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Abstract: In this paper, we propose a deep learning-based network for video frame rate up-conversion (or video frame
interpolation). The proposed optical flow-based pipeline employs deep features extracted to learn residue
maps for progressively refining the synthesized intermediate frame. We also propose a procedure for fine-
tuning the optical flow estimation module using frame interpolation datasets, which does not require ground
truth optical flows. This procedure is effective to obtain interpolation task-oriented optical flows and can be
applied to other methods utilizing a deep optical flow estimation module. Experimental results demonstrate
that our proposed network performs favorably against state-of-the-art methods both in terms of qualitative and
quantitative measures.

1 INTRODUCTION

Video frame rate plays a critical role in video
quality perception, hence in the user quality of ex-
perience in multimedia applications. Generating high
frame rate videos from low frame rate versions has
long been a challenging problem that has attracted
a lot of attention in the computer vision community.
This explains why, in recent years, a significant effort
has been dedicated to the problem of video tempo-
ral interpolation for frame rate conversion. Existing
video frame interpolation (VFI) approaches consist
of synthesizing intermediate frames from given input
frames and can be roughly classified into three cate-
gories, i.e. optical flow [Liu et al., 2017, Jiang et al.,
2018,Bao et al., 2019a,Niklaus and Liu, 2018,Niklaus
and Liu, 2020] or feature flow-based schemes [Gui
et al., 2020], kernel-based schemes [Niklaus et al.,
2017a, Niklaus et al., 2017b, Bao et al., 2019b] and
phase-based ones [Meyer et al., 2015, Meyer et al.,
2018].

Flow-based methods estimate optical flows be-
tween given frames, then interpolate or extrapolate
target frames along the motion vectors. Liu et al. [Liu
et al., 2017] proposed a Deep Voxel Flow (DVF) net-
work that consists of a flow estimation module and

aThis work was supported by the EU H2020 Research
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a trilinear interpolation layer. The network estimates
a kind of optical flow and a temporal mask for tri-
linear blending the input frames. Jiang et al. [Jiang
et al., 2018] propose a double U-Net pipeline where
the first U-Net predicts bi-directional optical flows to
be further combined to approximate the intermediate
optical flows. The second U-Net refines the interme-
diate optical flows as well as predicts soft visibility
maps in order to warp and linearly merge the input
frames. Bao et al. [Bao et al., 2019a] exploit depth
information in the flow projection procedure for bet-
ter handling occlusions. The proposed model warps
the input frames, depth maps, and contextual features
based on the optical flows, and local interpolation ker-
nels are also used for synthesizing the output frames.
In [Niklaus and Liu, 2018, Niklaus and Liu, 2020],
the authors employ the state-of-the-art PWC-Net [Sun
et al., 2018] for optical flow estimation. Both in-
put frames and extracted deep features are projected
and merged to obtain intermediate frames. Instead
of using classical optical flow estimation techniques,
the authors in [Gui et al., 2020] propose a two-stage
frame interpolation pipeline where feature flows es-
timated by a multi-flow multi-attention generator are
used to warp feature maps. For methods [Bao et al.,
2019a,Niklaus and Liu, 2018,Niklaus and Liu, 2020]
that make use of an off-the-shelf optical flow estima-
tion module, they both rely on a good initialization of
that module whether or not end-to-end finetuning is



conducted later. However, most optical flow estima-
tion networks are trained on synthetic datasets with
ground truth optical flows, and are not fully adapted
to the frame interpolation problem. In this paper, we
propose a simple but effective finetuning procedure
that allows us to finetune the initial optical flow esti-
mation module with no need for ground truth optical
flows.

Unlike flow-based methods, kernel-based meth-
ods [Niklaus et al., 2017a, Niklaus et al., 2017b] es-
timate a series of spatially-adaptive interpolation ker-
nels, and views are then synthesized by convolving
input frames with these learned kernels. In [Bao
et al., 2019b], the authors integrate both optical flow
and spatial compensation filters in an adaptive layer
for synthesizing target frames. Kernel-based meth-
ods are computationally expensive and do not incor-
porate explicit mechanisms for occlusion handling.
The authors in [Choi et al., 2020] employ a special
feature map shuffling operation with a channel atten-
tion mechanism to replace the optical flow computa-
tion. Frames are synthesized from the re-distributed
and modulated features without estimating motion
information. Phase-based methods [Meyer et al.,
2015, Meyer et al., 2018] are another type of mo-
tion estimation-free solutions. The motion is repre-
sented as a per pixel phase shift, hence the interme-
diate frame is a result of operating phase modifica-
tion for each pixel. Although the authors in [Meyer
et al., 2018] made progress in tackling larger motion
and higher frequency content compared with [Meyer
et al., 2015], they still can not reach the same level of
quality as flow-based methods.

In our work, we follow the flow-based paradigm
as it has yielded satisfactory results on various
datasets [Soomro et al., 2012, Xue et al., 2019]. Fur-
thermore, it benefits from recent advances in optical
flow estimation [Ilg et al., 2017, Hui et al., 2018, Sun
et al., 2018]. We use PWC-Net for optical flow es-
timation, that we specifically finetune for the tempo-
ral interpolation task, using the video frame interpo-
lation dataset ‘Vimeo90K’ [Xue et al., 2019]. Be-
sides original frames, deep features extracted from
these frames are also warped and used to improve
the synthesis process. The authors in [Niklaus and
Liu, 2018, Niklaus and Liu, 2020] also combined
shallow or deep features with input frames to ob-
tain interpolated frames, however using a compli-
cated GridNet architecture [Fourure et al., 2017]. In
our scheme, feature maps at different levels are fed
into ‘ConvBlocks’ to learn residue maps for a pro-
gressive refinement of the interpolated details. We
have conducted comprehensive experiments on vari-
ous datasets and compared with other state-of-the-art

methods [Bao et al., 2019b, Gui et al., 2020, Niklaus
and Liu, 2020] to show that our design works well in
the video frame rate up-conversion task.

2 Methodology

2.1 Network overview

The video frame interpolation task aims to retrieve
an intermediate frame It from two input frames I0
and I1, where t ∈ (0, 1) is an in-between instant.
The overall architecture of our pipeline is shown in
Fig. 1, where the input frames I0 and I1 are first fed
to the flow estimator to get bidirectional optical flows
flow0→1 and flow1→0, and to the encoder to obtain
the feature maps f i0, f

i
1(i = 1, 2, 3). Based on the es-

timated optical flows, both the input frames and their
features at different resolution levels are forward pro-
jected to the target instant t. The warped images Ĩ0
Ĩ1 are first fed into ConvBlock1 to compute a base
feature volume. Similarly, the warped feature maps at
different resolution levels are fed into the ConvBlocks
2 to 4 to obtain residue feature volumes that are used
to refine the base feature volume, by adding details.
Both base and refined feature volumes, at the differ-
ent resolution levels, are decoded by a shared decoder
to generate the synthesized views Îit at the target in-
stant t with increasing image quality. The network
architecture is detailed in Table 1.

2.2 Finetuned optical flow estimation

As aforementioned, flow-based methods using an
off-the-shelf flow estimation module always rely on
a good initialization whether or not end-to-end fine-
tuning is conducted. Available optical flow estimation
networks are mostly trained on synthetic datasets with
ground truth optical flows [Butler et al., 2012, Doso-
vitskiy et al., 2015,Ilg et al., 2018]. These pre-trained
networks are less adapted to real-world scene, and es-
pecially for the interpolation task. Facing this prob-
lem, we finetune the optical flow estimation network
in a frame interpolation context, with the help of dif-
ferentiable warping operations, in order to optimize
network weights for the interpolation task. Taking
PWC-Net as an example, initial bidirectional optical
flows flow0→1, f low1→0 between I0 and I1 are esti-
mated as:

flow0→1, f low1→0 = PWC θ(I0, I1), (1)

where PWC represents this motion estimation step
and θ denotes the parameters in PWC-Net. The goal



Figure 1: Overall architecture of our proposed method. Given two consecutive frames I0 and I1, the flow estimator ‘PWC-
Net’ and the feature extractor ‘Image encoder’ respectively predict bidirectional optical flows flow0→1, flow1→0 and extract
three-scale feature maps {f1

0 , f
1
1 , f

2
0 , f

2
1 , f

3
0 , f

3
1 }. Backward Warping (BW) is firstly applied by taking source frames and

predicted flows to output warping errors e0 and e1 which are used as confidence measures. Then the Forward Warping (FW)
projects the input frames and their features to the desired time instant t, where the error maps e0 and e1 are used to handle
pixel overlaps. The feature maps in different scales bringing different levels of details are fed into ConvBlocks which generate
residues that are used to progressively refine the feature volumes from the previous level (except for the lowest level). Finally,
a shared decoded reconstruct a set of intermediate frames with increasing levels of details. Please refer to Table 1 for the
detailed network architecture.

of finetuning is to optimize θ in order to minimize the
warping error:

argminθ|It − Ĩ0→t|1 + |It − Ĩ1→t|1, (2)

where Ĩ0→t and Ĩ1→t are respectively warped images
from given instants 0 and 1 to instant t.

There are actually two ways to obtain warped im-
ages Ĩ0→t and Ĩ1→t based on flow0→1 and flow1→0.
One is to apply an ‘Image spatial transformation’ (or
Backward Warping (BW)) as used in [Jaderberg et al.,
2015]. However, this requires interpolating flowt→0

and flowt→1, as in [Jiang et al., 2018], before warp-
ing the images. However, interpolating intermediate
optical flows always brings errors, especially at the
object boundaries. One can instead apply Forward
Warping (FW) in a similar way as in [Niklaus and
Liu, 2020] or [Shi et al., 2020], which can directly
warp images to the time instant twithout prior estima-
tion of flowt→0 and flowt→1. However, the method
in [Shi et al., 2020] requires a prior flow (depth maps
in the case of the approach in [Shi et al., 2020]) es-
timation for handling overlaid pixels after warping.
Overlaid pixels from foreground are given more im-
portance than those from background when interpo-
lating the final pixel color values.

In order to compute a measure of confidence for
the warped pixels, without having to interpolate the
optical flows computed between the input frames, we
can, as in [Niklaus and Liu, 2020] instead calculate

brightness errors e0 and e1 to tackle pixel overlaps, as

e0 =
∑
RGB

|I0 −BW (I1, f low0→1)|, (3)

e1 =
∑
RGB

|I1 −BW (I0, f low1→0)|. (4)

(a) Warped image be-
fore FT

(b) Warped image after
FT

Figure 2: Visualization of Ĩ0→t (a) before/ (b) after finetun-
ing (FT) flow estimator.

Warping errors e0 and e1 are actually effective
cues for handling overlaps, since pixels coming from
occluded regions have larger error values than those
from visible regions, and these occluded pixels are
also more likely to be overlaid after warping. So, al-
though we use FW instead of BW to warp the input
frames to the intermediate time instant t, we use BW
for calculating e0 and e1 in Eq. 3 and Eq. 4.

With e0 and e1, the authors in [Niklaus and Liu,
2020] further employ a U-Net which takes these error
maps and source frames as inputs to predict impor-



Encoder k s in/out input
conv1 1 3 1 3/128 I0 or I1
conv1 2 3 1 128/128 conv1 1
f10 or f11 3 1 128/128 conv1 2
conv2 1 3 2 128/128 f10 or f11
conv2 2 3 1 128/128 conv2 1
f20 or f21 3 1 128/128 conv2 2
conv3 1 3 2 128/128 f20 or f21
conv3 2 3 1 128/128 conv3 1
f30 or f31 3 1 128/128 conv3 2

ConvBlock1
convA1 3 1 8/128 {Ĩ0→t,Ĩ1→t,M̃ I

0→t,M̃
I
1→t}

convA2 3 1 128/128 convA1
D1,R1 3 1 128/128 convA2

ConvBlock2
convB1 3 1 322/128 {↑(f̃30→t,f̃31→t,M̃3

0→t,M̃
3
1→t),R1}

convB2 3 1 128/128 convB1
D2,R2 3 1 128/128 convB2

ConvBlock3
convC1 3 1 322/128 {↑(f̃20→t,f̃21→t,M̃2

0→t,M̃
2
1→t),R2}

convC2 3 1 128/128 convC1
D3,R3 3 1 128/128 convC2

ConvBlock4
convD1 3 1 322/64 {↑(f̃10→t,f̃11→t,M̃1

0→t,M̃
1
1→t),R3}

convD2 3 1 64/64 convD1
D4 3 1 64/64 convD2

Decoder
convE1 3 1 64/64

∑i
n=1Dn

Îit 3 1 64/3 convE1

Table 1: Proposed network architecture. k, s and in/out
represent the kernel size, the stride and the number of in-
put/output channels, whereas ‘↑’ and ‘{}’ represent bilinear
upsampling and concatenation.

tance maps for the following FW operation. How-
ever, using such a network only for predicting the
pixel confidence measures implies additional param-
eters, and makes the fine-tuning together with PWC-
Net and U-Net more complicated with risks of net-
work collapse.

To avoid the above problems, we instead directly
use the normalized error maps e′0 and e′1 as impor-
tance maps in the FW step to handle pixel overlaps.
We adopt a scale factor α and exponential function to
compute the pixel confidence measure as exp(−α ∗
e′). When increasing the value of α, overlaid pixels
having smaller error values will be given more impor-
tance, hence will contribute more to the interpolation.
A larger value of α is favorable to videos that contain
large occlusions due to motion. In our experiments,
we use a testset that includes different types of mo-
tion, and we experimentally found that α = 1 can
generate satisfactory results.

Besides the normalization of warping errors, we
also explicitly detect disocclusion regions: after
warping, the pixel positions that do not have any pixel
falling in its neighbourhood, are identified as disoc-

cluded positions. These positions are set to 0 in the
corresponding binary mask M̃ , and all the others are
set to 1. Based on the error maps normalization and
on the detection of disocclusions, our FW can be sum-
marized as follows:

Ĩ0→t, M̃0→t = FW (I0, f low0→t, α ∗ e′0), (5)

Ĩ1→t, M̃1→t = FW (I1, f low1→t, α ∗ e′1), (6)

where flow0→t = t ∗ flow0→1 and flow1→t = (1−
t) ∗ flow1→0.

The disocclusion masks M̃0→t and M̃1→t are cru-
cial to our method, since they allow us to exclude un-
reliable pixels, which are not inpainted during warp-
ing, from the objective function Eq. 2. The new func-
tion used for finetuning the flow estimator, after tak-
ing the binary masks into account, becomes

argminθ|(It−Ĩ0→t)∗M̃0→t|1+|(It−Ĩ1→t)∗M̃1→t|1.
(7)

The disoccluded pixels are inpainted in the Con-
vBlocks, and the masks are indicating the disocclu-
sion positions. Based on Eq. 7, PWC-Net can be op-
timized specifically for the view synthesis task. The
effectiveness of our finetuning procedure is illustrated
in Fig. 2, where before finetuning, we can observe se-
vere deformations of the license plate, and blurriness
due to optical flow inaccuracy. After finetuning, the
deformation and blurriness issue is considerably alle-
viated. This is further analyzed in the ablation study
section.

Apart from the improvement of the final recon-
struction quality, the finetuning of PWC-Net before
end-to-end training can effectively shorten global
training time and prevent network collapse. An-
other reason for recommending this finetuning pro-
cess is that when the network is not end-to-end train-
able, such as in [Niklaus and Liu, 2018], having a
synthesis-task optimized flow estimator definitely im-
proves the final performance.

2.3 Progressive residual refinement

The next step is to retrieve the intermedi-
ate frame Ît based on these bi-directional flows
flow0→1, f low1→0 optimized for interpolation.

According to Eqs. 5 and 6, the original frames
I0, I1 and extracted features f i0, f

i
1 are first warped to

instant t to obtain Ĩ0→t, Ĩ1→t, f̃
i
0→t, f̃

i
1→t and their

corresponding binary masks M̃ i
0→t, M̃

i
1→t. Con-

vBlock1 first takes warped images and their masks
and outputs a feature volume containing a base repre-
sentation of scene information, which we then refine
by adding residue feature volumes based on warped
features f̃ i0→t, f̃

i
1→t at different levels obtained with



26.42dB/0.9014 26.64dB/0.9070

27.83dB/0.9317 28.42dB/0.9422
Figure 3: Visualization of progressively refined details from
Î1t to Î4t (from top to bottom, from left to right).

kernels having different receptive fields. These fea-
tures aim at capturing subtle textures in the scene, to
then refine details of the base feature volume. The
merging of images resulting from both pixel-based
and feature-based warping has been shown power-
ful in [Shi et al., 2020] in the context of light field
view synthesis. The features extracted at three dif-
ferent scales are used, via ConvBlock2-4, to learn
residues to progressively refine the base feature map
volume. ConvBlock1-4 are three-layer convolutional
blocks. The last layer of ConvBlock1-3 is split into
two branches, one branch keeping a subset of fea-
tures that refines the previous level, while the sec-
ond subset of features (corresponding to higher fre-
quency details) is used at the next refinement level
(see Fig 1(c)). Finally, a shared decoder is employed
to decode both the base volume and volumes progres-
sively refined at different levels to obtain synthesized
views Îit(i = 1, 2, 3, 4). Fig. 3 shows this progres-
sive refinement from Î1t to Î4t . From Î1t to Î4t , more
and more details are added and artefacts are gradually
corrected. We use Î4t as our final interpolated frame
as it contains the most details. The whole pipeline
is trained by minimizing the following reconstruction
error:

Lrec =

4∑
i=1

λiLap(It − Îit), (8)

where Lap is the Laplacian loss [Bojanowski et al.,
2017] with three levels, and λi are hyperparameters
for controlling the reconstruction quality at each level.
More precisely, we set λi to non-zero values at the
beginning of the training, to enforce a target frame
reconstruction at each network level. Once each net-
work level is well initialized, we set λ4 to non-zero
and the other λ values to zero in order to only focus
on the last reconstruction step.

3 Training details

We use tensorflow to implement our method and
Adam to optimize the model with β1 = 0.9 and β2 =
0.999. The overall training schedule of our method
is divided in two steps: first finetuning PWC-Net and
then training the whole network.

The finetuning of PWC-Net aims at optimizing its
weights for the synthesis task. In this step, we set
the batch size to 20, the patch size to 160×160 and
the learning rate to 10−4 to finetune PWC-Net for 20
epochs. We found that 20 epochs of finetuning can
already correct most of deformations and blurriness.
More epochs will prolong the overall schedule while
bringing limited improvement. We found that this
finetuning procedure is helpful to the global schedule,
since the following training procedure will be much
longer, and may suffer from performance oscillation
or even collapse without a finetuned flow estimator.

The training of the whole network is made in two
steps. We first fix the weights in PWC-Net and update
the other variables, with a batch size of 20, a patch
size of 160×160, a learning rate of 10−4 and λ1...λ4=
{0.1, 0.2, 0.4, 0.8} for 50 epochs. This step guides
the ConvBlock1-4 layers to learn residues for correct-
ing details in a coarse to fine manner. In the sec-
ond step, we end-to-end train the network and update
all variables, with a batch size of 16, a patch size of
160×160, a learning rate of 10−5 and λ4 = 1 for 40
epochs. λ1, λ2, λ3 are set to 0 to make the optimiza-
tion focus on the final synthesized view. The training
of our pipeline has been conducted on a Nvidia Tesla
V100 GPU card with 32GB GRAM, and took about 6
days to converge.

4 Experimental results

We have carried out experiments on several
datasets and measured the PSNR and SSIM of the in-
terpolated frames in comparison with state-of-the-art
methods.

4.1 Datasets

We used the following datasets:

• Training dataset. Both finetuning of PWC-Net
and training of the network have been conducted
using the Vimeo90K training set [Xue et al.,
2019], which contains 51,312 frame triplets with
resolution 256×448. We use the first and the last
frames as inputs and the intermediate frame as
ground truth.



Figure 4: Visual comparison of synthesized frames for different methods. From top to bottom, they are frames interpolated
using SuperSloMo [Jiang et al., 2018], SepConv [Niklaus et al., 2017b], MEMC [Bao et al., 2019b], FeFlow [Gui et al., 2020],
SMSP [Niklaus and Liu, 2020], Our method. The last row shows ground truth frames.

• Test datasets. We have used two test sets to as-
sess the quality of the synthesized frames: 1) the
Vimeo90K testset which has 3,782 frame triplets
with resolution 256×448; 2) the Adobe240fps
dataset is a dataset captured by a handheld cam-
era. We have extracted 777 frame triplets and in-

terpolated the intermediate frame during testing.

4.2 Experimental set up

We compare the proposed video frame interpola-
tion method with the most representative and recent



Methods Vimeo90K Adobe240fps
PSNR SSIM PSNR SSIM

SuperSloMo [Jiang et al., 2018] 30.92 0.9320 28.44 0.8966
SepConv [Niklaus et al., 2017b] 33.80 0.9555 31.16 0.9225

MEMC [Bao et al., 2019b] 34.43 0.9625 31.54 0.9269
FeFlow [Gui et al., 2020] 35.09 0.9629 31.50 0.9248

SMSP [Niklaus and Liu, 2020] 35.49 0.9671 31.62 0.9269
Ours 35.86 0.9689 31.80 0.9286

Table 2: Quantitative results (PSNR&SSIM) for the interpolated frames (averaged over 3782 and 777 frames).

methods: SuperSloMo [Jiang et al., 2018], SepConv
[Niklaus et al., 2017b], MEMC [Bao et al., 2019b],
FeFlow [Gui et al., 2020] and SMSP [Niklaus and
Liu, 2020]. Among them, SuperSloMo infers the op-
tical flow in the target instant to backward project the
input frames and employs soft visibility maps to han-
dle occlusions. SepConv formulates the frame inter-
polation problem as a local separable convolution us-
ing 1D kernels. Target frames are synthesized with-
out involving any optical flow. MEMC predicts both
optical flows and convolution kernels respectively for
global motion estimation and local motion compen-
sation in its synthesis process. FeFlow pioneers the
flows of feature maps instead of images to retrieve an
intermediate frame. SMSP builds a two-stage syn-
thesis pipeline by using an off-the-shelf PWC-Net for
flow prediction, and a GridNet [Fourure et al., 2017]
for frame synthesis, which is in the same vein as ours.

For a fair comparison, we use the official authors’
implementations for the methods SepConv [Niklaus
et al., 2017b], MEMC [Bao et al., 2019b] and Fe-
Flow [Gui et al., 2020]. We use a third-party code and
a pre-trained model for the SuperSloMo [Jiang et al.,
2018] method. For the SMSP method [Niklaus and
Liu, 2020], the authors only provide the implementa-
tion of their FW operation. The rest of the network
implementation and the trained models are not avail-
able. Therefore, we re-implemented and trained their
network architecture by following the instructions in
the paper. Since MEMC, FeFlow and SMSP are al-
ready trained on Vimeo90K dataset and SuperSloMo
is trained on Adobe240fps datasets, we use the default
parameter settings recommended by the authors in our
experiments, e.g. we use kernel size 4× 4 in adaptive
warping layer of MEMC, 16 groups of attention maps
in FeFlow etc.

4.3 Interpolation results

The performances of all tested methods are shown
in Table 2. We can observe that our method outper-
forms the best referenced methods by a margin of
about 0.2-0.3dB. This gain of PSNR is not trivial, as

we can notice that the difference in terms of PSNR
between the reference methods is sometimes less than
0.1dB.

Besides the quantitative evaluation in terms of
PSNR and SSIM, Fig 4 shows synthesized views us-
ing different methods. We zoomed regions contain-
ing subtle details in each image for comparison. We
can notice that our method better reconstructs details
when compared with other methods. For details like
the hair in the first scene and the car in the second
scene, where other methods suffer from a deforma-
tion or blurriness, our pipeline yields more plausible
results.

Another advantage of our method is that it can
up-convert videos to an arbitrary frame rate, since
the target instant t can be any value between 0
and 1. Methods such as SepConv and FeFlow can
only interpolate frames at t = 0.5, which means
that, to interpolate by a factor of N = 2k (k >
1), they must recursively perform k interpolations.
Interpolation errors will gradually augment during
this recursive synthesis process. We have 8X up-
converted video frame rate using different methods,
and the corresponding interpolated videos can be
found in our project homepage: http://clim.inria.fr/
research/VISAPP2022/index.html, where high frame
rate videos obtained using our pipeline have less arti-
facts and deformations than others.

Please note that, like most of the frame synthesis
methods, our method is based on linear-motion as-
sumption, all motions are supposed to have uniform
velocities during frame warping process. Inferring
both velocity and acceleration of motion using only
two frames is a very ill-posed problem, it is more in-
vestigated in a multi-frame [Bao et al., 2018, Reda
et al., 2019, Xu et al., 2019] context.

4.4 Ablation study

4.4.1 Forward warping method

Although both our method and SMSP are built
on PWC-Net, the rest of the network has a different

http://clim.inria.fr/research/VISAPP2022/index.html
http://clim.inria.fr/research/VISAPP2022/index.html


Types wo FT FT(SMSP FW) FT(our FW)
PSNR 31.26 33.38 33.81

Table 3: Quantitative evaluation of different finetuning
strategies on Vimeo90K testset. The obtained PSNR val-
ues are averaged over 3782 frames.

design. In SMSP, the authors employ a neural net-
work that takes brightness errors e0, e1 in Eq.3 and
Eq.4 to learn maps of importance for handling pixel
overlaps, this network increases the total parameter
number but brings little improvement. While we nor-
malize two brightness errors as maps of importance,
which is likewise effective in handling pixel overlaps
but without an increasing parameter number.

Fig. 5 shows the warped images obtained when us-
ing the FW step proposed in SMSP [Niklaus and Liu,
2020]. Although the quality of the two warping meth-
ods looks similar, the proposed method is very simple,
as it does not use extra network as in [Niklaus and
Liu, 2020]. We have also quantitatively evaluated the
performance when using different FW strategies. Ta-
ble 3 shows averaged PSNR over 3782 frames. More
specially, we use optical flows to warp the first and
the third frames to the intermediate instant, and com-
pare it with ground truth frame. In this process, all
disoccluded pixels are excluded. The employed op-
tical flows are estimated without finetuning or with
finetuning, using FW proposed in [Niklaus and Liu,
2020], or finetuned using our proposed FW. Our pro-
posed simple FW step makes the end-to-end fine tun-
ing of all the network components of the architecture
easier, leading to a better quality for the final interpo-
lated frames.

(a) Warped image us-
ing FW proposed in
[Niklaus and Liu, 2020]

(b) Warped image using
our proposed FW

Figure 5: Visualization of Ĩ0→t using (a) FW proposed in
[Niklaus and Liu, 2020] and (b) Our FW.

4.4.2 Refinement structure and parameters

Compared with the complex GridNet model of
[Fourure et al., 2017], our progressive refinement
block is simple but efficient, it focuses more on the
details of the retrieved frames. Fine details are better

Types base 1-layer 2-layer full model
PSNR 35.05 35.19 35.40 35.86

Table 4: Quantitative evaluation of different levels of refine-
ment. The obtained PSNR values are averaged over 3782
frames of the Vimeo90K testset.

reconstructed with the help of learned residues. Using
fewer parameters (1.9M vs 3.0M), our method finally
achieves better performance (in Table 2) and visual
quality (in Fig.4) than SMSP.

To investigate the impact of using multi-levels re-
finement, we carry out experiments either using only
the base layer (with the warped input frames only),
or using one, two, or three levels of refinement of
the warped images features. Table 4 shows averaged
PSNR values when adopting different levels of refine-
ment. The full model using three layers of refinement
gives the best performance.

5 Conclusion

In this work, we proposed a flow-based network
architecture that uses deep features to progressively
refine a temporally interpolated frame in a context of
video frame rate up-conversion. We also proposed
a novel finetuning procedure that optimizes flow es-
timation networks for the interpolation task without
using any ground truth optical flows. A comprehen-
sive qualitative and quantitative assessment on differ-
ent video frame interpolation datasets shows that our
method can generate high quality interpolated frames
with realistic details.
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