varying the goals' weighting factors provides a trade-off between short-term 

(minimizing the system construction cost) and long-term objectives (maximizing the 

system availability). 
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