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It is increasingly common in natural and social sciences to rely on network visualizations to 
explore relational datasets and illustrate findings. Such practices have been around long enough 
to prove that scholars find it useful to project networks in a two-dimensional space and to use 
their visual qualities as proxies for their topological features. Yet these practices remain based on 
intuition, and the foundations and limits of this type of exploration are still implicit. To fill this lack 
of formalization, this paper offers explicit documentation for the kind of visual network analysis 
(VNA) encouraged by force-directed layouts. Using the example of a network of Jazz performers, 
band and record labels extracted from Wikipedia, the paper provides guidelines on how to make 
networks readable and how to interpret their visual features. It discusses how the inherent 
ambiguity of network visualizations can be exploited for exploratory data analysis. 
Acknowledging that vagueness is a feature of many relational datasets in the humanities and 
social sciences, the paper contends that visual ambiguity, if properly interpreted, can be an asset 
for the analysis. Finally, we propose two attempts to distinguish the ambiguity inherited from the 
represented phenomenon from the distortions coming from fitting a multidimensional object in 
a two-dimensional space. We discuss why these attempts are only partially successful, and we 
propose further steps towards a metric of spatialization quality. 

Introduction 
Networks are not only mathematical but also visual objects. If network computation has existed 
since the 18th century, the last decades have seen the rise of network visualization as a tool of 
scientific investigation (Freeman, 2000, Correa & Ma, 2011). This visual renaissance is particularly 
noticeable in digital humanities and social sciences – where the increasing availability of 
relational datasets has fueled the interest in graph charts – but it has also touched other 



2 
 
 

disciplines such as ecology, neuroscience, and genetics. In general, it has become common to 
illustrate social relations, economic fluxes, linguistic co-occurrences, protein interactions, 
neuronal connections and many other relational phenomena as points-and-lines charts. 

The function of such charts, however, is often unclear. While network visualizations are regularly 
exhibited as tangible evidence of findings, they are generally left out of the actual 
demonstration, which relies instead on calculations and metrics. Network charts are embraced 
for their insights but also distrusted because of their ambiguity. Unlike a bar chart or a scatter 
plot, a points-and-lines chart is not straightforwardly shaped by its rules of construction. Instead, 
its form depends on the relationships between its elements in ways that cannot be easily 
recognized, outside trivially simple networks such as trees, stars or grids. Graphs are 
multidimensional mathematical objects and visualization squeezes them in a two-dimensional 
space, flattening their complexity. No wonder that scientists are wary of graph charts. And no 
wonder that most literature on network visualization (see, for instance, the works of the 
community of the Symposium on Graph Drawing and Network Visualization) has been focussed 
on reducing visual ambiguity by tweaking points-and-lines charts (Dunne & Shneiderman, 2009; 
Shneiderman & Dunne, 2013), transforming the data (Nick et al., 2013; Epasto & Perozzi, 2019) 
or dismissing this type of visualization altogether (von Landesberger et al., 2001; Aris & 
Shneiderman, 2007; Henry et al. 2012). 

This paper proposes an alternative approach: instead of trying to overcome the ambiguity of 
points-and-lines charts, it considers it positively. Not as a burden but as an asset. The same 
ambiguity that makes network charts unfit for hypothesis confirmation, we contend, makes them 
invaluable for exploratory data analysis. This is particularly true for medium-sized networks – 
graphs of hundreds or thousands of nodes often found in social and biological phenomena. 
Alongside the metrics and models typically employed by network science and social network 
analysis, there exists a practice of visual network analysis (VNA), which allows to explore the 
richness of relational datasets and exploit their inherent ambiguity (Decuypere, 2020). This 
practice is widespread but remains mistrusted because of lack of documentation 
(Jokubauskaite, 2018). The working hypothesis of this paper is that, by making explicit the 
heuristic bases of VNA and investigating its way of dealing with relational ambiguity, we can 
build trust in this practice and make it even more useful as a technique for exploratory data 
analysis.  

To address this hypothesis, this paper offers an account of VNA practices and an explicit 
discussion of its foundations. Because this technique is yet unsettled, we will alternate theoretical 
and practical considerations and unfold our argument through examples, using the software 
Gephi (http://gephi.org, Bastian et al., 2009, but see Cherven, 2015 or Khokhar, 2015 for a more 
how-to introduction to Gephi). We start by (1) reviewing the standards of points-and-lines charts 
and retracing the history of force-directed layouts. (2) We propose a complete example of visual 
network analysis. (3) We situate VNA by discussing the kind of information that it delivers and 
the way in which it preserves ambiguity. (4) We conclude by sketching a formal analysis of force-
directed layouts. 



3 
 
 

1. Spatialization through force-directed layouts  
The heuristic value of network visualizations was first noticed in the second half of the 20th 
century by the early school of social networks analysis or SNA (Scott, 1991, Wasserman & Faust, 
1994). Jacob Moreno, founder of this approach, explicitly affirmed that “the expression of an 
individual position can be better visualized through a sociogram than through a sociometric 
equation” (Moreno, 1934, p. 103). 

 
Figure 1. Two Sociograms representing friendship among school pupils (Moreno, 1934, p. 37, 38) 

With sociograms such as those shown in fig. 1, Moreno and his disciples set the standards of 
network representation (Freeman, 2000 & 2009). Their point-and-line approach has been so 
successful that it has become the de facto standard of network drawing. So much, in fact, that it 
now feels useless to specify that in these charts the points represent the nodes and the lines 
represent the relationships connecting them, although this choice is by no means evident. In 
matrices, for instance, points indicate connections while nodes are rendered as rows and 
columns. But standardization has gone further. Even within the points-and-lines family, diversity 
has been progressively reduced and today most networks visualizations abide by three 
unwritten principles according to which nodes are (1) positioned according to their connectivity; 
(2) sized proportionally to their importance; and (3) coloured or shaped by their category. 
Together these principles constitute the foundations of VNA, as discussed in the next section. 
For the moment, let us consider the first one, which is the most specific to this technique but also 
the most problematic. 

The cornerstone of VNA is the use of “force-directed layouts” to draw networks in a two-
dimensional space (Battista et al., 1999). These algorithms may be implemented according to 
different recipes but they all rest on the same physical analogy: nodes are charged with a 
repulsive force driving them apart, while edges introduce an attractive force between the nodes 
that they connect. Once launched, force-vectors vary the position of nodes trying to balance the 
repulsion of nodes and the attractions of edges. At equilibrium, force-directed layouts produce 
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a visually meaningful disposition of nodes, where nodes that are more directly or indirectly 
related tend to be closer. 

This technique to visualize graphs has become so common that we often fail to notice its 
accomplishment. Force-directed layouts do not just project networks in space – they create a 
space that would not exist without them. This is why this process is better called “spatialization” 
rather than “visualization.” Spatialization creates a space in which the multidimensionality of 
networks can be flattened, in a process of “graph embedding” (Yan et al., 2007) that has 
applications even outside visualization. Spatialization creates a space that retains key properties 
of a network. 

To understand this feat, consider the plan of an underground, rail, or bus system. Strictly 
speaking, most of these plans are not geographical maps – they are not drawn by setting up a 
system of axes first and then placing the stations according to their coordinates. In these charts, 
proximity represents connectivity rather than spatial distance. Fig. 2 shows the most famous 
historical example of this design technique: the 1993 redesign by Harry Beck of the London tube 
map (Hadlaw, 2003). Compared to geographic maps, this type of representation is more 
focused on the information needed by users (which lines should I take to go from A to B and 
where should I change trains) while remaining readable according to the visual conventions of 
geographic maps – not a little advantage given the huge efforts invested to build and spread 
the cartographic conventions (Robinson, 1952; Turnbull, 2000; Krygier & Wood, 2005; 
Crampton, 2010). 

 
Figure 2. London Underground map (a) before and (b) after Harry Beck redesign (1933). 

A similar advantage explains the appeal of force-directed layouts: they allow reading networks 
as geographical maps, despite the fact that network space is a consequence and not a condition 
of elements’ positioning. In a force-spatialized visualization there are no axes and no 
coordinates, and yet the relative positioning of nodes is significant. One can compare distances, 
gauge centers and margins, estimate density and often bring home interesting observations. 

These insights, however, are not always easy to obtain. The fact that network charts can be read 
through an intuitive analogy with geographical maps does not mean that their messages are 
easy to interpret. Point-and-line charts resemble more topographic than cadastral maps: their 
features are blurred and overlapping as plains and chains of mountains rather than clearly 
defined as administrative borders. Force-directed visualizations are evocative rather than 
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descriptive and making sense of their uncertain patterns is a matter of craft as much as of 
science. To observe relational structures, one must know not only where to look, but also how 
to make such structures visible. This is why the next section discusses combinedly how to read 
networks and how to make their visual ambiguity readable. 

2. How to read networks and make them legible 
To exemplify VNA techniques, we were inspired by a network of jazz musicians created by 
Gleiser & Danon (2003). As observed by McAndrew et al. (2014), “as a music form, jazz is 
inherently social” and thus particularly propitious to network analysis (cf. also Sonnett, 2016 and 
Vlegels & Lievens, 2017). Yet, the original jazz network contains only 1,473 nodes and is limited 
to bands performing between 1912 and 1940. We thus produced an updated and expanded 
jazz network (available at https://github.com/tommv/ForceDirectedLayouts): 

● We used Wikidata.org to extract from English Wikipedia: 
1. 6,796 “humans” and 976 “bands” with “genre = jazz”, together with their: 

o “birth year” or “inception” date 
o “citizenship” or “country of origin” (when multiple, we kept the first one). 
o “ethnic group” 
o “gender.” 

2. 53 jazz “subgenres” and 396 “record labels” associated with these individuals and 
bands. 

● We used the Hyphe web crawler (Jacomy et al., 2016; Ooghe-Tabanou et al., 2018) to visit 
all the Wikipedia pages and extract the hyperlinks connecting them. 

● From the resulting graph 
o We removed all the edges that did not have an individual or a band as one of their 

vertices. 
o We kept only the largest connected component, obtaining a network of 6,381 nodes 

(5,396 individuals, 589 jazz bands, 346 record labels and 50 subgenres) and 85,826 
edges. 

In the next sections, we discuss the three main steps of VNA which consist in (a) positioning 
nodes according to their connections; (b) sizing them and their labels according to their 
importance; (c) coloring them according to their categories. For the sake of clarity, we present 
these steps sequentially but, in the practice of VNA, it is often useful to move back and forth 
between them. Our objective is not to provide rigid guidelines, but to spell out a series of 
heuristic techniques that are generally applied intuitively. 

(a) Positioning nodes 

The first and most crucial step of VNA is always the application of a force-directed layout and 
the observation of its results. While in spatialized networks closer nodes tend to be more directly 
or indirectly associated, no strict correlation should be assumed between the geometric 
distance and the mathematical distance (cf. section 3 and 4). As a consequence, VNA is less 
concerned with the distance between nodes than with their general grouping. In a continuum 
that goes from a set of disconnected nodes (a “stable”) to a fully connected clique, the structure 
of a network is revealed by the lumps and the hollows created by the uneven distribution of 
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relations. Since force-directed layouts represent both stables and cliques as circles filled with 
nodes equally spaced, everything that departs from this disposition indicates the existence of 
some relational structure. When analyzing a spatialized network, therefore, we should look for 
shapes that are not circular – which indicate polarization – and differences in the visual density 
of nodes – which indicate clustering. 

Don’t be too quickly discouraged, however, if your network looks like an amorphous tangle (a 
“hairball”, Dianati, 2013; Nocaj et al. 2015). Legibility depends crucially on the spatialization 
algorithm and its settings. Though all force-directed algorithms rely on similar systems of forces, 
they differ for the way in which they handle computational challenges (e.g. the optimization of 
calculations) and visual problems (e.g. the balance between compactness and legibility). What 
appears as a homogenous distribution can sometimes derive from unfortunate layout choices. 

 
Figure 3. The “jazz network” spatialized (a) with the algorithm proposed by Fruchterman & Reingold, 1991, (b) 
with ForceAtlas2 (with default parameters) and (c) with ForceAtlas2 with tweaked parameters for LinLog mode 

and gravity. This and all images created for this paper are available at 
https://github.com/tommv/ForceDirectedLayouts. 

Fig. 3 shows that the clustering of our jazz network is less discernible when spatialized with 
Früchterman & Reingold layout (1991, fig. 3a) than with ForceAtlas2 (fig. 3b). Clusters are even 
more visible if the “LinLog mode”1 of FA2 is activated and “gravity”2 is set to zero (fig. 3c). While 
there are reasons to believe that this may be a quasi-optimal configuration (see section 4 and 
Jacomy et al., 2014), some graphs may be more legible when spatialized with different 
algorithms and settings. More than a “catch-all configuration,” a trial-and-error adjustment of 
spatialization settings is the key to make relational structures visible. 

 

1 The “LinLog mode” parameter tweaks the way in which distance is factored in the computation of attraction 
and repulsion forces. In default ForceAtlas2, both forces are linearly proportional to the distance (with inverted 
proportionality for attraction). However, using a repulsion force logarithmically proportional to distance (ie. the 
LinLog mode) renders clusters more visible. 

2 “Gravity” is a generic force that pulls all nodes toward the centre. While it avoids disconnected nodes to drift 
away from the rest of the network, such a gravitational force interferes with the attraction-repulsion balance of 
force-directed layouts (an excessive gravity packs all the nodes in the centre). 
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(b) Sizing nodes and labels 

After having positioned the nodes to reveal clustering, we still have to make sense of what we 
see. To do so, VNA draws on two other visual variables (Bertin, 1967): size and color. The degree 
(number of edges connected to a node) or the in-degree (number of incoming edges, as in see 
fig. 4a) are classic choices for sizing nodes, as they straightforwardly translate network visibility. 
Being entirely relational, the degree can be computed for any network. Yet, when available, 
other variables could be equally interesting. For instance, we can size the nodes of our networks 
according to the number of views received in 2017 by each Wikipedia page (fig. 4b). Notice that 
in fig. 4, we have varied not only the size of the nodes, but also of their label (and deleted the 
smallest labels). This foregrounding operation is crucial, as inspecting hundreds or thousands 
of nodes is clearly not an option. 

 
Figure 4. The “jazz network” with nodes and labels sized according to (a) in-degree of the nodes; (b) number of 
page views of the related pages in the English Wikipedia. Nodes are spatialized with the same layout as in fig. 

3c (ForceAtlas2, LinLog mode, gravity=0). 

Observing the labels of the most visible nodes, we can start to make sense of the shape of our 
network. Comparing the two images in figure 4, we notice for example that nodes with high in-
degrees tend to be on the left, while nodes with high pageviews are on the right. Also, high in-
degree nodes are famous jazzmen (the top-five being Dizzy Gillespie, Duke Ellington, Miles 
Davis, Benny Goodman and John Coltrane), while high pageviews nodes are pop-culture 
celebrities (top-five: George Michael, Alicia Keys, Barbara Streisand, Liza Minelli, Bing Crosby). 
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This suggests the existence of a left-right polarization corresponding to a more or less pure jazz 
lineage. This left-right separation, however, is not the most important in our network, which 
appears to stretch vertically more than horizontally. 

(c) Colouring nodes 

To investigate the vertical polarization, we use a third visual variable: color. Noticing at the 
bottom names such as Louis Armstrong, Duke Ellington and Bing Crosby and at the top Chick 
Corea, Weather Report and Frank Zappa, we hypothesize that the vertical polarization is 
connected to time. To investigate this hypothesis, we color the nodes of our networks according 
to their date of birth for individuals and of inception for bands. While the separation is not 
complete 3fig. 5a seems to confirm our hypothesis that the vertical polarization corresponds to 
time. 

 
Figure 5. The “jazz network” with nodes coloured according to 

(a) the year of their birth or inception (from green for earliest dates to magenta for most recent); 
(b) their nationality (red for US, grey for all other countries, white for not available); 

(c) their ethnic groups (red for African American, grey for other ethnic groups, white for not available); 
(d) their gender (red for women, grey for men, white for not available or others) 

Fig. 5b and 5c are dedicated respectively to nationalities and ethnic groups and confirm that the 
horizontal polarization is connected to “jazz purity” (non-American actors tend to be on the right, 
while most African American are on the left). Of course, not all variables will turn out to be 
connected to visual structures. Fig. 5d, for example, shows how men and women are mixed in 
our network, producing no relational fracture. 

Using a force-directed spatialization to determine the position of nodes and size and color to 
project variables on the layout, we identified two sources of polarization: primarily time, 
stretching the network vertically, and secondarily “genre purity”, stretching it horizontally. These, 
however, are not axes. Force-vector algorithms are not dimensionality reduction techniques like 
correspondence analysis (Ter Braak, 1986; de Nooy, 2003) and polarization may not be coherent 

 
3 Part of the mixing is due to the fact that, while the inception date corresponds directly to the moment in which 
bands started to be active on the jazz scene, this is not the case for the birth date, which is obviously offsets by 
several years. However, as our dataset spans over almost 150 years (the earliest date being 1870 and the latest 
2014) the distribution of the two timescale remains consistent in the network and does not require correction. 
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across different clusters: the same variable might spread left-to-right in one cluster and top-
down in another (Boullier et al., 2016). 

Naming poles and clusters 

In VNA, clusters are defined as regions where many nodes flock together, surrounded by 
emptier areas (the “structural holes” of Burt, 1995). In our network, the only easily identifiable 
cluster is the one at the top right, which contains the Scandinavian musicians of the Trondheim 
Jazz Orchestra. The other clusters are more difficult to identify and highlighting them requires 
using two advanced techniques. 

The first is performed in a tool called Graph Recipes (tools.medialab.sciences-po.fr/graph-
recipes) through a script (available at https://github.com/tommv/ForceDirectedLayouts) that 
transforms a network chart in a density heatmap where denser zones are highlighted by darker 
backgrounds (fig. 6). The second characterizes the different areas of the heatmap through a set 
of “qualifying nodes” (in our example, jazz subgenres and record labels) and a “double 
spatialization”. We spatialize the network with only bands and individuals and freeze the position 
of these nodes. We then add the subgenres and record labels and run the spatialization again 
but only on qualifying nodes4. The qualifying nodes can then be used as labels for the clusters 
in which they end up being located. 

 

4 A last detail: though the Wikipedia pages related to the subgenres and record labels have hyperlinks connecting 
them, we removed these edges from our network, so that the qualifying nodes are only positioned according to 
their connections to the primary nodes (and not between themselves). 
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Figure 6. The “jazz network” with (a) the labels of the most salient node of each type (grey for individual, green 

for bands, blue for subgenres and red for record labels) and (b) the identification on the structure of the network 
in terms of the evolution of the jazz musical language. 

Qualitative interpretation of the position of nodes and clusters  

After finalizing our visualization, we can make sense of its overall structure and of the position of 
its key nodes5 – it is an advantage of VNA that it allows observing both global patterns and local 
configurations (Venturini, 2012). In fig. 6b, we observe (from the bottom to the top) the 
development of the jazz musical language: from Dixieland and Swing to Bebop, Hard Bop, Post-
Bop and finally to Free jazz and Improvisation. From this backbone of Afro-American jazz, 
deviations (Cool Jazz and West Coast Jazz) and contaminations with other genres (Bossa Nova, 
Latin Jazz and Jazz Fusion) branch to the right of the chart. Fig. 7 zooms on some of the clusters 
of fig. 6. 

 

5 We thank Emiliano Neri, whose jazz expertise was instrumental in this analysis. 
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Figure 7. Mosaic providing a zoom on the different regions of the “jazz network” 

[7.a] The bottom of the chart corresponds to the '30s and '40s and is marked by Decca and 
Capitol Records. The region of Dixieland and swing is split in two parallel clusters (also in Glaiser 
et al., 2003): to the right, the “white big bands” around Tommy Dorsey, Glenn Miller and Benny 
Goodman; to the left the “black big bands” around Louis Armstrong, Count Basie and Duke 
Ellington. Ella Fitzgerald and Billie Holiday are at the center because of their numerous 
collaborations. 

[7.b] Moving up toward bebop, new labels emerge such as Verve and Columbia. Very close to 
the node representing Bebop, we find Dizzy Gillespie and Charlie Parker, among the most 
influential artists of this style, and Sarah Vaughan who collaborated with both. In a bridging 
position are Woody Herman and Clark Terry, whose long careers spanned between Swing and 
Bebop. 

[7.c] Moving upward, the increasing dispersion of nodes illustrates the diversification of jazz in 
the '50s. On the left, Bebop evolves into Hard bop, thanks to Blue Note records and musicians 
such as Charles Mingus, Sonny Rollins, Thelonious Monk and Art Blakey, who is also at the origin 
of the Jazz Messengers ensemble, which creates a little cape on the left of the map. On the right, 
West Coast and Cool Jazz flirt with Latin music, originating Bossa Nova and Latin Jazz, 
popularized by Stan Getz and Quincy Jones. John Coltrane and Miles Davis occupy the center 
of this region, and of the whole graph, for their crucial role in bridging all these experiences. 

[7.d] In the '60s, contaminations turn toward rock and funk music originating Jazz Fusion, with 
musicians like Chick Corea, Herbie Hancock, John Scofield and Pat Metheny, as the Weather 
Report. At about the same time, through artists such as Joe Henderson and Michael Brecker, 
Hard Bop develops into Post-Bop thanks to musicians such as Wayne Shorter and Elvin Jones. 

[7.e] In the '70s and '80s, radical improvisation conquers the avant-garde of Free Jazz and Free 
Improvisation. Initiated by musicians such as Sun Ra, Cecil Taylor, Archie Shepp and Ornette 
Coleman, this style is developed by Anthony Braxton, John Zorn, Evan Parker and others. This 
genre seems to be supported particularly by European record labels such as JMT and ECM. This 
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last record label is also the bridge that connects the cluster of the Scandinavian jazz to the rest 
of the maps. 

The exploration above illustrates how to analyze a network by combining three visual 
operations: (1) the tweaking of a force-directed layout to highlight clusters and structural holes; 
(2) the sizing of nodes and labels to makes sense of the different regions of the chart; and (3) the 
coloring of nodes to understand the forces structuring the networks. It also introduces the 
advanced techniques of density heatmaps and qualifying nodes. For the sake of simplicity, we 
presented this sequence as linear and orderly, as if we knew from the beginning how to stack its 
operations and set its parameters. Of course, this was not the case and our actual inquiry entailed 
many trials and errors, and a lot of backs and forth between different visual variables and their 
parameterization. This type of iteration is very common in VNA, which cannot be carried out 
without a continuous switch between data and visualization, selecting and filtering, zooming and 
panning.  

3. Exploring the topological ambiguity of networks 

Beside illustrating the key techniques of VNA, the jazz example has shown the way in which this 
approach allows addressing, rather than reducing, relational ambiguity. Exploring node density, 
for example, serves a similar purpose to community detection algorithms: to distinguish highly 
connected node groups. Yet, the regions highlighted by VNA have vague outlines and large 
overlaps and are therefore much more like jazz subgenres than the well-defined partitions 
produced by a community algorithm. Similarly, VNA highlights the key positions of some artists 
and ensembles, without imposing the kind of strict ranking that would have emerged from a 
centrality metric. 

As most statistical indicators, graph metrics discard much of the complexity of the empirical 
phenomena and focus on the few dimensions that can be precisely quantified (Desrosières, 
1993). This reduction to exactitude can be a drawback in the exploratory stage of investigation, 
when the definition of the research questions is still underway and the mastery of the research 
corpus is still tentative. As long as the separation between “information” and “noise” (or 
“measure” and “errors”, if you prefer) remains unclear, efforts to clean up the picture risk to cut 
observation along precise but fallacious lines. In early stages, researchers should respect the 
inherent ambiguity of their subjects rather than imposing a premature and artificial ordering. In 
the words of John Tukey, the father of exploratory data analysis: 

“Far better an approximate answer to the right question, which is often vague, than an exact 
answer to the wrong question, which can always be made precise.” Data analysis must progress 
by approximate answers, at best, since its knowledge of what the problem really is will at best be 
approximate. It would be a mistake not to face up to this fact, for by denying it, we would deny 
ourselves the use of a great body of approximate knowledge (Tukey, 1962: 14, original 
emphasis). 

Maintaining margins of ambiguity is particularly important in human and social sciences. 
Because of the complex nature of their objects, many researchers in these fields cannot bear the 
degree of exactitude implied by confirmatory statistics. If many human and social scientists are 
wary of quantitative tools, it is because their precision is at odds with the messiness of human 
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phenomena. Johanna Drucker (2011) argues, for example, that standard statistical charts convey 
a purity that is unrealistic for most social categories, see fig. 8 for an example. 

 
Figure 8. A classic statistical chart of gender distribution in different populations (left) and its redesign to retain 
some of the ambiguity of the original phenomenon (right) (original images and captions from Drucker, 2011). 

This is one of the reasons why network visualizations are increasingly popular as ways to explore 
complex subjects: their visual ambiguity mirrors some of the empirical ambiguity of the 
phenomena they represent. The community structure of networks is, for instance, notoriously 
ambiguous. As argued by Calatayud et al. (2019), for some empirical networks, the “solution 
landscape” of community detection “is degenerate” because “small changes in an algorithm 
parameter or a network due to noise can drastically change the best solution” (see also Peixoto, 
2019 & 2020). In other words, for many networks, very different partitions are equally valid. In 
this situation, an ambiguous visualization may be more correct than a precise mathematical 
partitioning. Where community-detection algorithms tend to generate clear-cut and (generally) 
non-overlapping partitions, force-directed layouts reveal zones of different relational density but 
with blurred and uncertain borders. VNA is capable of preserving the inherent vagueness of 
concepts such as clusters, centers, fringes and bridges. Network metrics (and network models) 
are great tools to test for relational hypotheses, but network maps can be more appropriate 
when the problem is to explore uncertain phenomena. Not despite their ambiguity, but thanks 
to it. Because they are problematic, graph visualizations incite researchers to problematize their 
observations and encourage an enquiring attitude (Dewey, 1938). 

The need to preserve some of the inherent ambiguity of relational phenomena, explains why 
“legibility” is not necessarily the gold standard of network visualizations – at least not in the way 
legibility has been defined in the early years of “graph drawing.” When graphs were limited to a 
few dozens of nodes and edges, researchers could read networks as functional diagrams, such 
as flowcharts or trees (Lima, 2014), that is to say by following the paths connecting their 
components. This diagrammatic approach, however, becomes untenable for the medium and 
large networks increasingly made available by digital traceability and the kind of "social big 
data" that constitutes the object of this journal. 
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Originally introduced for diagrammatic purposes like “minimizing edge crossings” or “reflecting 
inherent symmetry” (Früchterman & Reingold, 1991; Purchase et al., 1996; Purchase, 2002), 
force-directed layouts have outlived their origins. Nowadays, they are no longer used to follow 
paths in small networks, but rather to explore large relational datasets and eyeball relational 
structures such as clustering, centrality or betweenness. We call this second perspective 
topological as its objective is to provide an overview of topological structures (see Grandjean & 
Jacomy, 2019). 

While diagrammatic and topological perspectives coexist in practice, the two approaches come 
from different traditions – algorithmics for graph drawing and information design for network 
visualization – and serve different needs. A diagrammatic stance suits small networks, whose 
configuration is simple enough to be qualitatively appreciated, while a topological attitude is 
more appropriate for larger networks, where pattern detection and exploratory data analysis 
(Tukey, 1977; Behrens & Chong-Ho, 2003) are preferred. This explains why, in the last few years, 
the attention of scholars has gradually shifted from the diagrammatic to topological approach. 
Diagrams, favored in the early years of network visualization, are becoming obsolete when 
confronted with the growing size of relational datasets (Henry et al., 2012). Reviewing an 
assessment of spatialization algorithms by Purchase et al. (1996), Gibson et al. (2013) note for 
instance: 

The type of tasks she [Helen Purchase] asked her users to complete… were finding shortest 
paths, identifying nodes to remove in order to disconnect the graph and identifying edges to 
remove in order to disconnect the graph … It is unclear as to if this type of accurate, precise 
measurements are typical analysis tasks for graphs with hundreds or thousands of nodes …. If 
those kinds of tasks become infeasible due to the volume of nodes and edges then the better 
layouts should support the user for a different set of tasks … to support users in tasks concerned 
with overview, structure, exploration, patterns and outliers (pp. 27, 28) 

Although both perspectives coexist in the literature, the topological visualization is 
underdiscussed. For instance, Dunne & Shneiderman (2009) “Netviz Nirvana” only comprises 
one topological criterion (the last one): “(1) Every node is visible; (2) For every node you can 
count its degree; (3) For every edge you can follow it from source to destination; (4) Clusters and 
outliers are identifiable” (see also Hansen et al., 2012; Brandes & Wagner, 2004; Brandes et al., 
2006). The topological perspective has been mentioned multiple times but has rarely been 
addressed directly until recently (see for instance Soni et al., 2018).  

4. Toward a measure of spatialization quality 
Effective in practice, visual network analysis remains conceptually underdeveloped. As observed 
by Bernhard Rieder and Theo Röhle: “tools such as Gephi have made network analysis 
accessible to broad audiences that happily produce network diagrams without having acquired 
a robust understanding of the concepts and techniques the software mobilizes” (Rieder & Röhle, 
2017). To master VNA it is crucial to appreciate not only its strengths, but also its biases, many 
of which come from the difficulty to separate the ‘positive ambiguity’ inherited from the 
represented phenomenon from the distortions coming from fitting a multidimensional 
mathematical object in the two dimensions of a computer screen (or piece of paper). 
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Figure 9. (a) An exact network spatialization and (b) a necessarily skewed network spatialization. 

Fig. 9 illustrates the problem. While a clique of three nodes can be drawn as an equilateral 
triangle in a way that is directly justifiable by its relational properties, a clique of four cannot. 
Since in a clique all nodes are equally connected, they should all be at the same distance from 
each other, which is impossible for more than three nodes (unless, of course, if all nodes are 
positioned one on the top of the other). In fig. 9b, A-B and A-D are equally connected but are 
represented at different distances. Gauging the distortion of force-driven layouts, however, is 
far from easy, as we will illustrate discussing the failure of two complementary attempts to assess 
the layout quality and some possible directions for future research. 

First attempt: assessing layout quality without assuming clusters 

An obvious solution to assess how a given layout respects network relations would be to 
compare the Euclidean distance between nodes with their relational distance. Unfortunately, not 
only in graph mathematics offers several different measures of relational distances exist (making 
it difficult to choose one for comparison), but our exploration suggests that none of them 
captures the arrangement of force-directed spatialization. 

In figure 10, we compare the Euclidean distance between pairs of nodes in the jazz network as 
spatialized by ForceAtlas2 (LinLog and gravity=0) with two relational distances: the length of the 
shortest path (geodesic distance) and the mean commuting time. This last quantity is defined as 
the average number of steps that a random walker, starting from one node, takes to reach the 
other and then go back to the starting node (Fouss et al., 2007). 

 

Figure 10. Scatter plots showing the poor correlation between the binned Euclidean distances between pair of 
nodes (jazz network, spatialized with ForceAtlas2, LinLog, gravity=0) and both the shortest path and the mean 
commuting time (respective R2: 0.167 and 0.0025). The dots represent the mean relational distances between 

pairs of nodes at a given Euclidean distance. The error bars represent the standard deviation. 
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The Euclidean distance is somewhat correlated with the geodesic one as expected, but the 
variability is considerable (fig. 10a). There is almost no correlation with the mean commuting 
time (fig. 10b), as random walkers can drift far away even from a neighboring node, especially 
when nodes’ degrees are high. While section 2 proved the efficacy of ForceAtlas2 in generating 
a layout that corresponded to notions of jazz history, this efficacy is not captured by the 
correlation between Euclidean and relational distances. This should not come as a surprise. As 
discussed above, force-directed layouts are not meant to observe the connections between 
pairs of nodes (as in a diagrammatic perspective), but to provide a general overview of the 
topological structures of a network. We will move in this direction in our next attempt at 
assessing layout quality. 

Second attempt: assessing layout quality through clustering 

To move from individual nodes to topological features, our second attempt at assessing layout 
quality considers the correspondence between structural and visual clustering. In fig. 11, the 
same two graphs – our jazz network and the Karate club network6 – are partitioned according to 
k-means geometric clustering and to Louvain modularity (Blondel et al., 2008) and. The first 
algorithm is based on proximity in the Euclidean space generated by ForceAtlas2, the second 
on the relational structure of the network. The comparison reveals some correspondence, but 
also several discrepancies (for instance, comparing the two figures at the top of fig. 11 reveals 
that the geometric k-means clustering tend to generate clusters with similar sizes in terms of 
nodes, while this is not the case for the relational clustering detected by Louvain modularity). 

 
6 The karate club is a famous network illustrating the alliances and opposition between the 34 members of a 
martial arts club as described by Wayne Zachary in a paper on "An Information Flow Model for Conflict and 
Fission in Small Groups" (1977). 
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Figure 11. Clusters identified by k-means (left: a and c) and Louvain modularity maximization modularity (right: 

b and d) on the jazz network (top: a and b) and the karate club network (bottom: c and d). 

Fig. 12 proposes a more systematic comparison between Louvain modularity and k-means, 
focusing on the same two networks and four different layouts: ForceAtlas2 linlog mode 
gravity=0; default ForceAtlas2; default Früchterman&Reingold; a random layout. For each 
graph, we compute the Jaccard similarity between the clusters identified by modularity and 
those identified by k-means in different layouts7. A richer comparison is available at 

 
7 Our comparison algorithm can be unpacked as follows: 

1. For a given network and a given partition of the nodes in k different classes C 
2. We build the set S of all pairs of nodes (Ni, Nj) where the classes C(Ni) and C(Nj) are the same: C(Ni) = C(Nj) 

(ie. the set of the node pairs that define the clusters). 
3. To compare the two partitions a and b of the same network, we computer the Jaccard index of sets Sa and Sb 

as the number of common pairs (Ni, Nj), over the number of pairs that are in either or both sets. 
The Jaccard index has a value of 0 if the partitions have no nodes in common, and a value of 1 if they are exactly 
the same. Comparing the pairs of nodes has the benefit of not requiring matching each cluster of partition a with 
a cluster of partition b, which cannot always be done in a meaningful way (see the appendix for a more detailed 
comparison). 
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https://github.com/tommv/ForceDirectedLayouts. The random layout is added for control, as 
similarity is expected to be minimal for it. 

 
Figure 12. Similarity between the clusters identified by Louvain modularity for each network and the clusters 

identified by k-means in different layouts. Higher bars indicate a greater correspondence between the 
Euclidean and network clustering. 

Again, the results are mixed: the correspondence between modularity and k-means clustering 
is rather good in highly clustered networks, such as the karate club, but unsatisfactory for 
networks that are more structurally ambiguous and that exhibit polarization rather than 
clustering, such as the jazz network. Once more this should not come as a surprise. If, as we 
argued, the value of force-directed layouts lies in their capacity to conserve ambiguity, then such 
value can only be poorly captured by a measure that takes for granted the existence of a clear-
cut and non-overlapping clustering.  

The case for a measure of spatialization quality 

The difficulty to find a convincing measure of the spatialization quality should not lead us to 
conclude that force-directed layouts cannot be used or trusted. In fact, two reasons suggest that 
these layouts may be very efficient at the job of translating network structures visually. The first 
is the pervasiveness of spatialization techniques. Not only have they been used for three 
decades with no major modifications, but they have also extended to other areas. Indeed, 
dimensionality reduction algorithms in multivariate variable distribution, like t-SNE (van der 
Maaten & Hinton, 2008) and UMAP (McInnes et al., 2018), are implicitly building networks and 
spatializing them. The way they minimize entropy by gradient descent bears a striking 
resemblance to force-directed layouts. Both are iterative relaxation techniques converging to an 
approximate equilibrium and both are meant to optimize a function, which is explicit for gradient 
descent and implicit for force-directed layouts (roughly corresponding to the energy of the 
system). The increasing success of t-SNE and UMAP suggests that the mathematical community 
has not found better than these quite similar techniques to produce interpretable visual objects. 

The second reason is Andreas Noack’s work on the LinLog algorithm. In his thesis, Noack (2007) 
proposes a layout quality metric called “normalized atedge length,” corresponding to the total 
geometric length of the edges in a spatialized graph divided by the total geometric distance 
between all nodes and by the graph density. The smaller is the value of this metric, the more the 
layout has succeeded in representing relational communities as compact and separated visual 
clusters – for the numerator decreases when connected nodes are close (thus shortening the 
edges), and the denominator increases when disconnected nodes are far (thus increasing the 
overall distance). While the normalized atedge length does not set an optimum expectation 
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level and does not quantify the amount of bias due to dimensionality reduction, it can be used 
to compare layouts. This comparison allowed Noack to prove that the best results are obtained 
by employing a linear force of attraction (i.e. linearly proportional to the distance of nodes) and 
a logarithmic force of repulsion, as in the “LinLog algorithm,” often considered as the empirical 
gold standard of spatialization quality. 

In a later paper, Noack (2009) also demonstrated, for a very simple network, how the normalized 
atedge length is mathematically equivalent to the modularity as defined by Newman (2006). This 
result provides evidence that the LinLog algorithm may be close to the optimum in the task of 
translating mathematical communities into a visual clustering. It also suggests that the problem 
of minimizing “normalized atedge length” is probably NP-complete, as is the problem of 
maximizing modularity (Brandes et al., 2006). This indicates that it may be hard to outperform 
the iterative convergence of force-directed layouts by using a deterministic approach. 

Searching for a spatialization quality metric is a case of “experimenter’s regress” (Collins, 1975), 
a situation where we face a dependency loop between theory and empirical evidence. We are 
not entirely sure that Noack’s “normalized atedge length” is the metric that should be minimized, 
and we have no definitive proof that the LinLog is the best approach to minimize it. All we know 
is that the “normalized atedge length” is a reasonable definition of spatialization quality and that, 
among the existing layouts, LinLog is the one that delivers the best results according to it. 

To provide a solid mathematical ground for visual network analysis, we need a quality metric 
independent of current algorithms. Such a metric would allow evaluating the overall quality of a 
given algorithm on a given network and, possibly, indicating which individual nodes and edges 
are visually rendered in the least satisfactory way. Besides quantifying the distortions of two-
dimensional fitting, the measure would help understand what a good spatialization is and which 
type of information is conveyed by force-directed layout. 

Conclusion 
This paper starts from the empirical observation that scholars in a variety of disciplines in social 
and natural sciences are increasingly relying on network visualizations to eyeball their relational 
datasets and to convey their findings. The growing popularity of these charts suggests that, far 
from being merely decorative, points-and-lines visualizations have a distinctive heuristic force. 
Their use constitutes a fully-fledged form of network analysis, though one that differs from the 
metrics and models typically used in social network analysis and network science. This visual 
analysis, however, has so far remained a sort of "trick of the trade", whose virtues (but also whose 
limits) are seldom acknowledged or explicitly discussed. This lack of documentation explains 
the mistrust that many scholars still maintain against network visualizations. 

In this paper we investigated this evocative power of network visualizations and we tried to make 
explicit the method behind the practices of visual network analysis. We did so by retracing the 
history of force-directed layouts and discussing the way in which they produce a space in which 
the mathematical structures are translated in visual patterns. Balancing the attraction of edges 
and the repulsion of nodes, force-directed algorithms generate a two-dimensional 
representation of networks in which clusters tend to appear as denser gatherings of nodes; 
structural holes tend to look like sparser zones; central nodes move towards middle positions; 
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and bridges are positioned somewhat between different regions. We call this type of 
visualization topological, as its objective is to turn relational structures into visual patterns. 

The value of this topological visualization, we argued, has been disregarded by both network 
visualization and network analysis. On the one hand, in network visualization, force-directed 
layouts have been undervalued because their results have been judged from a diagrammatic 
perspective in which charts are used to identify paths between nodes rather than to grasp more 
general relational patterns. On the other hand, in network analysis, VNA has been discounted 
because of its inherent ambiguity and the impossibility to define with precision the meaning of 
proximity in a spatialized network. In this paper, we argued that this elusiveness is not a good 
reason to dismiss points-and-lines charts. Instead, the ambiguity of points-and-lines charts 
should be tamed by separating the distortion coming from the projection of a multidimensional 
object in a two-dimensional space, from the blurriness inherent to relational phenomena that 
should not be evacuated, but rather cherished and investigated. 

Distinguishing a good ambiguity from a bad one, however, is not an easy task and in the last 
section we discussed a few mathematical reasons why this is the case. Originally introduced to 
minimize edge crossing, force-directed layout turned out to have unexpected and not fully 
understood hermeneutic capacities. In the absence of a clear understanding of the outcome 
emerging from the iterative interaction of attraction and repulsion forces, it is difficult yet crucial 
to design precise tests to assess the quality force-directed layout. Waiting for a precise measure 
of spatialization quality, however, VNA can still be productively used as a tool for exploratory 
data analysis. In this paper we described and exemplified a series of techniques that we 
developed to this objective, hoping to help researchers to be more mindful in the use of network 
charts and to build trust in a form of analysis that is widely used, but insufficiently investigated. 
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