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1.  Introduction
Planetesimals were the first generation of 1- to 500 km radius planetary bodies to form in the solar system 
and are key intermediate stages in planet formation. Due to heating by the decay of the short-lived radioac-
tive isotope 26Al (Hevey & Sanders, 2006), percolation of Fe-Ni melts variably enriched in sulfur and other 
light elements initiated differentiation and the formation of metallic cores in a number of planetesimals 
(Terasaki et  al.,  2008). Some of these bodies, however, appear to have been only partially differentiated 
(i.e., durably retaining both chondritic and achondritic materials; Elkins-Tanton et al., 2011; Weiss & El-
kins-Tanton, 2013). The internal structures and modes of formation of partially differentiated planetesimals 
are incompletely understood despite longstanding interest (Fish et al., 1960; Lovering, 1962; Urey, 1959; 
Wasserburg et al., 1968). Melting experiments and simulations show that metal percolation is efficient once 
the volume melt fraction in a metal-silicate mixture exceeds ∼2% (Ghanbarzadeh et  al.,  2017; Terasaki 
et al., 2008). Partially differentiated bodies could therefore have formed a differentiated interior while pre-
serving or accumulating a chondritic crust (Elkins-Tanton et al., 2011; Neumann et al., 2018; Sahijpal & 

Abstract  The existence of numerous iron meteorite groups indicates that some planetesimals 
underwent melting that led to metal-silicate segregation, sometimes producing metallic cores. Meteorite 
paleomagnetic records suggest that crystallization of these cores generated dynamo magnetic fields. Here 
we describe the magnetic history of the partially differentiated IIE iron meteorite parent body. This is 
the first planetesimal for which we have a time-resolved paleomagnetic record constrained by 40Ar/39Ar 
chronometry spanning several tens of million years (Ma). We find that the core of the IIE parent body 
generated a dynamo, likely powered by core crystallization, starting before 78 ± 13 Ma after solar system 
formation and lasting at least 80 Ma. Such extended core crystallization suggests that the core composed 
a substantial fraction of the body (  13%–19% core-to-body radius ratio depending on the body’s radius), 
indicating efficient core formation within some partially differentiated planetesimals.

Plain Language Summary  Planetesimals were the first planetary bodies that formed in 
the solar system and meteorites are fragments of these planetesimals. Within the first million years of 
the solar system, some planetesimals melted and formed metallic cores overlain by a rocky mantles. The 
loss of heat and release of buoyant fluids generated through the crystallization of these cores could have 
caused the residual liquid to churn, generating currents that created a magnetic field by the dynamo 
effect. Some meteorites contain minerals that align their magnetic moments with such magnetic fields, 
analogous to a compass needle in Earth’s field. Even though the ancient field disappeared billions of years 
ago, this alignment can still be retained by meteorites today. Because core solidification and generation 
of magnetic fields are intrinsically related, the magnetic record of meteorites is a powerful proxy for 
investigating the solidification and thermal history of planetesimals. Here, we present a time-resolved 
record captured by three meteorites from the same parent planetesimal of a magnetic field powered by the 
solidification of their parent planetesimal’s core. It is the most extended record of such fields for which 
we have absolute ages and supports the hypothesis that some planetesimals efficiently melted and formed 
significantly large metallic cores.
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Gupta, 2011; Weiss & Elkins-Tanton, 2013). Alternatively, they could have consisted of patchworks of local-
ized differentiation products resulting from late and incomplete melting (Hunt et al., 2018).

A discriminating factor between a differentiated interior overlain by a chondritic crust and a patchwork of lo-
calized differentiation products is the existence of a sizable metallic core. One approach to constrain the pres-
ence and size of a core is to search for evidence of its putative magnetic field recorded as remanent magnetiza-
tion in mantle material. For instance, meteorite remanent magnetization has been used to argue that a number 
of parent bodies generated magnetic fields through the dynamo process (i.e., due to advection of molten metal, 
Weiss et al., 2010). Purely thermally-driven advection can occur as long as the heat flux across the core-mantle 
boundary (CMB) remains larger than the adiabatic heat flux within the core. On planetesimals, this mecha-
nism could have persisted up to ∼20 Ma after CAI-formation (Bryson et al., 2019b; Elkins-Tanton et al., 2011). 
Dynamo activity could also have been powered by core solidification, potentially either by the release of light 
elements into the remaining liquid if solidification occurred outwardly, or by “iron snow” and/or the delami-
nation of a solid layer forming at the CMB if solidification occurred inwardly (Chabot and Haack, 2006; Nim-
mo, 2009; Neufeld et al., 2019; Rückriemen et al., 2015; Williams, 2009). The duration of such compositional 
dynamos ultimately depends on the size of the core and direction of solidification. As such, the core size can 
potentially be constrained by measuring time-resolved paleomagnetic records using multiple meteorites from 
the same parent body, which would place bounds on the duration of the magnetic activity.

Compositionally-driven dynamos have been proposed to explain the natural remanent magnetization (NRM) 
of five main-group pallasites, one L/LL chondrite, one IVA iron, one H chondrite and two silicate-bearing 
IIE iron meteorites (Bryson et al., 2019, 2015, 2017; Maurel et al., 2020; Nichols et al., 2016; Nichols, 2017; 
Shah et al., 2017; Tarduno et al., 2012). Timing for compositional dynamo activity has been proposed for the 
main-group pallasite parent body (Bryson et al., 2015; Nichols et al., 2016; Tarduno et al., 2012). However, 
the ages for this record were estimated by combining the meteorites’ measured cooling rates at 500°C with 
numerical simulations of conductive planetesimal cooling rather than by radiometric dating. It is therefore 
dependent on model parameters such as the size of the body, its thermal conductivity as a function of depth, 
and the assumed cooling mechanism (convective or conductive).

Based on a variety of petrographic, geochemical and magnetic data, the parent body of the silicate-bearing 
IIE iron meteorites has been described as a partially differentiated planetesimal, composed of chondritic and 
achondritic material (Kruijer & Kleine, 2019; Maurel et al., 2020; Ruzicka, 2014). A number of internal struc-
tures have been proposed for this parent body: a partially molten body with an incipient core catastrophically 
disrupted to form small IIE secondary bodies (Ruzicka, 2014); a body with a differentiated interior overlain by 
a chondritic layer impacted to form one or several IIE meteorite reservoirs (Maurel et al., 2020); or a body that 
experienced localized differentiation due to late and incomplete melting (Kruijer & Kleine, 2019).

Here, we build upon a recent paleomagnetic study of the IIE irons Techado and Colomera (Maurel 
et  al.,  2020) and measure the NRM carried by the IIE iron Miles. We combine the 40Ar/39Ar age of the 
three meteorites with their magnetic records to constrain potential existence of a sizable core, the temporal 
evolution of its dynamo, and the onset and duration of its crystallization. We estimate a minimum core-
to-body ratio for the IIE parent body and use this to constrain the possible internal structures of partially 
differentiated bodies.

2.  Formation and Magnetic Mineralogy of IIE Iron Meteorites
In the scenarios proposed to explain the nature of the IIE parent body (Section 1), the IIE irons form within 
the first few tens of Ma after CAI formation through one or several impacts that mixed silicates and metal 
together without catastrophically disrupting (Kruijer & Kleine, 2019; Maurel et al., 2020; Ruzicka, 2014). 
We note, however, that the idea that the body was disrupted and reaccreted during such impacts cannot be 
ruled out. Buoyancy-driven segregation of the molten metal-silicate mixture would have been prevented 
by exposure to near-surface temperatures and rapid cooling (>2.5°C h−1 at 850–1000°C as indicated by the 
presence of silicate glass; Ruzicka, 2014). Following the impact, the source regions for the meteorites would 
have been buried under tens of km of material (Maurel et al., 2020) to explain the presence of metallograph-
ic microstructures that form at slow cooling rates (<10,000°C Ma−1 below ∼600°C, Ruzicka, 2014).
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Slow cooling enabled the formation of cloudy zones (CZs), nanoscale intergrowths of Ni-rich ferromagnetic 
islands embedded in a Ni-poor paramagnetic matrix (Blukis et al., 2017; Yang et al., 1996). CZs form by spinodal 
decomposition of taenite with a composition ranging from ∼41–30 wt.% Ni and are separated from the ∼5 wt.% 
Ni kamacite by a µm-thick rim with ≳48 wt.% Ni (Figure S1). The rim and adjacent CZ islands are initially 
composed of taenite, which upon slow cooling (≲5,000°C Ma−1) through 320°C undergoes crystallographic or-
dering and forms tetrataenite. The resulting increase in magnetocrystalline anisotropy causes the magnetic state 
of CZ islands to change from that of a vortex to two domains (Einsle et al., 2018). The tetrataenite rim, on the 
other hand, remains in the magnetic multidomain state due to its larger size. Recent micromagnetic simulations 
suggest that the combination of an external magnetic field and magnetostatic interactions between islands sub-
sequently de-nucleates the domain wall in these islands, forming an ensemble of single-domain islands with 
average magnetization biased toward the external field direction (Einsle et al., 2018; Yeem and Harrison, 2019). 
At this point, any prior NRM that may have been acquired by the parent taenite phase in CZ islands is replaced by 
the NRM of tetrataenite without apparent inheritance (Einsle et al., 2018). Single-domain tetrataenite CZ islands, 
with a magnetic coercivity >1 T (Uehara et al., 2011), can preserve their NRM over the age of the solar system.

It was previously shown that Techado and Colomera cooled through ∼350°C at 4.6 ± 1.9 and 2.5 ± 1.4°C Ma−1, 
respectively (Maurel et al., 2020). By comparing a cloudy zone formation model (Maurel et al., 2019) to the 
average island size and Ni content in a given region of the CZ (Text S1 and S2), we estimate that Miles 
cooled through this temperature at 3.8 ± 2.6°C Ma−1. At these cooling rates, the Ar closure temperature of 
0.1–1 mm feldspar grains, the dominant Ar-bearing grains in Miles, is 330 ± 70°C (Cassata et al., 2011). This 
temperature range overlaps the tetrataenite formation temperature, indicating that the 40Ar/39Ar age of the 
meteorites can be used to approximately date when their CZs were magnetized.

The fact that Techado’s and Colomera’s CZs recorded magnetic activity around their 40Ar/39Ar ages of 78 ± 13 
and 97 ± 10 Ma after CAI-formation (Bogard et al., 2000) was interpreted as evidence that the IIE parent body 
generated a compositionally driven dynamo (Maurel et al., 2020). The late timing of this activity rules out early 
field sources such as the solar nebula (Wang et al., 2017) and a thermally driven dynamo (Bryson et al., 2019b; 
Elkins-Tanton et al., 2011]), while the long duration over which tetrataenite acquired its magnetization rules 
out transient or quickly time-varying sources such as impact-generated plasma fields (Hood & Artemie-
va, 2008), core mechanical stirring by impacts (Le Bars et al., 2011), and the solar wind (Oran et al., 2018). It 
also implies that the field must have been directionally stable over the period of magnetization acquisition. A 
crustal field, resulting from the magnetization of an H-chondrite-like crust acquired during earlier magnetic 
activity of the parent body, would also have been orders of magnitude too weak to explain the results obtained 
(Maurel et al., 2020). With an 40Ar/39Ar age of 159 ± 9 Ma after CAI-formation (Bogard et al., 2000), As such, 
Miles has the potential to extend the known paleomagnetic record for the IIE body by > 60 Ma.

3.  Experimental Method
Our measurements followed the experimental method of Bryson et al. (2019) and Maurel et al. (2020). A 
3 × 6 × 1 mm sample of Miles from the Harvard Museum of Natural History collection was polished man-
ually down to 0.3 µm. We selected two areas located ∼1 mm apart, encompassing kamacite, tetrataenite rim 
and CZ (hereafter called K–T interfaces; Figures S2 and S3). To measure the three components of remanent 
magnetization at the submicrometer scale, we used three-axis X-ray photoemission electron microscopy 
(XPEEM) performed at beamline 11.0.1.1 at the Advanced Light Source (Berkeley, CA). The original exper-
imental protocol of this technique only yielded one component of magnetization (Bryson et al., 2015; 2017; 
Nichols et al., 2016; 2018), but it was recently improved to enable all three components to be recovered, pro-
viding more accurate relative paleodirections and paleointensities (Bryson et al., 2019; Maurel et al., 2020). 
The sample was first Ar-sputtered for a total of 15 h to remove surface damage caused by polishing. XPEEM 
images were then collected with a 10-µm field-of-view along 260 and 290 µm of K–T interface 1 and 2, re-
spectively (Figure S3). At each location, four images were acquired with alternating right- and left-circularly 
polarized X-rays, first tuned to the Fe L3 absorption edge (707.4 eV; Figure 1a) and then off-edge (702 eV). 
The operation was repeated four times to average identical images and minimize the effect of high-frequen-
cy noise. After data were collected on both K–T interfaces, the sample was rotated ∼120° around its surface 
normal twice (Figures 1b and 1c), with the same measurement sequence repeated each time.
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For each on-edge image, the following pixel-by-pixel operation was first conducted to remove both the 
background intensity caused by nonresonant X-ray absorption from atoms other than Fe and the effect of 
surface topography from the signal:

    
   corr on edge off edge off edge/I I I I� (1)

where 
on–edgeI  and 

off–edgeI  are the pixel intensities of the corresponding on-edge and off-edge images for 
each polarization; + and – refer to the right- and left-circular beam polarization directions. The X-ray flux 
absorbed by the sample depends on the angle between the local surface magnetization and the helicity 
of the X-ray. This introduces a contrast between images collected with right- and left-circularly polarized 
X-rays called X-ray magnetic circular dichroism (XMCD; Stöhr et al., 1993). XMCD contrast maps, whose 
intensity (IXMCD) depends on the direction of the surface magnetization relative to the X-ray beam direction, 
are calculated from corrected XPEEM images ( 

corrI ):

        XMCD corr corr corr corr/I I I I I� (2)

The six possible magnetization directions of tetrataenite, oriented along the <100> directions of the parent 
taenite phase, correspond to six quantized values of IXMCD (three positive/negative values corresponding to 
the positive/negative vector projections onto the X-ray beam; Figures 1d–1f). These six values are visible 
within the homogenous µm-sized domains in the tetrataenite rim. The CZ islands, which have the same 
crystallographic orientation as the rim, also adopt one of these six magnetization directions during tetratae-
nite formation. However, because Miles’ CZ islands (≲110-nm in size; Text S1) are not readily distinguish-
able in XMCD images due to insufficient spatial resolution, we used the rim to determine the six possible 
XMCD values of the six possible magnetization directions for each image and each sample rotation.
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Figure 1.  (a–c) XPEEM images of one location along K–T interface 1 (Figure S2). These images were obtained with right-circularly polarized X-rays at 707.2 eV 
(Fe L3 absorption edge) for three different in-plane rotations of ∼120° of the sample. The gray scale quantifies the relative flux of electron captured in the optics. 
The in-plane azimuth of the beam is shown; it arrives at 30° out of the plane of the image (d–f) Corresponding XMCD contrast maps. A typical region-of-
interest in the CZ is shown by a rectangle on panel (d). The tetrataenite rim is marked by the black lines. (g) Equal area projection showing the average relative 
direction of the paleofield estimated from the two K–T interfaces analyzed in Miles. Ellipses show the 95% confidence intervals accounting for the measurement 
uncertainty and counting statistical uncertainty. The reference frame refers to that of Figure S2. CZ, Cloudy zone; XMCD, X-ray magnetic circular dichroism; 
XPEEM, X-ray photoemission electron microscopy.
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To estimate the three components of the paleofield from the XMCD maps acquired along each K–T inter-
face, we combined (1) the six XMCD values measured from the tetrataenite rim and (2) the average XMCD 
value within each 0.5×9 µm region-of-interest in the CZ (Figure 1d), under the assumption that the islands’ 
magnetization directions follow a Maxwell-Boltzmann distribution (Bryson et al., 2014):

 
 
















6
1 XMCD,

XMCD,CZ 6
1

exp

exp

i j
i i ij

i
i i

I B
I

B
� (3)

where j = R1:R3 denotes the sample rotations with respect to the beam, i = 1:6 denote the six possible mag-
netization directions (±x, ± y and ± z), Bi are the components of the ancient external field in these directions, 

XMCD,
j

iI  are the XMCD intensities for each direction collected in the tetrataenite rim for one sample rotation 
and XMCD,CZ

jI  is the XMCD intensity of the region of interest in the CZ. We also have α = MsV/kBT, where Ms is 
the saturation magnetization of tetrataenite (1300 kA m−1), kB is the Boltzmann constant and V is the volume 
of the islands at T = 320°C, the tetrataenite formation temperature. Using a numerical model of CZ formation, 
and the local Ni content of the CZ regions of interest (Text S1), we estimate that islands were ∼78% of their 
present-day size at 320 °C (Text S2; Maurel et al., 2019). The Maxwell-Boltzmann assumption does not account 
for the magnetostatic interactions that exist between islands (Einsle et al., 2018) and introduces an uncertainty 
in the paleointensity estimates (see Section 4). With the XMCD intensities collected for the three sample rota-
tions, Equation 3 becomes a system of three equations that can be solved for Bx, By, Bz.

4.  Results
Solving Equation 3, we calculated the paleodirections for each region-of-interest selected in the two CZs. 
Each K–T interfaces was analyzed using electron backscattered diffraction to mutually orient the paleodi-
rections in a known reference frame (Text S3; Figure S5). We found that both sets of paleodirections are 
biased (Text S4a), indicating that each CZ likely formed in the presence of a paleo field with substantial 
intensity. This result is supported by Watson’s test for randomness (Watson, 1956) showing that the pal-
eodirections are not drawn from a uniform distribution (Text S4b). Using the Vw statistic (Watson, 1983), 
we also cannot reject at 95% confidence the hypothesis that both K–T interfaces exhibit a common average 
paleodirection (Figure  1g; Text  S4b). These observations indicate that Miles cooled in the presence of a 
magnetic field sufficiently strong to impart a resolvable bias in CZ island magnetization directions, as previ-
ously interpreted for Techado and Colomera (Maurel et al., 2020). Using Equation 3, we also calculated the 
magnitude of the vector (Bx, By, Bz) and estimated a paleointensity of 32 ± 15 µT and 34 ± 11 µT (2 s. e.) for 
K–T interfaces 1 and 2, respectively.

The uncertainties on the relative paleodirections (Figure 1g) and paleointensities were estimated consid-
ering the measurement noise (due to time-dependent drifts of the X-ray beam and the varying resolution 
of the instrument’s electron optics) and the counting statistical uncertainties associated with the limited 
number of islands included in each XPEEM data set (Text S4c). Two additional sources of uncertainty were 
also considered.

First, the spatial arrangement of single domain islands in the CZ causes magnetostatic interactions (Blukis 
et al., 2020). These interactions are intrinsic to one CZ and do not influence other spatially distinct CZs. Giv-
en that we recover similar paleodirections from both CZs, we estimate that these interactions have a minor 
effect on paleodirection. However, like for most closely packed configuration of single domain grains, inter-
actions will typically yield an underestimation of the paleointensity (Dunlop & Özdemir, 1997), possibly by 
up to an order of magnitude (Harrison & Lascu, 2014).

Second, the IIE irons most likely cooled in a metallic reservoir, where dominant low-coercivity kamac-
ite grains could add an induced component to the field experienced by the CZs. The induced field would 
likely be spatially homogenous across the two CZs analyzed and therefore not affect the relative paleodirec-
tion uncertainty; it could, however, yield an overestimation of the paleointensity by a factor of ∼3 (Maurel 
et  al.,  2020). The field produced by another metallic reservoir that acquired a remanent magnetization 
earlier in time would be unlikely to magnetize the three IIE irons given the decay of remanent field in-
tensity with distance. We note that the multidomain kamacite surrounding the CZs could acquire a ther-
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moremanent magnetization at ∼780°C. We do not know whether the remanent field of the kamacite could 
be responsible for the magnetization of the CZ, and therefore cannot rule out this possibility. However, it 
would not invalidate the fact that the IIE parent body generated a dynamo field but rather shift backward 
the time of the record.

Accounting for the quantifiable uncertainties, the paleointensity recorded by Miles could range from 10 
to 300 µT, indistinguishable from paleointensity ranges estimated for Techado (10–360 µT) and Colomera 
(5–150 µT) (Maurel et al., 2020). As for Techado and Colomera, the relatively high paleointensity, young age 
and long duration of CZ NRM acquisition indicate that Miles also most likely recorded a dynamo-generated 
magnetic field powered by core crystallization on its parent body. The magnetic records of the three mete-
orites indicate that the dynamo was active on the IIE parent body for >80 Ma, initiating before 78 ± 13 and 
lasting until at least 159 ± 9 Ma after CAI-formation. This is the most extended radiometrically dated record 
of a planetesimal’s dynamo activity to date (Figure 2).

5.  Discussion
5.1.  Evidence for the Late Solidification of Some Planetesimals

Our results indicate that the crystallization of the IIE parent body’s core lasted at least until Miles re-
corded its NRM, which implies that the IIE parent planetesimal contained a partially liquid, advecting 
metallic core until > 159 ± 9 Ma after CAI-formation. In comparison, existing 108Pd/109Ag model ages 
(which date when iron meteorites cooled through 700–500  °C; e.g., Matthes et  al., 2020) suggest that 
some meteorites from the IIAB, IID and IIIAB iron groups crystallized by 11 Ma after CAI-formation 
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Figure 2.  Summary of the field intensities estimated from meteorite paleomagnetic measurements for different 
parent bodies as a function of time after CAI-formation. All records shown have been attributed to dynamo activity. 
Before ∼20 Ma after CAI-formation, the dynamo could be powered by thermal convection for parent bodies ≳ 100-km 
radius [Elkins-Tanton et al., 2011; Bryson et al., 2019b]. Later than 50 Ma after CAI-formation, it is most likely that 
the dynamo activity was driven by core crystallization [Bryson et al., 2019b], although the boundaries of this era are 
uncertain. Planetesimals that underwent early mantle-stripping events could have generated a compositional dynamo 
within the first 20 Ma after CAI formation (e.g., Neufeld et al., 2019). The oldest magnetic records for terrestrial planets 
are shown for reference: planetesimals powered the earliest planetary magnetic activity in the solar system. Left (right) 
arrows indicate upper (lower) limits. The timing of the pallasite records is based on conductive cooling simulations 
assuming a fully differentiated 200-km radius parent body and so is dependent on model parameters as indicated by 
the arrows. Data from (Biggin et al., 2015; Bryson et al., 2015, 2019; Carporzen et al., 2011; Garrick-Bethell et al., 2017; 
Gattacceca et al., 2016; Johnson et al., 2015; Maurel et al., 2020; Nichols et al., 2016; Nichols, 2017; Shah et al., 2017; 
Tarduno et al., 2010; Wang et al., 2017; Weiss et al., 2002; 2008).
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(Matthes et al., 2015; 2020). For the IIIAB irons, where the greatest number of samples have been ana-
lyzed (four meteorites), these ages were interpreted as evidence for early core excavation by collisions 
(Matthes et al., 2020). On the other hand, our results support recent numerical studies of planetesimal 
thermal evolution arguing for long-lived molten cores up to several hundred Ma after CAI formation in 
objects that largely retained their mantles (e.g., Bryson et al., 2019b). For example, Vesta’s core has been 
predicted to have remained partially liquid up to or beyond ∼200 Ma after CAI formation (Neumann 
et al., 2014). Importantly, these types of numerical studies are also able to reproduce short core solidifi-
cation timescales akin to that recovered from 108Pd/109Ag ages for parent bodies that experienced core-ex-
cavation events (Neufeld et al., 2019).

5.2.  Constraints on the Size of the IIE Parent Body

The fact that core crystallization on the IIE parent body lasted at least until 159 ± 9 Ma after CAI-forma-
tion can provide a lower limit on the size of the body. Bryson, Neufeld, and Nimmo (2019) used a one-di-
mensional approach to model the convective and conductive cooling of planetesimals with differentiated 
interiors and chondritic crusts. This two-stage accretion model varied the time of accretion between 0 
and 4.5 Ma after CAI-formation and the size of the simulated objects from 20 to 500-km radius; core-to-
body radius ratio ranged from 2% to 50% (upper limit imposed in the simulations), and the thickness of 
the unmelted layer from 0% to 94% of the body’s radius. As an upper limit on the end of core crystalli-
zation, this study reported the time when the core reached the FeS eutectic temperature (∼988°C; e.g., 
Buono & Walker, 2011) and the total latent heat of crystallization was extracted from the core. Among 
the aforementioned parameters (e.g., accretion time, final body radius, core-to-body ratio, and thickness 
of chondritic layer), the end of crystallization is controlled predominantly by the body radius (Bryson 
et  al.,  2019b). These simulations do not account for impact event(s) akin to the IIE-forming event(s). 
However, given that these event(s) most likely occurred tens of Ma before the epoch investigated here, 
we assume that temperatures would have re-equilibrated to produce a regular temperature gradient with 
depth throughout the body.

According to this model, the IIE parent body would have been ≳ 220-km in radius for its core to have 
entirely solidified later than 159 ± 9 Ma after CAI-formation (Figure 3). Moreover, this model suggests 
that Techado, Colomera and Miles cooled at depths ranging from ∼30 and ∼80 km (Text S5). We ex-
plored whether regolith, with a thermal diffusivity two orders of magnitude smaller than chondritic 
material (Haack et al., 1990), could delay appreciably the end of crystallization. However, a regolith 
layer akin to that of the asteroid Vesta (on average ∼1 km; Denevi et al., 2016) added after accretion 
only delays the end time of crystallization by 0.75 Ma (Text S6), which is negligible given the other 
uncertainties of the model, such as the discrete accretion scenario and the treatment of the CMB heat 
flux (Bryson et al., 2019b).

The fact that the core must have started to crystallize prior to 78 ± 13 Ma after CAI formation does not 
readily translate into an upper size limit due to the uncertainty in the concentration and action of sulfur in 
planetesimal cores. Nonetheless, using core thermal profiles simulated with the model of Bryson, Neufeld, 
and Nimmo (2019), we can roughly estimate that with a core S content of ≲ 26 wt.%, a planetesimal as large 
as 500 km in radius could have reached FeS solidus earlier than Techado’s 40Ar/39Ar age (Text S7). This is 
in agreement with S contents of ≲ 20 wt.% estimated from compositional measurements of iron meteorites 
(Goldstein et al., 2009). It is worth noting that the collisional lifetime of such large planetesimal exceeds the 
age of the solar system (Bottke et al., 2005). Unless it was at some point ejected from the solar system, the 
IIE parent body is not likely to have been as large as 500 km in radius.

5.3.  Internal Structure of the IIE Parent Body

To constrain the core-to-body radius ratio for the IIE parent body, we compared our data to the simula-
tions conducted for different values of this ratio by Bryson, Neufeld, and Nimmo (2019). For a planetes-
imal radius <250 km, 90% of simulations have the core of the IIE parent body being ≳19% of the body’s 
total radius (>0.7 vol.%) for complete core crystallization to have occurred later than 159 ± 9 Ma after 
CAI-formation (Figure 3). This decreases to ≳14 and ≳ 13% if we include planetesimals up to 350 and 
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450 km in radius, respectively. The lower limits on the core-to-body radius ratios are consistently small-
er than the core sizes estimated from the metal content of ordinary chondrites (∼43%, ∼34% and ∼27% 
radius ration for H, L and LL chondrites, respectively; Figure 3) calculated assuming complete differen-
tiation (Krot et al., 2014). The presence of an H-chondrite-like silicate crust–based on the isotopic and 
compositional affinity between IIE silicates and H chondrites—restricts the core-to-body radius ratio to 
<43%. These observations are consistent with the core-to-body radius ratio of Vesta (∼41%–43%), the only 
core size inferred directly from both bulk density measurements and geochemical constraints (Russell 
et al., 2012).

Our magnetic data provide further evidence that core formation within partially differentiated planetesi-
mals could have been an efficient process. The existence of a substantial core requires significant melting of 
the IIE parent body. This matches well with the proposed scenario whereby partially differentiated bodies 
formed by protracted or incremental accretion of chondritic material onto a differentiated planetesimal 
seed (Sahijpal and Gupta, 2011). It is also consistent with a scenario similar to that proposed for the aca-
pulcoite-lodranite parent body, where a thin chondritic crust is preserved despite the formation of a signif-
icant metallic core after a short period of accretion (Neumann et al., 2018). On the other hand, although 
our results do not exclude IIE metal having formed by partial melting in a chondritic crust (Kruijer & 
Kleine, 2019), they still require that the deep interior of the planetesimal was differentiated. This contrasts 
with the scenario of localized melting without formation of a substantial core proposed for some of the IAB 
iron meteorite parent bodies (Hunt et al., 2018; Worsham et al., 2017). In agreement with this scenario, 
XPEEM data collected on three IAB irons (main-group, sLL and sLH) show that their parent bodies most 
likely did not generate a magnetic field at the time of tetrataenite formation (Bryson et al., 2014; Nichols 
et al., 2018). This supports the idea that multiple mechanisms may have led to the formation of partially 
differentiated planetesimals.
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Figure 3.  Time of complete core solidification as a function of core-to-body radius ratio for partially to fully 
differentiated planetesimals with final radii between 200 and 450 km. Points represent the outcomes of cooling 
models conducted by Bryson, Neufeld, and Nimmo (2019) for a wide range of accretion times and thickness of added 
chondritic material. The color bar indicates the final radius of the planetesimal. The time of solidification is an absolute 
upper limit, as it represents the time when the planetesimal reached the FeS eutectic temperature and all the latent 
heat of crystallization was extracted from the core. The horizontal black line shows the youngest time for complete 
solidification of the IIE parent body core recovered from the magnetic record of Miles. The three green lines mark the 
90% contours for parent bodies with radius smaller than 250, 350 and 450 km. If we only consider parent bodies up to 
250 km in radius, 90% of the simulations that produce the end of core solidification after 160 Ma after CAI formation 
have core-to-body radius ratios >19%. This minimum ratio becomes 14% and 13% when including bodies up to 350 and 
450 km in radius, respectively. The three gray vertical dashed lines show the core-to-body radius ratios calculated from 
the metal abundances of H, L and LL chondrites (Krot et al., 2014) under the assumption that all the metal enters the 
core if bodies made of these meteorites were to differentiate.
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6.  Conclusion
The silicate-bearing IIE iron meteorites likely formed through one or several impact events that created 
reservoirs of mixed metal and silicates on a partially differentiated planetesimal. The IIE irons Techado, 
Colomera and Miles cooled in a magnetic field of order of ∼5–360 µT between 78 ± 13 and 159 ± 9 Ma after 
CAI-formation, most likely generated by compositional dynamo activity on their parent body. This is the 
most extended radiometrically-dated record of dynamo activity on a planetesimal described to date. This 
implies that the crystallization of the IIE parent body’s core lasted >80 Ma and was ongoing 159 ± 9 Ma 
after CAI-formation. These observations indicate that this planetesimal likely was at least ∼220 km in ra-
dius and had a core-to-body radius ratio >13%-19% depending on its size. The fact that this planetesimal 
was partially differentiated restricts the core-to-body radius ratio to <43 %. Together, these findings require 
efficient metal-silicate segregation and significant melting of the interior of the IIE parent body, achieva-
ble with both a protracted or incremental accretion of cold material onto a differentiated planetesimal, or 
faster accretion with only partial melting. By comparison, it refutes the hypothesis that the IIE parent body 
was only composed of metal veins and pools without significant metal segregation and core formation. 
The determination of 40Ar/39Ar ages for unstudied IIE irons could potentially reveal meteorites older than 
4,489 Ma (i.e., than Techado), or up to a few hundred Ma younger than 4,408 Ma (i.e., than Miles). This 
could provide the opportunity to probe the onset or decay of this planetesimal’s dynamo activity.

Data Availability Statement
All data needed to evaluate the conclusions in the paper are present in the paper or the supporting informa-
tion. The raw XPEEM data collected for this work can be found on the Magnetics Information Consortium 
(MagIC) database at https://www.earthref.org/MagIC/16862 (DOI: 10.7288/V4/MAGIC/16862).
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