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Introduction

The theory of elasticity is well founded since the work of Cauchy and generally gives satisfactory descriptions of the displacement field u of a solid submitted to an external load f . Let us recall that the deformation of the solid is, in the linear formulation, measured by the strain tensor e(u) := (∇u + t ∇u)/2. The behavior of the solid is described by a stiffness tensor C. The elastic energy of the solid contained in a domain Ω is E e (u) := At equilibrium, the displacement field u e minimizes the total energy E e (u) -Ω f • u dx. The existence of a unique solution of this minimization problem is ensured if suitable boundary conditions are imposed. Here, in order to compare our results with the literature (see for instance Smyshlyaev and Cherednichenko (2000)), we assume that f and u are [-L, L] 3 -periodic function with vanishing mean value on any period Ω ( Ω u dx = 0). Hence u e is the unique [-L, L] 3 -periodic function in L 2 loc (R 3 , R 3 ) with vanishing mean value and which satisfies, in the sense of distributions on R 3 , the Euler-Lagrange equation div(C : e(u e )) + f = 0.

(1.1)

However Cauchy theory must sometimes be generalized. Indeed, when one focuses on small samples, scale effects are observed which cannot be explained by this theory (cf. [START_REF] Lam | Experiments and theory in strain gradient elasticity[END_REF]). Two main generalizations have been considered in order to encompass this difficulty.

• The first one, called "strain-gradient theory" consists in adding in the elastic energy a quadratic term depending on the gradient ∇e(u) of the strain tensor (see among many others : [START_REF] Mindlin | Effects of couple-stresses in linear elasticity[END_REF]; [START_REF] Mindlin | Second gradient of strain and surface-tension in linear elasticity[END_REF]; [START_REF] Germain | The method of virtual power in the mechanics of continuous media, i: Secondgradient theory[END_REF]; [START_REF] Casal | La théorie du second gradient et la capillarité[END_REF]). The equilibrium u s is the unique [-L, L] 3 -periodic function in L 2 loc (R 3 , R 3 ) with zero mean value and which satisfies, in the sense of distributions on R 3 , the Euler-Lagrange equation div -div(D . . . ∇∇u s ) + C : e(u s ) + f = 0.

(1.2)

• The second generalization (see [START_REF] Forest | Finite-deformation second-order micromorphic theory and its relations to strain and stress gradient models[END_REF]; [START_REF] Misra | Identification of a geometrically nonlinear micromorphic continuum via granular micromechanics[END_REF]; Forest (1999); [START_REF] Cosserat | Sur la théorie de l'élasticité. premier mémoire[END_REF]) consists in introducing a new kinematic descriptor φ and assuming that the elastic energy couples φ with ∇u and also depends on the gradient of φ, reading: The equilibrium displacement field u c and the associated field φ c are the unique [-L, L] 3 -periodic functions in L 2 loc (R 3 , R 3 ) and L 2 loc (R 3 , R 3×3 ) which satisfy Ω u c dx = 0 and, in the sense of distributions on R 3 ,

   div H : (∇u c -φ c ) + C : e(u c ) + f = 0, div(G . . . ∇φ c ) + H : (∇u c -φ c ) = 0.
Note that the new kinematic descriptor φ is a tensor field of order two. In the sequel, we refer to this second generalization as the "micromorphic model". A particular case of this energy is the "Cosserat model" in which φ is a skew-symmetric matrix coupled to the rotational of u (cf. [START_REF] Cosserat | Sur la théorie de l'élasticité. premier mémoire[END_REF]).

These two generalizations are strongly related (see [START_REF] Germain | The method of virtual power in continuum mechanics. part 2: Microstructure[END_REF]): some authors like considering E s as the limit of E c when G = D and H becomes very large while others consider E c as an approximation of E s more suitable for numerical simulations.

It is convenient to remark that all the aforementioned models are particular cases of a more general one which mix non-local and strain-gradient terms with an elastic energy E m (u) which is the infimum over φ:

E m (u) := inf φ Ω 1 2 ∇∇u . . . D . . . ∇∇u + 1 2 ∇φ . . . G . . . ∇φ + 1 2 (∇u -φ) : H : (∇u -φ) + 1 2 e(u) : C : e(u) dx. (1.4)
The corresponding equilibrium solution

(u m , φ m ) is the unique couple of [-L, L] 3 - periodic functions in L 2 loc (R 3 , R 3 ) and L 2 loc (R 3 , R 3×3 ) which satisfy Ω u m dx = 0 and, in the sense of distributions on R 3 ,    div -div(D . . . ∇∇u m ) + H : (∇u m -φ m ) + C : e(u m ) + f = 0, div(G . . . ∇φ m ) + H : (∇u m -φ m ) = 0. (1.5)
Our aim is to compare these two generalizations. In this direction, the choice we have made of a periodic framework is specially suitable. It avoids discussing about the effects of boundary conditions which cannot be identical for both models and about the presence of boundary layers.

It is important to notice that all generalized models contain intrinsic lengths. Indeed any ratio of an entry of D or G to an entry of C is the square of such a length. Hence, deciding whether the supplementary terms in the energy are small perturbations of the Cauchy model is not a question about the constitutive laws of the material only but on the scale at which the effects of such supplementary terms are observed. At a very large scale all models must be close to the Cauchy model. "Large scale" means here that the characteristic size of the domain and the characteristic wavelength of the applied load are large compared to the intrinsic length.

On the other hand, the use of generalized models is justified in the literature by several homogenization results. It is known that, when the tensor C oscillates periodically, with a very short period, the solution of associated Cauchy elasticity problems converges to the solution of a new problem in which the displacement minimizes the so-called "effective or homogenized energy". The study of this asymptotic problem is now well understood from the mathematical point of view when C oscillates between fixed bounds: the effective energy is still of Cauchy type and the new tensor C hom can be computed through the solution of an auxiliary problem set on the rescaled periodic cell (see [START_REF] Allaire | Homogenization and two-scale convergence[END_REF]; [START_REF] Bakhvalov | Homogenisation: averaging processes in periodic media: mathematical problems in the mechanics of composite materials[END_REF]; [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF]; [START_REF] Sanchez-Palencia | On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media[END_REF]). When it oscillates between bounds whose ratio tends to infinity while the period length tends to zero, things are less clear. In this so-called "high-contrast" case, different results have been obtained (cf. Camar-Eddine and Seppecher (2003); Abdoul-Anziz and Seppecher (2018a,b)): some still give a Cauchy model, others lead to a strain-gradient model (cf. [START_REF] Pideri | A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium[END_REF]; [START_REF] Briane | Homogenization of two-dimensional elasticity problems with very stiff coefficients[END_REF]; [START_REF] Alibert | Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof[END_REF]; [START_REF] Turco | Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models[END_REF][START_REF] Dell'isola | Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenization, experimental and numerical examples of equilibrium[END_REF]; [START_REF] Rahali | Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices[END_REF]; [START_REF] Alibert | Truss modular beams with deformation energy depending on higher displacement gradients[END_REF]; [START_REF] Durand | Predictive strain-gradient homogenization of a pantographic material with compliant junctions, submitted Forest S (1999) Homogenization methods and the mechanics of generalized continua[END_REF]), still others lead to non-local models like micromorphic models (see Abdoul-Anziz and Seppecher (2018b); [START_REF] Jakabčin | On periodic homogenization of highly contrasted elastic structures[END_REF]). In Jakabčin and Seppecher (2020) a mixed model of type (1.5) has even been obtained. Again we must emphasize that speaking of "high-contrast" is not a purely material property: indeed the ratio between the stiffness of the stiffest part of the material to the weakest one has to be compared to the ratio of the wavelength of these variations to the size of the domain or to the wavelength of the applied load.

To sum up, in a periodic homogenization framework, there exist at least three characteristic lengths. The first one is the period ε of the oscillations of the stiffness tensor : at such a scale homogenization is irrelevant. The second one is the intrinsic length of an effective energy of strain-gradient or micromorphic type : at this scale strain-gradient or micromorphic effects are important. If such a scale is of the same order of magnitude as ε, strain-gradient or micromorphic effects are never important. The third one, L, is large compared to : at this scale the material behaves essentially like a classical Cauchy material and strain-gradient or micromorphic terms are small corrections to the Cauchy energy.

In recent studies (Smyshlyaev and Cherednichenko (2000); [START_REF] Allaire | A comparison between two-scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures[END_REF], it has been proved that the first approximation of the solution of an elasticity problem, when the tensor C oscillates periodically with a very short period, minimizes at the leading order, the usual effective energy but that the first correction to this leading order solution corresponds to the solution of a strain-gradient model. This result could appear in contradiction with the results of Jakabčin and Seppecher (2020); Abdoul-Anziz and Seppecher (2018a,b); Abdoul-Anziz et al (2021); [START_REF] Camar-Eddine | Determination of the closure of the set of elasticity functionals[END_REF] where non-local limits are obtained . It is not, because the assumptions made by Smyshlyaev and Cherednichenko (2000) or [START_REF] Allaire | A comparison between two-scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures[END_REF] prevent the appearance of a macroscopic intrinsic length in the limit energy. In other words, all the intrinsic lengths contained in the models obtained in these works are of the same order of magnitude as ε and tend to zero when ε tends to zero.

Though the results of Smyshlyaev and Cherednichenko (2000) or [START_REF] Allaire | A comparison between two-scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures[END_REF] andthose of Camar-Eddine andSeppecher (2003); Abdoul-Anziz andSeppecher (2018a) or Abdoul [START_REF] Abdoul-Anziz | Homogenization of an elastic material reinforced by very strong fibres arranged along a periodic lattice[END_REF] seem to apply to different situations, a numerical study [START_REF] Jakabčin | On periodic homogenization of highly contrasted elastic structures[END_REF]) has suggested a strong correlation between them. In the present paper we show that this correlation is not fortuitous.

Our study results from the following observation: when the applied load is widely spread, then it often becomes very difficult to distinguish strain-gradient and Cosserat-type solutions (see [START_REF] Jakabčin | On periodic homogenization of highly contrasted elastic structures[END_REF]). Considering a widely spread load is equivalent to considering the material at a large scale. As aforementioned, at such a scale, all extra energy terms become small corrections to standard elastic energy and all solutions converge toward the Cauchy solution. What we prove here is more surprising. We show that the corrections brought by strain-gradient terms or by the extra kinematic descriptor can be identical, up to a higher order correction.

The paper is organized as follows. After a short section where notation is fixed, we set the asymptotic problem when the applied load becomes wider spread in a large domain. A small parameter η characterizes this large wavelength. A change of variable brings back to a fix domain and the parameter η makes the strain-gradient and micromorphic terms small corrections of the classical Cauchy elasticity problem. We then write the equilibrium problem in the Fourier framework where it reduces to the inversion of a tensor which linearly relates the Fourier components of the applied force to the Fourier components of the solution. Our result comes from careful estimations of this inverse tensor.

These estimations need a fundamental assumption. Roughly speaking, if the micromorphic energy couples only a part of the extra kinematic variable with the gradient of the displacement field and if it also couples the gradient of this part with the gradient of the remaining part, then the micromorphic model is not asymptotically close to any strain gradient model. In section 1.6 we provide an explicit example of this rather rare situation.

Notation

The different elastic energy densities that we have introduced contain quadratic forms. These forms are represented by tensors. We use the standard notation ⊗ for the tensor product. We simply shorten some notation by writing T ⊗2 for T ⊗ T . Different conventions may be adopted for defining contraction products of tensors.

Here we adopt the following ones: when Q is a fourth-order tensor and M and N are matrices, Q : M and N : Q : M stand for the matrix and the real defined respectively by

(Q : M ) ij = k,l Q ijkl M kl and N : Q : M = i,j,k,l N ij Q ijkl M kl .
Similarly when Q is a sixth-order tensor and M and N are third-order tensors, Q . . . M and N . . . Q . . . M stand for the third-order tensor and the real defined by

(Q . . . M ) ijk = l,m,n Q ijklmn M lmn , N . . . Q . . . M = i,j,k,l,m,n N ijk Q ijklmn M lmn .
Let ξ ∈ R 3 . To any quadratic form Q over matrices, we can associate the symmetric matrix ξ : Q : ξ defined by setting, for any

u ∈ R 3 , u • (ξ • Q • ξ) • u = (u ⊗ ξ) : Q : (u ⊗ ξ).
Similarly, to any quadratic form Q over third-order tensors, we can associate the quadratic form over matrices ξ • Q • ξ and, if N is a given matrix, the symmetric matrix N • Q • N defined by setting, for any matrix M or any

u ∈ R 3 , M :(ξ •Q•ξ):M = (M ⊗ξ):Q:(M ⊗ξ), u•(N :Q:N )•u = (u⊗N ) . . .Q . . .(u⊗N ).
The tensors which represent quadratic forms are naturally symmetric: in (1.5) C and H are fourth order tensors and D and G are sixth order tensors satisfying, for any i, j, k, l, m, n in {1, 2, 3},

C ijkl = C klij , H ijkl = H klij , D ijklmn = D lmnijk , G ijklmn = G lmnijk .
Moreover, due to the symmetric nature of the tensor e(u) on which C operates and to the natural right-symmetry of ∇∇u (defined by (∇∇u) ijk = ∂ j ∂ k u i ), the tensors C and D which appear in (1.5) are assumed, without loss of generality, to satisfy the symmetries

C ijkl = C ijlk = C jikl , D ijklmn = D ijklnm = D ikjlmn .
In the sequel we will have to compare several quadratic forms. If Q and Q are quadratic forms over the same space, writing Q ≤ Q will simply mean that Q -Q is a non-negative quadratic form or equivalently that, for any M , M :Q:M ≤ M : Q:M . Any fourth-order tensor Q can also be considered as a linear operator on the space of matrices. Composition of Q and Q corresponds to the product Q : Q defined by

In terms of indices (ξ • Q • ξ) ij = k,l Q ikjl ξ k ξ l . In terms of indices (ξ • Q • ξ) ijkl = m,n Q ijmkln ξ m ξ n and (ξ ⊗ ξ) : Q : (ξ ⊗ ξ) ij = k,l,m,n Q ikljmn ξ k ξ l ξ m ξ n .
The product used in this formula must be adapted to the space on which Q and Q apply.

(Q : Q) ijkl = Q ijmn Qmnkl .
It is also in that sense that we will use its image or kernel Im(Q), Ker(Q), its pseudo-inverse (Moore-Penrose inverse) Q + and, when invertible, its inverse Q -1 .

The different minimization problems that we have introduced are all well-posed because we assume that C is a positive definite quadratic form over the space M sym of symmetric matrices and that D, G, H are non-negative forms. Specifically, we assume that there exists 0 < α < β such that, for any M in M sym , any matrix N and any third-order tensor T ,

α M 2 ≤ M : C : M ≤ β M 2 , (1.6) 0 ≤ T . . . D . . . T ≤ β T 2 , 0 ≤ T . . . G . . . T ≤ β T 2 (1.7) 0 ≤ N : H : N ≤ β N 2 , N : H + : N ≤ β N 2 . (1.8) Note that, applying assumption (1.6) to matrices M = (u ⊗ ξ + ξ ⊗ u), gives u • (ξ • C • ξ) • u = 1 4 M : C : M ≥ α 4 M 2 ≥ α 2 ξ 2 u 2 .
(1.9) Thus, for any ξ = 0, the matrix ξ • C • ξ is definite positive.

Note that these assumptions ensure that the equilibrium problem (1.5) is wellposed. Indeed, any minimizing sequence (u n ) of [-L, L] 3 -periodic functions with zero mean value has bounded energy E m (u) ≤ M and thus is bounded in H 1 ([-L, L] 3 , R 3 ). As the energy functional is lower semi-continuous, the sequence converges, up to a sub-sequence, to a solution of (1.5).

Spread loads

We consider equilibrium problems in a domain whose size is large compared with the lengths which are intrinsic to the micromorphic or second-gradient models. We also consider force fields whose characteristic wave lengths are comparable to the size of the domain. To make these assumptions precise we introduce a small parameter η > 0 and we consider the domain

Y η := 1 η Y where Y := [-π, π] 3 .
Let f be a Yperiodic vector-valued function with zero mean value. We assume that the material is submitted to the Y η -periodic load f η (x) := f (ηx).

We assume that the material is homogeneous : its elastic energy E m is given by (1.4) where the tensors C, D, G, H are constant. We look for a Y η -periodic solution

(u η , φ η ) with Yη u η dx = 0 of      div -div(D . . . ∇∇u η ) + H : (∇u η -φ η ) + C : e(u η ) + f η = 0, div(G . . . ∇φ η ) + H : (∇u η -φ η ) = 0.
We will now study the asymptotic behavior of u η when η tends to zero. Indeed, letting η tend to zero is considering an increasingly spread out load. To that aim we make the change of variables v η (y) = η 2 u η ( y η ), ψ η (y) = ηφ η ( y η ). Introducing this change of variables in the previous system of equations is straightforward. We are reduced to the search of the Y -periodic solution (v η , ψ η ) with Y v η dx = 0 of the following system:

     η 2 div -div(D . . . ∇∇v η ) + H : (∇v η -ψ η )) + C : e(v η ) + f = 0, η 2 div(G . . . ∇ψ η ) + H : (∇v η -ψ η ) = 0.
(1.11a)

(1.11b)

Fourier expansion

Owing to the periodicity framework, it is convenient to rewrite the system using periodic expansions of v η and ψ η . We set

f (x) =   ξ∈Z 3 f ξ e i ξ•x   and v η (x) =   ξ∈Z 3 v ξ η e i ξ•x   , ψ η (x) =   ξ∈Z 3 (-i) ψ ξ η e i ξ•x   .
From Y f (x) dx = 0 we deduce f 0 = 0 and, similarly, condition Y v η dx = 0 now reads v 0 η = 0. Using the symmetry properties of C, system (1.11) is equivalent to the fact that, for any ξ ∈ Z 3 ,

           η 2 (D . . . (v ξ η ⊗ ξ ⊗ ξ)) • ξ • ξ + (H : (v ξ η ⊗ ξ -ψ ξ η )) • ξ + (C : (v ξ η ⊗ ξ)) • ξ -f ξ = 0, η 2 (G . . . ψ ξ η ⊗ ξ) • ξ -H : (v ξ η ⊗ ξ -ψ ξ η ) = 0.
(1.12a)

(1.12b)

Equation (1.12b) can be written

J ξ η : ψ ξ η = H : (v ξ η ⊗ ξ) with J ξ η = H + η 2 ξ • G • ξ.
(1.13)

As J ξ η ≥ H, the kernels of H and J ξ η satisfy Ker(J ξ η ) ⊂ Ker(H) and their images satisfy Im(H) = Ker(H) ⊥ ⊂ Ker(J ξ η ) ⊥ = Im(J ξ η ). Introducing the pseudoinverse (J ξ η ) + of J ξ η , the solutions of (1.13) read

ψ ξ η = (J ξ η ) + : (H : (v ξ η ⊗ ξ)) + ∆
where ∆ is any element in Ker(J ξ η ). We have H : ψ ξ η = H : (J ξ η ) + : (H : (v ξ η ⊗ ξ))) and we can eliminate ψ ξ η from Equation (1.12a). We get

K ξ η • v ξ η = f ξ (1.14) with K ξ η = ξ • C + H -H : (J ξ η ) + : H • ξ + η 2 (ξ ⊗ ξ) : D : (ξ ⊗ ξ).
(1.15)

The product J ξ η + : J ξ η is the orthogonal projection onto the image Im(J ξ η ). We have (J ξ η ) + : J ξ η : (J ξ η ) + = (J ξ η ) + and the fact that Im(H) ⊂ Im(J ξ η ) implies H : J ξ η + : J ξ η = H. Using these remarks, one can check that H -H :

(J ξ η ) + : H is identical to H • (J ξ η ) + : (J ξ η -H) : (J ξ η ) + : H + (J ξ η -H) : (J ξ η ) + : H : (J ξ η ) + : (J ξ η -H). Since J ξ η -H = η 2 ξ • G • ξ is non-negative, we deduce that H -H : (J ξ η ) + : H is non-negative and that K ξ η ≥ α ξ 2 Id is definite positive. The solution of (1.14) is thus given by v ξ η = (K ξ η ) -1 • f ξ .
(1.16)

Comparison of different models at large scale

Our goal is to compare the solutions of problem (1.11) for different values of the material parameters C, D, G, H when η is small. In the Fourier setting, this will be obtained by estimating the tensor (K ξ η ) -1 . To that aim we first focus on the term H : (J ξ η ) + : H.

Lemma 1. Let P = H + : H and Q = Id 4 -P be the projectors onto the image and the kernel of H. For any ξ ∈ R 3 , let us consider the following generalized Schur complement:

G ξ // := P : (ξ • G • ξ) : P -(P : (ξ • G • ξ) : Q) : (Q : (ξ • G • ξ) : Q) + : (Q : (ξ • G • ξ) : P ).
We have

H : (J ξ η ) + : H = (H + + η 2 H + : G ξ // : H + ) + .
Proof. Let M be any matrix in Im(H) and set N := (J ξ η ) + : H : M . We have

H : M = J ξ η : N that is H : M = (H + η 2 ξ • G • ξ) : N .
Once projected onto the image and the kernel of H this equation reads

H : M = (H + η 2 P : (ξ • G • ξ)) : N and 0 = η 2 Q : (ξ • G • ξ) : N.
Decomposing also N = P : N + Q : N , we get

       H : M = (H + η 2 P : (ξ • G • ξ) : P ) : (P : N ) + η 2 P : (ξ • G • ξ) : Q : (Q : N ), 0 = η 2 Q : (ξ • G • ξ) : P : (P : N ) + η 2 Q : (ξ • G • ξ) : Q : (Q : N ). (1.17a) (1.17b) Equation (1.17b) implies Q : N = -(Q : (ξ • G • ξ) : Q) + : Q : (ξ • G • ξ) : P : (P : N ) + E where E is any element of Ker(Q : (ξ • G • ξ) : Q). We now remark that (Q : (ξ • G • ξ) : Q) : E = 0 =⇒ (P : (ξ • G • ξ) : Q) : E = 0.
Indeed, for any matrix Z, the affine function of the real λ

Z : P : (ξ • G : ξ) : P : Z + 2λZ : P : (ξ • G • ξ) : Q : E = (P : Z + λQ : E) : (ξ • G • ξ) : (P : Z + λQ : E)
is non negative and this implies that Z : P : (ξ • G • ξ) : Q : E = 0 for any matrix Z. In consequence

P :(ξ•G•ξ):Q:(Q:N ) = -P :(ξ•G•ξ):Q:(Q:(ξ•G•ξ):Q) + :Q:(ξ•G•ξ):P :(P :N )
and Equation (1.17a) becomes H : M = (H + η 2 G ξ // ) : P : N. Recalling that P = H + : H and N = (J ξ η ) + : H : M , we obtain

H : M = (H + η 2 G ξ // ) : H + : H : (J ξ η ) + : H : M and finally M = H + : H : M = H + : (H + η 2 G ξ // ) : H + : H : (J ξ η ) + : H : M.
As this is true for any M in the image of H and thus in the image of H : (J ξ η ) + : H, we get the desired result.

Remark 1. The Schur complement corresponds to a minimization problem: for any matrix M , we have inf N ∈Ker(H)

(P : M + N ) ⊗ ξ . . .G . . . (P : M + N ) ⊗ ξ = inf N ∈Ker(H) (P : M + N ) : (ξ • G • ξ) : (P : M + N ) = inf N ∈Ker(H) M : P : (ξ • G • ξ) : P : M + 2N : Q : (ξ • G • ξ) : P : M + N : Q : (ξ • G • ξ) : Q : N .
The infimum is reached when

Q : (ξ • G • ξ) : P : M + Q : (ξ • G • ξ) : Q : N = 0 that is when N = -Q : (ξ • G • ξ) : Q + : Q : (ξ • G • ξ) : P : M. At this minimum
we have

N : Q : (ξ • G • ξ) : Q : N = -N : Q : (ξ • G • ξ) : P : M = M : P : (ξ • G • ξ) : Q : Q : (ξ • G • ξ) : Q + : Q : (ξ • G • ξ) : P : M
and we finally get inf N ∈Ker(H)

(P : M + N ) ⊗ ξ . . .G . . . (P : M + N ) ⊗ ξ = M : G ξ // : M.
A straightforward consequence of this minimization formulation is that, for any matrix M ,

0 ≤ M : G ξ // : M ≤ β ξ 2 M 2 . (1.18)
Lemma 2. We have the following estimations for K ξ η :

K ξ η ≥ ξ • C • ξ, (1.19) K ξ η ≥ ξ • C • ξ + η 2 ξ • G ξ // • ξ + (ξ ⊗ ξ) : D : (ξ ⊗ ξ) -η 4 ξ • (G ξ // : H + : G ξ // ) • ξ, (1.20) K ξ η ≤ ξ • C • ξ + η 2 ξ • G ξ // • ξ + (ξ ⊗ ξ) : D : (ξ ⊗ ξ) .
(1.21)

Proof. First estimation will be a consequence of

H : (J ξ η ) + : H ≤ H (1.22)
while the two last ones are respectively equivalent to

H : (J ξ η ) + : H ≤ H -η 2 G ξ // + η 4 G ξ // : H + : G ξ // , (1.23) H : (J ξ η ) + : H ≥ H -η 2 G ξ // . (1.24)
As all these quadratic forms vanish outside of Im(H), it is enough to check the inequalities on this space. As, on this space, (H:(J ξ η ) + :H) + = H + +η 2 H + :G ξ // :H + is invertible, we can multiply previous inequalities by this tensor on the left and on the right. In order to shorten notation, let us temporarily introduce the non-negative tensor X ξ = H + : G ξ // : H + . We are reduced to proving

H + + η 2 X ξ ≤ (H + + η 2 X ξ ) : H : (H + + η 2 X ξ ), H + + η 2 X ξ ≤ (H + + η 2 X ξ ) : (H -η 2 G ξ // + η 4 G ξ // : H + : G ξ // ) : (H + + η 2 X ξ ), H + + η 2 X ξ ≥ (H + + η 2 X ξ ) : (H -η 2 G ξ // ) : (H + + η 2 X ξ ).
This is obvious when developing the right-hand side of these three inequalities as they become respectively

0 ≤ X ξ + η 2 X ξ : H : X ξ , 0 ≤ X ξ : H : X ξ : H : X ξ + η 2 X ξ : H : X ξ : H : X ξ : H : X ξ , 0 ≥ -X ξ : H : X ξ -η 2 X ξ : H : X ξ : H : X ξ .
Remark 2. From estimation (1.19), we deduce

f ξ = K ξ η • v ξ η ≥ α ξ 2 v ξ η .
(1.25)

We recover the fact that, when f belongs to L 2 loc , the equilibrium solution v η belongs to H 2 loc :

Ω ∇∇v η 2 dx = π ξ∈Z 2 v ξ η ⊗ ξ ⊗ ξ 2 ≤ π ξ∈Z 2 v ξ η 2 ξ 4 ≤ πα -2 ξ∈Z 2 f ξ 2 = α -2 Ω f 2 dx.
Theorem 1. When η goes to zero, all solutions v η converge to the solution v 0 of the classical elasticity problem. More precisely, for any ξ ∈ Z 2 , we have the following estimation

v ξ 0 -v ξ η ≤ 2η 2 β α 2 f ξ which directly implies v η -v 0 L 2 ≤ 2η 2 β α 2 f L 2 .
Proof. When η = 0 (which is equivalent to assuming that D = G = 0 and H = 0), we have

K ξ 0 = ξ • C • ξ and equation (1.14) reduces to (ξ • C • ξ) • v ξ 0 = f ξ . From K ξ η • v ξ η = f ξ = (ξ • C • ξ) • v ξ 0 , we deduce K ξ η • (v ξ 0 -v ξ η ) = (K ξ η -ξ • C • ξ) • v ξ 0 .
Using Lemma 2, we get

α ξ 2 v ξ 0 -v ξ η ≤ η 2 (ξ • G ξ // • ξ + (ξ ⊗ ξ) : D : (ξ ⊗ ξ)) • v ξ 0 . Definition of G ξ // clearly shows that G ξ // ≤ P : (ξ • G • ξ) : P and thus that (ξ • G ξ // • ξ) • v ξ 0 ≤ β ξ 4 v ξ 0 .
As we have the same estimation for the term

(ξ ⊗ ξ) : D : (ξ ⊗ ξ)) • v ξ 0 , we get v ξ 0 -v ξ η ≤ 2η 2 β α ξ 2 v ξ 0 ≤ 2η 2 β α 2 f ξ . Therefore v η -v 0 2 L 2 = π ξ∈Z 2 v ξ 0 -v ξ η 2 ≤ 4η 4 β 2 α 4 f 2 L 2 .
Previous theorem states that, in any case, the minimizer of a strain-gradient or a generalized continuum energy behaves, at the main order with respect to the characteristic length of the applied force, like a classical elastic model. Clearly different models sharing the same elasticity tensor C cannot be differentiated at this order.

Let us now compare more precisely the solutions v η and ṽη of (1.11) associated respectively the sets of material tensors (C, D, H, G) and (C, D+L, 0, 0). In Fourier setting, these equations read

K ξ η • v ξ η = f ξ and Kξ η • ṽξ η = f ξ with K ξ η = ξ • C + H -(H + + η 2 H + : G ξ // : H + ) + • ξ + η 2 (ξ ⊗ ξ) : D : (ξ ⊗ ξ), Kξ η = ξ • C • ξ + η 2 (ξ ⊗ ξ) : (D + L) : (ξ ⊗ ξ).
We have

Kξ η • (v ξ η -ṽξ η ) = ( Kξ η -K ξ η ) • v ξ η .
(1.26)

From Lemma 2 we deduce

Kξ η -K ξ η ≥ η 2 ξ • (ξ • L • ξ -G ξ // ) • ξ), Kξ η -K ξ η ≤ η 2 ξ • (ξ • L • ξ -G ξ // ) • ξ) + η 4 ξ • (G ξ // : H + : G ξ // ) • ξ.
(1.27)

In order to proceed further, we need an important assumption over the tensor G ξ // defined in Lemma 1 in terms of G, P and Q, that is in terms of H and G.

Assumption 1

The tensors H and G are such that there exists a six-order tensor G // satisfying, for any vector

ξ ∈ Z 3 , ξ • G ξ // • ξ = (ξ ⊗ ξ) : G // : (ξ ⊗ ξ).
(1.28)

We still call β a constant which, in addition to (1.6)-(1.7) satisfies, for any third-order tensor T ,

T . . . G // . . . T ≤ β T 2 .
In many cases Assumption 1 is obtained as the consequence of stronger assumptions. Let us denote P : G : Q the sixth order tensor defined by (P : G : Q) ijklmn := p,q,u,v P ijpq G pqkuvn Q uvlm . The tensor P : G : P is defined in a similar way. Assumption 2 P : G : Q = 0. Indeed, in that case, Assumption 1 is satisfied with G // = P : G : P .

Assumption 3 H is non degenerate. Indeed, in that last case, P = Id 4 and Q = 0, Assumption 2 is obviously satisfied and we have G // = G.

Theorem 2. Assume that f is smooth and that G and H satisfy Assumption 1. Then the solution v η of (1.11) associated with the set of material tensors (C, D, H, G) shares the same asymptotic behavior at order η 2 as the solution ṽη of (1.11) associated with the set of material tensors (C, D + G // , 0, 0). More precisely, we have

ṽξ η -v ξ η ≤ η 4 β 3 α 2 ξ 2 f ξ which directly implies v η -ṽη L 2 (Ω) ≤ η 4 β 3 α 2 f H 2 (Ω)
. Reciprocally if, for any smooth force field f , v η shares the same asymptotic behavior at order η 2 as the solution ṽη of (1.11) associated with the set of material tensors (C, D + L, 0, 0), then Assumption 1 is satisfied with G // = L.

Proof. Indeed, replacing L by G // and ξ • G ξ // • ξ by ξ • (ξ • G // • ξ) • ξ in (1.27), we get 0 ≤ Kξ η -K ξ η ≤ η 4 ξ • (G ξ // : H + : G ξ // ) • ξ.
From (1.26) we get the estimation

α ξ 2 ṽξ η -v ξ η ≤ η 4 (ξ • (G ξ // : H + : G ξ // ) • ξ) • v ξ η . .
Using (1.25) (1.18), we obtain the desired result

ṽξ η -v ξ η ≤ η 4 β 3 α 2 ξ 2 f ξ .
To prove the converse, let us assume that, for any smooth force field f ,

1 η 2 v η -ṽη L 2 (Ω) → 0.
Dividing equation (1.26) by η 2 , using (1.27) and passing to the limit η → 0, we get

0 = (ξ • (ξ • L : ξ -G ξ // ) • ξ) • v ξ 0 .
Let w be a C ∞ Y -periodic function satisfying w 0 = 0 and, for any ξ = 0, w ξ = 0. Let k ∈ {1, 2, 3}. Consider the load f := -div(C : e(we k )). Clearly, the solution v 0 of the classical elasticity problem when this load is applied coincides with we k . For this load, previous equality reads

w ξ (ξ ⊗ ξ) : L : (ξ ⊗ ξ) -ξ • G ξ // • ξ • e k = 0.
As, for ξ = 0, w ξ = 0, we have (ξ ⊗ ξ) : L : (ξ ⊗ ξ) -ξ • G ξ // • ξ • e k = 0 which remains true for ξ = 0. This being true for any k ∈ {1, 2, 3}, we get for any ξ ∈ Z 3 ,

(ξ ⊗ ξ) : L : (ξ ⊗ ξ) -ξ • G ξ // • ξ = 0.
(1.29)

Examples

We study in this section different energies which enter the general model introduced in (1. ii) Cosserat models of the type

E(u) := inf w Ω 1 2 ∇w : M : ∇w + 1 2 ∇ × u -w 2 + 1 2 e(u) : C : e(u) dx
correspond to the choice H ijkl = p ijp klp and G ijklmn = p,q ijp M pkqn lmq where ijm stands for the usual Levi-Civita symbol. The expression in terms of w instead of φ is simply obtained by substituting w i = ikj φ jk in the original expression. We have P =1 2 H, G : P = G and thus G : Q = 0. Assumption 2 is satisfied : Cosserat models can be approximated, up to order η 4 by strain-gradient models (actually couple-stress models) with energy

E(u) := inf w Ω 1 2 ∇(∇ × u) : M : ∇(∇ × u) + 1 2 e(u) : C : e(u) dx.
iii) Consider now the following energy:

Ω 1 2 ∂φ 11 ∂x 2 + ∂φ 22 ∂x 2 2 + ∂φ 22 ∂x 2 2 + 1 2 ∂u 1 ∂x 1 -φ 11 2 + 1 2 e(u) : C : e(u) dx.
This energy corresponds to the choice

D = 0, H = (e 1 ⊗ e 1 ) ⊗2 , G = (e 2 ⊗ e 2 ⊗ e 2 ) ⊗2 + (e 1 ⊗ e 1 ⊗ e 2 + e 2 ⊗ e 2 ⊗ e 2 ) ⊗2
.

(1.30a)

(1.30b)

Neither assumption 3 nor Assumption 2 are satisfied. Computation of G ξ // needs some work. We check successively that P = H + = H and

ξ • G • ξ = ξ 2 2 (e 2 ⊗ e 2 ) ⊗2 + (e 1 ⊗ e 1 + e 2 ⊗ e 2 ) ⊗2 , P : (ξ • G • ξ) : P = ξ 2 2 (e 1 ⊗ e 1 ) ⊗2 , Q : (ξ • G • ξ) : P ξ 2 2 e 2 ⊗ e 2 ⊗ e 1 ⊗ e 1 , P : (ξ • G • ξ) : Q = ξ 2 2 e 1 ⊗ e 1 ⊗ e 2 ⊗ e 2 , Q : (ξ • G • ξ) : Q = 2ξ 2 2 (e 2 ⊗ e 2 ) ⊗2 , (Q : (ξ • G • ξ) : Q) + = (2ξ 2 2 ) -1 (e 2 ⊗ e 2 ) ⊗2 .
We finally obtain

G ξ // = ξ 2 2 2 (e 1 ⊗ e 1 ) ⊗2 = ξ • 1 2 (e 1 ⊗ e 1 ⊗ e 2 ) ⊗2 • ξ.
Note that this computation is valid only when ξ 2 = 0 but one can easily check that the result remains true when ξ 2 = 0. This micromorphic model satisfies Assumption 1 with G // = 1 2 (e 1 ⊗ e 1 ⊗ e 2 ) ⊗2 and Theorem 2 again applies. The model can be approximated, up to order η 4 by the strain-gradient model with energy

Ω 1 4 ∂ 2 u 1 ∂x 1 ∂x 2 2 +
1 2 e(u) : C : e(u) dx.

iv) Let us now show that there exist energies for which the conclusion of Theorem 2 does not apply. We modify a little bit the previous example by considering the following energy: (1.31a)

inf φ Ω 1 2 ∂φ 11 ∂x 2 + ∂φ 22 ∂x 1 2 + ∂φ 22 ∂x 2 2 + 1 2 ∂u 1 ∂x 1 -φ 11 2 + 1 2 e ( 
(1.31b)

Again we have P = H + = H. Computation of G ξ // is straightforward: for any ξ = 0, we have

ξ • G • ξ = ξ 2 2 (e 2 ⊗ e 2 ) ⊗2 + (ξ 2 e 1 ⊗ e 1 + ξ 1 e 2 ⊗ e 2 ) ⊗2 , P : (ξ • G • ξ) : P = ξ 2 2 (e 1 ⊗ e 1 ) ⊗2 , Q : (ξ • G • ξ) : P = ξ 1 ξ 2 e 2 ⊗ e 2 ⊗ e 1 ⊗ e 1 , P : (ξ • G • ξ) : Q = ξ 1 ξ 2 e 1 ⊗ e 1 ⊗ e 2 ⊗ e 2 , Q : (ξ • G • ξ) : Q = (ξ 2 1 + ξ 2 2 ) (e 2 ⊗ e 2 ) ⊗2 , (Q : (ξ • G • ξ) : Q) + = (ξ 2 1 + ξ 2 2 ) -1 (e 2 ⊗ e 2 ) ⊗2 . (P : (ξ • G • ξ) : Q) : (Q : (ξ • G • ξ) : Q) + : (Q : (ξ • G • ξ) : P ) = ξ 2 1 ξ 2 2 ξ 2 1 + ξ 2 2 (e 1 ⊗ e 1 ) ⊗2
and finally

G ξ // = ξ 4 2 ξ 2 1 + ξ 2 2 (e 1 ⊗ e 1 ) ⊗2 and ξ • G ξ // • ξ = ξ 4 2 ξ 2 1 ξ 2 1 + ξ 2 2 e 1 ⊗ e 1 .
Assume, by contradiction that Assumption 1 is satisfied: for any ξ = 0 in Z 3 we would have

ξ • (ξ • G // • ξ) • ξ - ξ 4 2 ξ 2 1 ξ 2 1 + ξ 2 2 e 1 ⊗ e 1 = 0. that is, for any ξ in Z 3 , (ξ 2 1 + ξ 2 2 ) ξ • (ξ • G // • ξ) • ξ -ξ 4 2 ξ 2 1 e 1 ⊗ e 1 = 0.
This polynomial identity extends to whole C 3 . We get a contradiction by considering for instance ξ = (1, i, 0). By converse statement of Theorem 2 we know that there is no strain-gradient model which can approximate the considered model more accurately than what is done at order η 2 by the standard model 

Conclusion

Our study has practical implications. Assume that you are analyzing the results of an experimental campaign, that is the equilibrium displacement fields of samples submitted to different force fields. Assume moreover that you have noticed scale effects and thus that you are suspecting your material to behave either like a straingradient one or a micromorphic one. Our study shows that it is rather difficult to differentiate these two possibilities. Indeed, in general, the characteristic wavelengths of the applied force fields are much larger than the intrinsic lengths of the suspected models. Let η << 1 be their ratio. Then both strain-gradient and micromorphic models provide a correction to the Cauchy model of order η 2 but, for well tuned material parameters, the difference between the two corrections is extremely small: of order η 4 . In other words, in order to decide whether your material is better described by a micromorphic model or by a strain-gradient one, you must be extremely precise or use force fields which vary extremely rapidly in space.

Our study gives also a new insight on recent results about periodic homogenization of elastic materials : results of Smyshlyaev and Cherednichenko (2000); [START_REF] Allaire | A comparison between two-scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures[END_REF] state that the first correction which must be applied to the classical homogenized strain model is always obtained by adding in the energy a small strain-gradient term. On the other hand, results from Abdoul-Anziz and Seppecher (2018a,b); Jakabčin and Seppecher (2020) provide micromorphic effective behaviors. These seemingly contradictory results may become coherent when spread enough forces are considered.

We must emphasize that our results apply only for micromorphic models which satisfy assumption 1. The question of the status of models which do not satisfy this assumption remains open: previous conclusion does not apply. We suspect that such models cannot be obtained through periodic homogenization. We recall that the example that we provide in Section 1.6 corresponds to a quadratic, objective and lower-semi-continuous functional and thus, as proved in Camar- [START_REF] Camar-Eddine | Determination of the closure of the set of elasticity functionals[END_REF], that it can be obtained as the limit of heterogeneous classical elastic continua. However the results of [START_REF] Camar-Eddine | Determination of the closure of the set of elasticity functionals[END_REF] are obtained using non-periodic heterogeneities. This leads to a new general question : what is the subclass of all functionals which can be obtained as the limit of periodically heterogeneous classical elastic continua ? And, in particular, is it equivalent, for a functional E m defined by (1.4), to belong to this class and to satisfy Assumption 1?

  : C : e(u) dx. This model can alternatively be called "second-gradient model" as it is well known that any quadratic form ∇e(u) . . . D . . . ∇e(u) of ∇e(u) is a quadratic form ∇∇u . . . D . . . ∇∇u of the second gradient of the displacement field and reciprocally. : C : e(u) dx.

  : C : e(u) dx.

  4): they correspond to the choice D = 0 and to different choices of the tensors H and G. Let us first provide examples for which Theorem 2 applies and thus which can be approximated, up to order η 4 by a strain-gradient model. : C : e(u) dx correspond to the choice H = Id 4 . They satisfy Assumption 3 and thus can be approximated, up to order η 4 by strain-gradient models with energy : C : e(u) dx.

  u) : C : e(u) dx, which corresponds to the choice D = 0, H = (e 1 ⊗ e 1 ) ⊗2 , G = (e 2 ⊗ e 2 ⊗ e 2 ) ⊗2 + (e 1 ⊗ e 1 ⊗ e 2 + e 2 ⊗ e 2 ⊗ e 1 ) ⊗2 .

  : C : e(u) dx.
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