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Chapter 1
Asymptotic comparison of the strain-gradient
and micromorphic models when loading forces
are widely spread.

Pierre Seppecher and Lukáš Jakabčin

Abstract In this paper we reconciliate different homogenization results which de-
scribe the effective behavior of a heterogeneous material either by a strain-gradient
model either by a micromorphic one. Indeed we prove that the solutions of both
models are asymptotically very close when considering a loading with increasing
wavelength. This result is obtained using the Fourier analysis on the tensor spaces
and applies to a large class of micromorphic models. However, we provide an exam-
ple of a micromorphic model that does not belong to this class and thus cannot be
approximated by a strain-gradient model.

Keywords: Continuum mechanics · Strain-gradient ·Micromorphic model

1.1 Introduction

The theory of elasticity is well founded since the work of Cauchy and generally
gives satisfactory descriptions of the displacement field u of a solid submitted to
an external load f . Let us recall that the deformation of the solid is, in the linear
formulation, measured by the strain tensor e(u) := (∇u+ t∇u)/2. The behavior of
the solid is described by a stiffness tensorC. The elastic energy of the solid contained
in a domain Ω is

Ee(u) :=
∫
Ω

1

2
e(u) : C : e(u) dx.

P. Seppecher
Institut de Mathématiques de Toulon, Université de Toulon, BP 20132, 83957 La Garde Cedex,
France
e-mail: seppecher@imath.fr

L. Jakabčin
Laboratoire de Mécanique Gabriel Lamé, Université d’Orléans, 8 rue Léonard de Vinci, 45100
Orléans, France
e-mail: lukas.jakabcin@univ-orleans.fr

1



2 Seppecher and Jakabčin

At equilibrium, the displacement field ue minimizes the total energy Ee(u)−
∫
Ω
f ·

u dx. The existence of a unique solution of this minimization problem is ensured if
suitable boundary conditions are imposed. Here, in order to compare our results with
the literature (see for instance Smyshlyaev and Cherednichenko (2000)), we assume
that f and u are [−L,L]3-periodic function with vanishing mean value on any period
Ω (
∫
Ω
u dx = 0). Hence ue is the unique [−L,L]3-periodic function inL2

loc(R3,R3)
with vanishing mean value and which satisfies, in the sense of distributions on R3,
the Euler-Lagrange equation

div(C : e(ue)) + f = 0. (1.1)

However Cauchy theory must sometimes be generalized. Indeed, when one fo-
cuses on small samples, scale effects are observed which cannot be explained by
this theory (cf. Lam et al (2003)). Two main generalizations have been considered
in order to encompass this difficulty.

• The first one, called “strain-gradient theory” consists in adding in the elastic
energy a quadratic term depending on the gradient ∇e(u) of the strain tensor
(see among many others : Mindlin and Tiersten (1962); Mindlin (1965); Germain
(2020); Casal (1972)).

Es(u) :=
∫
Ω

(
1

2
∇e(u)

... D̃
...∇e(u) +

1

2
e(u) : C : e(u)

)
dx.

This model can alternatively be called “second-gradient model” as it is well

known that any quadratic form ∇e(u)
... D̃

...∇e(u) of ∇e(u) is a quadratic form

∇∇u
...D

...∇∇u of the second gradient of the displacement field and reciprocally.
Hence

Es(u) :=
∫
Ω

(
1

2
∇∇u

... D
...∇∇u+

1

2
e(u) : C : e(u)

)
dx.

The equilibrium us is the unique [−L,L]3-periodic function in L2
loc(R3,R3)

with zero mean value and which satisfies, in the sense of distributions on R3, the
Euler-Lagrange equation

div
(
− div(D

...∇∇us) + C : e(us)
)
+ f = 0. (1.2)

• The second generalization (see Forest and Sab (2020); Misra et al (2021); Forest
(1999); Cosserat and Cosserat (1896)) consists in introducing a new kinematic
descriptor φ and assuming that the elastic energy couples φ with ∇u and also
depends on the gradient of φ, reading:
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Ec(u) := inf
φ

∫
Ω

(1
2
∇φ

... G
...∇φ+

1

2
(∇u− φ) :H : (∇u− φ)

+
1

2
e(u) : C : e(u)

)
dx.

The equilibrium displacement field uc and the associated field φc are the unique
[−L,L]3-periodic functions in L2

loc(R3,R3) and L2
loc(R3,R3×3) which satisfy∫

Ω
uc dx = 0 and, in the sense of distributions on R3,div

(
H : (∇uc − φc) + C : e(uc)

)
+ f = 0,

div(G
...∇φc) +H : (∇uc − φc) = 0.

Note that the newkinematic descriptorφ is a tensor field of order two. In the sequel,
we refer to this second generalization as the “micromorphic model”. A particular
case of this energy is the “Cosserat model” in which φ is a skew-symmetric matrix
coupled to the rotational of u (cf. Cosserat and Cosserat (1896)).

These two generalizations are strongly related (seeGermain (1973)): some authors
like considering Es as the limit of Ec whenG = D andH becomes very large while
others considerEc as an approximation ofEsmore suitable for numerical simulations.

It is convenient to remark that all the aforementioned models are particular cases
of a more general one which mix non-local and strain-gradient terms with an elastic
energy Em(u) which is the infimum over φ:

Em(u) := inf
φ

∫
Ω

(1
2
∇∇u

... D
...∇∇u+

1

2
∇φ

... G
...∇φ

+
1

2
(∇u− φ) :H : (∇u− φ) + 1

2
e(u) : C : e(u)

)
dx. (1.4)

The corresponding equilibrium solution (um, φm) is the unique couple of [−L,L]3-
periodic functions inL2

loc(R3,R3) andL2
loc(R3,R3×3)which satisfy

∫
Ω
um dx = 0

and, in the sense of distributions on R3, div
(
− div(D

...∇∇um) +H : (∇um − φm) + C : e(um)
)
+ f = 0,

div(G
...∇φm) +H : (∇um − φm) = 0.

(1.5)

Our aim is to compare these two generalizations. In this direction, the choice we
have made of a periodic framework is specially suitable. It avoids discussing about
the effects of boundary conditions which cannot be identical for both models and
about the presence of boundary layers.

It is important to notice that all generalized models contain intrinsic lengths.
Indeed any ratio of an entry of D or G to an entry of C is the square of such a
length. Hence, deciding whether the supplementary terms in the energy are small
perturbations of the Cauchy model is not a question about the constitutive laws of the
material only but on the scale at which the effects of such supplementary terms are
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observed. At a very large scale all models must be close to the Cauchy model. “Large
scale” means here that the characteristic size of the domain and the characteristic
wavelength of the applied load are large compared to the intrinsic length.

On the other hand, the use of generalized models is justified in the literature by
several homogenization results. It is known that, when the tensorC oscillates period-
ically, with a very short period, the solution of associated Cauchy elasticity problems
converges to the solution of a new problem in which the displacement minimizes the
so-called “effective or homogenized energy”. The study of this asymptotic problem
is now well understood from the mathematical point of view when C oscillates be-
tween fixed bounds: the effective energy is still of Cauchy type and the new tensor
Chom can be computed through the solution of an auxiliary problem set on the
rescaled periodic cell (see Allaire (1992); Bakhvalov and Panasenko (2012); Ben-
soussan et al (1978); Sanchez-Palencia (1980)). When it oscillates between bounds
whose ratio tends to infinity while the period length tends to zero, things are less
clear. In this so-called “high-contrast” case, different results have been obtained
(cf. Camar-Eddine and Seppecher (2003); Abdoul-Anziz and Seppecher (2018a,b)):
some still give a Cauchy model, others lead to a strain-gradient model (cf. Pideri
and Seppecher (1997); Briane and Camar-Eddine (2007); Alibert and Della Corte
(2015); Turco et al (2016); dell’Isola et al (2016); Rahali et al (2015); Alibert et al
(2003); Durand et al (2021)), still others lead to non-local models like micromor-
phic models (see Abdoul-Anziz and Seppecher (2018b); Jakabčin and Seppecher
(2020)). In Jakabčin and Seppecher (2020) a mixed model of type (1.5) has even
been obtained. Again we must emphasize that speaking of “high-contrast” is not a
purely material property: indeed the ratio between the stiffness of the stiffest part of
the material to the weakest one has to be compared to the ratio of the wavelength of
these variations to the size of the domain or to the wavelength of the applied load.

To sum up, in a periodic homogenization framework, there exist at least three
characteristic lengths. The first one is the period ε of the oscillations of the stiffness
tensor : at such a scale homogenization is irrelevant. The second one is the intrinsic
length ` of an effective energy of strain-gradient or micromorphic type : at this scale
strain-gradient or micromorphic effects are important. If such a scale is of the same
order of magnitude as ε, strain-gradient or micromorphic effects are never important.
The third one,L, is large compared to ` : at this scale the material behaves essentially
like a classical Cauchy material and strain-gradient or micromorphic terms are small
corrections to the Cauchy energy.

In recent studies (Smyshlyaev and Cherednichenko (2000); Allaire et al (2016)), it
has been proved that the first approximation of the solution of an elasticity problem,
when the tensor C oscillates periodically with a very short period, minimizes at the
leading order, the usual effective energy but that the first correction to this leading
order solution corresponds to the solution of a strain-gradient model. This result
could appear in contradiction with the results of Jakabčin and Seppecher (2020);
Abdoul-Anziz and Seppecher (2018a,b); Abdoul-Anziz et al (2021); Camar-Eddine
and Seppecher (2003) where non-local limits are obtained . It is not, because the
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assumptions made by Smyshlyaev and Cherednichenko (2000) or Allaire et al (2016)
prevent the appearance of a macroscopic intrinsic length ` in the limit energy. In
other words, all the intrinsic lengths ` contained in the models obtained in these
works are of the same order of magnitude as ε and tend to zero when ε tends to zero.

Though the results of Smyshlyaev and Cherednichenko (2000) or Allaire et al
(2016) and those of Camar-Eddine and Seppecher (2003); Abdoul-Anziz and
Seppecher (2018a) or Abdoul-Anziz et al (2021) seem to apply to different situ-
ations, a numerical study (Jakabčin and Seppecher (2020)) has suggested a strong
correlation between them. In the present paper we show that this correlation is not
fortuitous.

Our study results from the following observation: when the applied load is
widely spread, then it often becomes very difficult to distinguish strain-gradient
and Cosserat-type solutions (see Jakabčin and Seppecher (2020)). Considering a
widely spread load is equivalent to considering the material at a large scale. As
aforementioned, at such a scale, all extra energy terms become small corrections
to standard elastic energy and all solutions converge toward the Cauchy solution.
What we prove here is more surprising. We show that the corrections brought by
strain-gradient terms or by the extra kinematic descriptor can be identical, up to a
higher order correction.

The paper is organized as follows. After a short section where notation is fixed,
we set the asymptotic problem when the applied load becomes wider spread in a
large domain. A small parameter η characterizes this large wavelength. A change of
variable brings back to a fix domain and the parameter η makes the strain-gradient
andmicromorphic terms small corrections of the classical Cauchy elasticity problem.
We then write the equilibrium problem in the Fourier framework where it reduces
to the inversion of a tensor which linearly relates the Fourier components of the
applied force to the Fourier components of the solution. Our result comes from
careful estimations of this inverse tensor.

These estimations need a fundamental assumption. Roughly speaking, if the
micromorphic energy couples only a part of the extra kinematic variable with the
gradient of the displacement field and if it also couples the gradient of this part with
the gradient of the remaining part, then themicromorphicmodel is not asymptotically
close to any strain gradient model. In section 1.6 we provide an explicit example of
this rather rare situation.

1.2 Notation

The different elastic energy densities that we have introduced contain quadratic
forms. These forms are represented by tensors. We use the standard notation ⊗ for
the tensor product. We simply shorten some notation by writing T⊗2 for T ⊗ T .
Different conventions may be adopted for defining contraction products of tensors.
Here we adopt the following ones: whenQ is a fourth-order tensor andM andN are
matrices,Q :M andN :Q :M stand for the matrix and the real defined respectively
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by

(Q :M)ij =
∑
k,l

QijklMkl and N :Q :M =
∑
i,j,k,l

NijQijklMkl.

Similarly whenQ is a sixth-order tensor andM andN are third-order tensors,Q
...M

and N
... Q

... M stand for the third-order tensor and the real defined by

(Q
... M)ijk =

∑
l,m,n

QijklmnMlmn, N
... Q

... M =
∑

i,j,k,l,m,n

NijkQijklmnMlmn.

Let ξ ∈ R3. To any quadratic form Q over matrices, we can associate the sym-
metric matrix ξ :Q : ξ defined1 by setting, for any u ∈ R3,

u · (ξ ·Q · ξ) · u = (u⊗ ξ) :Q : (u⊗ ξ).

Similarly, to any quadratic form Q over third-order tensors, we can associate the
quadratic form over matrices ξ · Q · ξ and, if N is a given matrix, the symmetric
matrix N ·Q ·N defined2 by setting, for any matrixM or any u ∈ R3,

M :(ξ ·Q·ξ):M = (M⊗ξ):Q:(M⊗ξ), u·(N :Q:N)·u = (u⊗N)
...Q
...(u⊗N).

The tensors which represent quadratic forms are naturally symmetric: in (1.5) C
and H are fourth order tensors and D and G are sixth order tensors satisfying, for
any i, j, k, l,m, n in {1, 2, 3},

Cijkl = Cklij , Hijkl = Hklij , Dijklmn = Dlmnijk, Gijklmn = Glmnijk.

Moreover, due to the symmetric nature of the tensor e(u) on which C operates
and to the natural right-symmetry of ∇∇u (defined by (∇∇u)ijk = ∂j∂kui), the
tensors C and D which appear in (1.5) are assumed, without loss of generality, to
satisfy the symmetries

Cijkl = Cijlk = Cjikl, Dijklmn = Dijklnm = Dikjlmn.

In the sequel we will have to compare several quadratic forms. If Q and Q̃ are
quadratic forms over the same space, writingQ ≤ Q̃will simply mean that Q̃−Q is
a non-negative quadratic formor equivalently3 that, for anyM ,M :Q:M ≤M :Q̃:M .

Any fourth-order tensorQ can also be considered as a linear operator on the space
of matrices. Composition of Q and Q̃ corresponds to the product Q : Q̃ defined by

1 In terms of indices (ξ ·Q · ξ)ij =
∑
k,lQikjlξkξl.

2 In terms of indices (ξ ·Q · ξ)ijkl =
∑
m,nQijmklnξmξn and

(
(ξ ⊗ ξ) :Q : (ξ ⊗ ξ)

)
ij

=∑
k,l,m,nQikljmnξkξlξmξn.

3 The product used in this formula must be adapted to the space on whichQ and Q̃ apply.
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(Q : Q̃)ijkl =
∑

QijmnQ̃mnkl.

It is also in that sense that we will use its image or kernel Im(Q), Ker(Q), its
pseudo-inverse (Moore–Penrose inverse) Q+ and, when invertible, its inverse Q−1.

The different minimization problems that we have introduced are all well-posed
because we assume thatC is a positive definite quadratic form over the spaceMsym

of symmetric matrices and that D, G, H are non-negative forms. Specifically, we
assume that there exists 0 < α < β such that, for any M inMsym, any matrix N
and any third-order tensor T ,

α‖M‖2 ≤M : C :M ≤ β‖M‖2, (1.6)

0 ≤ T
... D

... T ≤ β‖T‖2, 0 ≤ T
... G

... T ≤ β‖T‖2 (1.7)
0 ≤ N :H :N ≤ β‖N‖2, N :H+ :N ≤ β‖N‖2. (1.8)

Note that, applying assumption (1.6) to matricesM = (u⊗ ξ + ξ ⊗ u), gives

u · (ξ · C · ξ) · u =
1

4
M : C :M ≥ α

4
‖M‖2 ≥ α

2
‖ξ‖2‖u‖2. (1.9)

Thus, for any ξ 6= 0, the matrix ξ · C · ξ is definite positive.

Note that these assumptions ensure that the equilibrium problem (1.5) is well-
posed. Indeed, any minimizing sequence (un) of [−L,L]3-periodic functions with
zero mean value has bounded energy Em(u) ≤ M and thus is bounded in
H1([−L,L]3,R3). As the energy functional is lower semi-continuous, the sequence
converges, up to a sub-sequence, to a solution of (1.5).

1.3 Spread loads

We consider equilibrium problems in a domainwhose size is large comparedwith the
lengths which are intrinsic to the micromorphic or second-gradient models. We also
consider force fields whose characteristic wave lengths are comparable to the size
of the domain. To make these assumptions precise we introduce a small parameter
η > 0 and we consider the domain Yη := 1

ηY where Y := [−π, π]3. Let f be a Y -
periodic vector-valued function with zero mean value. We assume that the material
is submitted to the Yη-periodic load fη(x) := f(ηx).

We assume that the material is homogeneous : its elastic energy Em is given by
(1.4) where the tensors C,D,G,H are constant. We look for a Yη-periodic solution
(uη, φη) with

∫
Yη
uη dx = 0 of
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(
− div(D

...∇∇uη) +H : (∇uη − φη) + C : e(uη)
)
+ fη = 0,

div(G
...∇φη) +H : (∇uη − φη) = 0.

We will now study the asymptotic behavior of uη when η tends to zero. Indeed,
letting η tend to zero is considering an increasingly spread out load. To that aim we
make the change of variables vη(y) = η2uη(

y
η ), ψη(y) = ηφη(

y
η ). Introducing this

change of variables in the previous system of equations is straightforward. We are
reduced to the search of the Y -periodic solution (vη, ψη) with

∫
Y
vη dx = 0 of the

following system:η
2 div

(
− div(D

...∇∇vη) +H : (∇vη − ψη)) + C : e(vη)
)
+ f = 0,

η2 div(G
...∇ψη) +H : (∇vη − ψη) = 0.

(1.11a)

(1.11b)

1.4 Fourier expansion

Owing to the periodicity framework, it is convenient to rewrite the system using
periodic expansions of vη and ψη . We set

f(x) = <

∑
ξ∈Z3

fξei ξ·x

 and

vη(x) = <

∑
ξ∈Z3

vξηe
i ξ·x

 , ψη(x) = <

∑
ξ∈Z3

(−i)ψξηei ξ·x
 .

From
∫
Y
f(x) dx = 0 we deduce f0 = 0 and, similarly, condition

∫
Y
vη dx = 0

now reads v0η = 0. Using the symmetry properties of C, system (1.11) is equivalent
to the fact that, for any ξ ∈ Z3,

η2(D
... (v

ξ
η ⊗ ξ ⊗ ξ)) · ξ · ξ + (H : (vξη ⊗ ξ − ψξη)) · ξ

+ (C : (vξη ⊗ ξ)) · ξ − fξ = 0,

η2(G
... ψ

ξ
η ⊗ ξ) · ξ −H : (vξη ⊗ ξ − ψξη) = 0.

(1.12a)

(1.12b)

Equation (1.12b) can be written

Jξη : ψ
ξ
η = H : (vξη ⊗ ξ) with Jξη = H + η2 ξ ·G · ξ. (1.13)
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As Jξη ≥ H , the kernels ofH and Jξη satisfyKer(Jξη ) ⊂ Ker(H) and their images
satisfy Im(H) = Ker(H)⊥ ⊂ Ker(Jξη )

⊥ = Im(Jξη ). Introducing the pseudo-
inverse (Jξη )+ of Jξη , the solutions of (1.13) read

ψξη = (Jξη )
+ : (H : (vξη ⊗ ξ)) +∆

where∆ is any element inKer(Jξη ). We haveH :ψξη = H : (Jξη )
+ : (H : (vξη ⊗ ξ)))

and we can eliminate ψξη from Equation (1.12a). We get

Kξ
η · vξη = fξ (1.14)

with

Kξ
η = ξ ·

(
C +H −H : (Jξη )

+ :H
)
· ξ + η2 (ξ ⊗ ξ) :D : (ξ ⊗ ξ). (1.15)

The product Jξη
+
: Jξη is the orthogonal projection onto the image Im(Jξη ). We

have (Jξη )
+ : Jξη : (Jξη )

+ = (Jξη )
+ and the fact that Im(H) ⊂ Im(Jξη ) implies

H : Jξη
+
: Jξη = H . Using these remarks, one can check that H −H : (Jξη )

+ :H is
identical to

H · (Jξη )+ : (Jξη −H) : (Jξη )
+ :H + (Jξη −H) : (Jξη )

+ :H : (Jξη )
+ : (Jξη −H).

Since Jξη −H = η2ξ ·G · ξ is non-negative, we deduce that H −H : (Jξη )
+ :H is

non-negative and that Kξ
η ≥ α‖ξ‖2Id is definite positive. The solution of (1.14) is

thus given by
vξη = (Kξ

η)
−1 · fξ. (1.16)

1.5 Comparison of different models at large scale

Our goal is to compare the solutions of problem (1.11) for different values of the
material parameters C,D,G,H when η is small. In the Fourier setting, this will be
obtained by estimating the tensor (Kξ

η)
−1. To that aim we first focus on the term

H : (Jξη )
+ :H .

Lemma 1. Let P = H+ : H and Q = Id4 − P be the projectors onto the image
and the kernel ofH . For any ξ ∈ R3, let us consider the following generalized Schur
complement:

Gξ// := P : (ξ ·G ·ξ) :P − (P : (ξ ·G ·ξ) :Q) : (Q : (ξ ·G ·ξ) :Q)+ : (Q : (ξ ·G ·ξ) :P ).

We have
H : (Jξη )

+ :H = (H+ + η2H+ :Gξ// :H
+)+.
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Proof. Let M be any matrix in Im(H) and set N := (Jξη )
+ : H :M . We have

H :M = Jξη : N that is H :M = (H + η2ξ · G · ξ) : N . Once projected onto the
image and the kernel of H this equation reads

H :M = (H + η2P : (ξ ·G · ξ)) :N and 0 = η2Q : (ξ ·G · ξ) :N.

Decomposing also N = P :N +Q :N , we get
H :M = (H + η2P : (ξ ·G · ξ) : P ) : (P :N)

+ η2P : (ξ ·G · ξ) :Q : (Q :N),

0 = η2Q : (ξ ·G · ξ) : P : (P :N) + η2Q : (ξ ·G · ξ) :Q : (Q :N).

(1.17a)
(1.17b)

Equation (1.17b) implies

Q :N = −(Q : (ξ ·G · ξ) :Q)+ :Q : (ξ ·G · ξ) : P : (P :N) + E

where E is any element ofKer(Q : (ξ ·G · ξ) :Q). We now remark that

(Q : (ξ ·G · ξ) :Q) : E = 0 =⇒ (P : (ξ ·G · ξ) :Q) : E = 0.

Indeed, for any matrix Z, the affine function of the real λ

Z : P : (ξ ·G : ξ) : P : Z + 2λZ : P : (ξ ·G · ξ) :Q : E

= (P : Z + λQ : E) : (ξ ·G · ξ) : (P : Z + λQ : E)

is non negative and this implies that Z : P : (ξ ·G · ξ) :Q :E = 0 for any matrix Z.
In consequence

P :(ξ ·G·ξ):Q:(Q:N) = −P :(ξ ·G·ξ):Q:(Q:(ξ ·G·ξ):Q)+ :Q:(ξ ·G·ξ):P :(P :N)

and Equation (1.17a) becomes H : M = (H + η2Gξ//) : P : N. Recalling that
P = H+ :H and N = (Jξη )

+ :H :M , we obtain

H :M = (H + η2Gξ//) :H
+ :H : (Jξη )

+ :H :M

and finally

M = H+ :H :M =
(
H+ : (H + η2Gξ//) :H

+
)
:
(
H : (Jξη )

+ :H
)
:M.

As this is true for anyM in the image ofH and thus in the image ofH : (Jξη )
+ :H ,

we get the desired result. ut

Remark 1. The Schur complement corresponds to a minimization problem: for any
matrixM , we have



1 Comparison of the strain-gradient and micromorphic models 11

inf
N∈Ker(H)

{(
(P :M +N)⊗ ξ

)...G...((P :M +N)⊗ ξ
)}

= inf
N∈Ker(H)

{
(P :M +N) : (ξ ·G · ξ) : (P :M +N)

}
= inf
N∈Ker(H)

{
M :

(
P : (ξ ·G · ξ) : P

)
:M + 2N :

(
Q : (ξ ·G · ξ) : P

)
:M

+N :
(
Q : (ξ ·G · ξ) :Q

)
:N
}
.

The infimum is reached when
(
Q : (ξ ·G · ξ) :P

)
:M +

(
Q : (ξ ·G · ξ) :Q

)
:N = 0

that is whenN = −
(
Q : (ξ ·G · ξ) :Q

)+
:
(
Q : (ξ ·G · ξ) :P

)
:M. At this minimum

we have

N :
(
Q : (ξ ·G · ξ) :Q

)
:N = −N :

(
Q : (ξ ·G · ξ) : P

)
:M

=M :
(
P : (ξ ·G · ξ) :Q

)
:
(
Q : (ξ ·G · ξ) :Q

)+
:
(
Q : (ξ ·G · ξ) : P

)
:M

and we finally get

inf
N∈Ker(H)

{(
(P :M +N)⊗ ξ

) ...G... ((P :M +N)⊗ ξ
)}

=M :Gξ// :M.

A straightforward consequence of this minimization formulation is that, for any
matrixM ,

0 ≤M :Gξ// :M ≤ β‖ξ‖
2‖M‖2. (1.18)

Lemma 2. We have the following estimations forKξ
η :

Kξ
η ≥ ξ · C · ξ, (1.19)

Kξ
η ≥ ξ · C · ξ + η2

(
ξ ·Gξ// · ξ + (ξ ⊗ ξ) :D : (ξ ⊗ ξ)

)
− η4ξ · (Gξ// :H

+ :Gξ//) · ξ, (1.20)

Kξ
η ≤ ξ · C · ξ + η2

(
ξ ·Gξ// · ξ + (ξ ⊗ ξ) :D : (ξ ⊗ ξ)

)
. (1.21)

Proof. First estimation will be a consequence of

H : (Jξη )
+ :H ≤ H (1.22)

while the two last ones are respectively equivalent to

H : (Jξη )
+ :H ≤ H − η2Gξ// + η4Gξ// :H

+ :Gξ//, (1.23)

H : (Jξη )
+ :H ≥ H − η2Gξ//. (1.24)

As all these quadratic forms vanish outside of Im(H), it is enough to check the
inequalities on this space.As, on this space, (H :(Jξη )

+:H)+ = H++η2H+:Gξ//:H
+

is invertible, we can multiply previous inequalities by this tensor on the left and on
the right. In order to shorten notation, let us temporarily introduce the non-negative
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tensor Xξ = H+ :Gξ// :H
+. We are reduced to proving

H++ η2Xξ ≤ (H++ η2Xξ) :H : (H++ η2Xξ),

H++ η2Xξ ≤ (H++ η2Xξ) : (H − η2Gξ// + η4Gξ// :H
+ :Gξ//) : (H

++ η2Xξ),

H++ η2Xξ ≥ (H++ η2Xξ) : (H − η2Gξ//) : (H
++ η2Xξ).

This is obvious when developing the right-hand side of these three inequalities as
they become respectively

0 ≤ Xξ + η2Xξ :H :Xξ,

0 ≤ Xξ :H :Xξ :H :Xξ + η2Xξ :H :Xξ :H :Xξ :H :Xξ,

0 ≥ −Xξ :H :Xξ − η2Xξ :H :Xξ :H :Xξ.

ut

Remark 2. From estimation (1.19), we deduce

‖fξ‖ = ‖Kξ
η · vξη‖ ≥ α‖ξ‖2‖vξη‖. (1.25)

We recover the fact that, when f belongs toL2
loc, the equilibrium solution vη belongs

to H2
loc :∫

Ω

‖∇∇vη‖2 dx = π
∑
ξ∈Z2

‖vξη ⊗ ξ ⊗ ξ‖2 ≤ π
∑
ξ∈Z2

‖vξη‖2‖ξ‖4

≤ πα−2
∑
ξ∈Z2

‖fξ‖2 = α−2
∫
Ω

‖f‖2 dx.

Theorem 1. When η goes to zero, all solutions vη converge to the solution v0 of the
classical elasticity problem. More precisely, for any ξ ∈ Z2, we have the following
estimation

‖vξ0 − vξη‖ ≤ 2η2
β

α2
‖fξ‖

which directly implies ‖vη − v0‖L2 ≤ 2η2 β
α2 ‖f‖L2 .

Proof. When η = 0 (which is equivalent to assuming thatD = G = 0 andH = 0),
we have Kξ

0 = ξ · C · ξ and equation (1.14) reduces to (ξ · C · ξ) · vξ0 = fξ. From
Kξ
η · vξη = fξ = (ξ · C · ξ) · vξ0, we deduce

Kξ
η · (v

ξ
0 − vξη) = (Kξ

η − ξ · C · ξ) · v
ξ
0.

Using Lemma 2, we get

α‖ξ‖2‖vξ0 − vξη‖ ≤ η2‖(ξ ·G
ξ
// · ξ + (ξ ⊗ ξ) :D : (ξ ⊗ ξ)) · vξ0‖.
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Definition ofGξ// clearly shows thatG
ξ
// ≤ P : (ξ ·G · ξ) :P and thus that ‖(ξ ·Gξ// ·

ξ) · vξ0‖ ≤ β‖ξ‖4‖vξ0‖. As we have the same estimation for the term ‖(ξ ⊗ ξ) :D :

(ξ ⊗ ξ)) · vξ0‖, we get

‖vξ0 − vξη‖ ≤ 2η2
β

α
‖ξ‖2‖vξ0‖ ≤ 2η2

β

α2
‖fξ‖.

Therefore
‖vη − v0‖2L2 = π

∑
ξ∈Z2

‖vξ0 − vξη‖2 ≤ 4η4
β2

α4
‖f‖2L2 .

ut

Previous theorem states that, in any case, the minimizer of a strain-gradient or
a generalized continuum energy behaves, at the main order with respect to the
characteristic length of the applied force, like a classical elastic model. Clearly
different models sharing the same elasticity tensor C cannot be differentiated at this
order.

Let us now compare more precisely the solutions vη and ṽη of (1.11) associated
respectively the sets of material tensors (C,D,H,G) and (C,D+L, 0, 0). In Fourier
setting, these equations readKξ

η · vξη = fξ and K̃ξ
η · ṽξη = fξ with

Kξ
η = ξ ·

(
C +H − (H+ + η2H+ :Gξ// :H

+)+
)
· ξ + η2 (ξ ⊗ ξ) :D : (ξ ⊗ ξ),

K̃ξ
η = ξ · C · ξ + η2(ξ ⊗ ξ) : (D + L) : (ξ ⊗ ξ).

We have
K̃ξ
η · (vξη − ṽξη) = (K̃ξ

η −Kξ
η) · vξη. (1.26)

From Lemma 2 we deduce{
K̃ξ
η −Kξ

η ≥ η2ξ · (ξ · L · ξ −G
ξ
//) · ξ),

K̃ξ
η −Kξ

η ≤ η2ξ · (ξ · L · ξ −G
ξ
//) · ξ) + η4ξ · (Gξ// :H

+ :Gξ//) · ξ.
(1.27)

In order to proceed further, we need an important assumption over the tensorGξ//
defined in Lemma 1 in terms of G, P and Q, that is in terms of H and G.

Assumption 1 The tensors H and G are such that there exists a six-order tensor
G// satisfying, for any vector ξ ∈ Z3,

ξ ·Gξ// · ξ = (ξ ⊗ ξ) :G// : (ξ ⊗ ξ). (1.28)

We still call β a constant which, in addition to (1.6)-(1.7) satisfies, for any third-order
tensor T ,

T
... G//

... T ≤ β‖T‖2.
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In many cases Assumption 1 is obtained as the consequence of stronger assump-
tions. Let us denote P :G :Q the sixth order tensor defined by (P :G :Q)ijklmn :=∑
p,q,u,v PijpqGpqkuvnQuvlm. The tensor P :G : P is defined in a similar way.

Assumption 2 P :G :Q = 0.

Indeed, in that case, Assumption 1 is satisfied with G// = P :G : P .
Assumption 3 H is non degenerate.

Indeed, in that last case, P = Id4 and Q = 0, Assumption 2 is obviously satisfied
and we have G// = G.

Theorem 2. Assume that f is smooth and that G andH satisfy Assumption 1. Then
the solution vη of (1.11) associated with the set of material tensors (C,D,H,G)
shares the same asymptotic behavior at order η2 as the solution ṽη of (1.11) as-
sociated with the set of material tensors (C,D + G//, 0, 0). More precisely, we
have

‖ṽξη − vξη‖ ≤ η4
β3

α2
‖ξ‖2‖fξ‖

which directly implies ‖vη − ṽη‖L2(Ω) ≤ η4 β
3

α2 ‖f‖H2(Ω).
Reciprocally if, for any smooth force field f , vη shares the same asymptotic

behavior at order η2 as the solution ṽη of (1.11) associated with the set of material
tensors (C,D + L, 0, 0), then Assumption 1 is satisfied with G// = L.

Proof. Indeed, replacing L by G// and ξ ·Gξ// · ξ by ξ · (ξ ·G// · ξ) · ξ in (1.27), we
get

0 ≤ K̃ξ
η −Kξ

η ≤ η4ξ · (G
ξ
// :H

+ :Gξ//) · ξ.

From (1.26) we get the estimation

α‖ξ‖2‖ṽξη − vξη‖ ≤ η4‖(ξ · (G
ξ
// :H

+ :Gξ//) · ξ) · v
ξ
η.‖.

Using (1.25) (1.18), we obtain the desired result

‖ṽξη − vξη‖ ≤ η4
β3

α2
‖ξ‖2‖fξ‖.

To prove the converse, let us assume that, for any smooth force field f ,

1

η2
‖vη − ṽη‖L2(Ω) → 0.

Dividing equation (1.26) by η2, using (1.27) and passing to the limit η → 0, we get

0 = (ξ · (ξ · L : ξ −Gξ//) · ξ) · v
ξ
0.

Let w be a C∞ Y -periodic function satisfying w0 = 0 and, for any ξ 6= 0, wξ 6= 0.
Let k ∈ {1, 2, 3}. Consider the load f := −div(C : e(wek)). Clearly, the solution
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v0 of the classical elasticity problem when this load is applied coincides with wek.
For this load, previous equality reads

wξ
(
(ξ ⊗ ξ) : L : (ξ ⊗ ξ)− ξ ·Gξ// · ξ

)
· ek = 0.

As, for ξ 6= 0, wξ 6= 0, we have
(
(ξ ⊗ ξ) : L : (ξ ⊗ ξ)− ξ ·Gξ// · ξ

)
· ek = 0 which

remains true for ξ = 0. This being true for any k ∈ {1, 2, 3}, we get for any ξ ∈ Z3,

(ξ ⊗ ξ) : L : (ξ ⊗ ξ)− ξ ·Gξ// · ξ = 0. (1.29)

ut

1.6 Examples

We study in this section different energies which enter the general model introduced
in (1.4): they correspond to the choiceD = 0 and to different choices of the tensors
H andG. Let us first provide examples for which Theorem 2 applies and thus which
can be approximated, up to order η4 by a strain-gradient model.

i) Micromorphic models of the type

E(u) := inf
φ

∫
Ω

(1
2
∇φ

... G
...∇φ+

1

2
‖∇u− φ‖2 + 1

2
e(u) : C : e(u)

)
dx

correspond to the choice H = Id4. They satisfy Assumption 3 and thus can be
approximated, up to order η4 by strain-gradient models with energy

E(u) := inf
φ

∫
Ω

(1
2
∇∇u

... G
...∇∇u+

1

2
e(u) : C : e(u)

)
dx.

ii) Cosserat models of the type

E(u) := inf
w

∫
Ω

(1
2
∇w :M :∇w +

1

2
‖∇ × u− w‖2 + 1

2
e(u) : C : e(u)

)
dx

correspond to the choiceHijkl =
∑
p εijpεklp andGijklmn =

∑
p,q εijpMpkqnεlmq

where εijm stands for the usual Levi-Civita symbol. The expression in terms of
w instead of φ is simply obtained by substituting wi = εikjφjk in the original
expression. We have P = 1

2H , G : P = G and thus G : Q = 0. Assumption 2 is
satisfied : Cosserat models can be approximated, up to order η4 by strain-gradient
models (actually couple-stress models) with energy

E(u) := inf
w

∫
Ω

(1
2
∇(∇× u) :M :∇(∇× u) + 1

2
e(u) : C : e(u)

)
dx.
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iii) Consider now the following energy:∫
Ω

(
1

2

((
∂φ11
∂x2

+
∂φ22
∂x2

)2

+

(
∂φ22
∂x2

)2
)

+
1

2

(
∂u1
∂x1
− φ11

)2

+
1

2
e(u) : C : e(u)

)
dx.

This energy corresponds to the choice{
D = 0, H = (e1 ⊗ e1)⊗2,
G = (e2 ⊗ e2 ⊗ e2)⊗2 + (e1 ⊗ e1 ⊗ e2 + e2 ⊗ e2 ⊗ e2)⊗2.

(1.30a)
(1.30b)

Neither assumption 3 nor Assumption 2 are satisfied. Computation of Gξ// needs
some work. We check successively that P = H+ = H and

ξ ·G · ξ = ξ22

(
(e2 ⊗ e2)⊗2 + (e1 ⊗ e1 + e2 ⊗ e2)⊗2

)
,

P : (ξ ·G · ξ) : P = ξ22 (e
1 ⊗ e1)⊗2,

Q : (ξ ·G · ξ) : P = ξ22 e
2 ⊗ e2 ⊗ e1 ⊗ e1,

P : (ξ ·G · ξ) :Q = ξ22 e
1 ⊗ e1 ⊗ e2 ⊗ e2,

Q : (ξ ·G · ξ) :Q = 2ξ22 (e
2 ⊗ e2)⊗2,

(Q : (ξ ·G · ξ) :Q)+ = (2ξ22)
−1 (e2 ⊗ e2)⊗2.

We finally obtain

Gξ// =
ξ22
2

(e1 ⊗ e1)⊗2 = ξ ·
(1
2
(e1 ⊗ e1 ⊗ e2)⊗2

)
· ξ.

Note that this computation is valid only when ξ2 6= 0 but one can easily check that
the result remains true when ξ2 = 0. This micromorphic model satisfies Assumption
1 with G// = 1

2 (e
1 ⊗ e1 ⊗ e2)⊗2 and Theorem 2 again applies. The model can be

approximated, up to order η4 by the strain-gradient model with energy∫
Ω

(
1

4

(
∂2u1
∂x1∂x2

)2

+
1

2
e(u) : C : e(u)

)
dx.

iv) Let us now show that there exist energies for which the conclusion of Theorem
2 does not apply. We modify a little bit the previous example by considering the
following energy:
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inf
φ

∫
Ω

(
1

2

((
∂φ11
∂x2

+
∂φ22
∂x1

)2

+

(
∂φ22
∂x2

)2
)

+
1

2

(
∂u1
∂x1
− φ11

)2

+
1

2
e(u) : C : e(u)

)
dx,

which corresponds to the choice{
D = 0, H = (e1 ⊗ e1)⊗2,
G = (e2 ⊗ e2 ⊗ e2)⊗2 + (e1 ⊗ e1 ⊗ e2 + e2 ⊗ e2 ⊗ e1)⊗2.

(1.31a)
(1.31b)

Again we have P = H+ = H . Computation of Gξ// is straightforward: for any
ξ 6= 0, we have

ξ ·G · ξ = ξ22 (e
2 ⊗ e2)⊗2 + (ξ2 e

1 ⊗ e1 + ξ1 e
2 ⊗ e2)⊗2,

P : (ξ ·G · ξ) : P = ξ22 (e
1 ⊗ e1)⊗2,

Q : (ξ ·G · ξ) : P = ξ1 ξ2 e
2 ⊗ e2 ⊗ e1 ⊗ e1,

P : (ξ ·G · ξ) :Q = ξ1 ξ2 e
1 ⊗ e1 ⊗ e2 ⊗ e2,

Q : (ξ ·G · ξ) :Q = (ξ21 + ξ22) (e
2 ⊗ e2)⊗2,

(Q : (ξ ·G · ξ) :Q)+ = (ξ21 + ξ22)
−1 (e2 ⊗ e2)⊗2.

(P : (ξ ·G · ξ) :Q) : (Q : (ξ ·G · ξ) :Q)+ : (Q : (ξ ·G · ξ) : P )

=
ξ21 ξ

2
2

ξ21 + ξ22
(e1 ⊗ e1)⊗2

and finally

Gξ// =
ξ42

ξ21 + ξ22
(e1 ⊗ e1)⊗2 and ξ ·Gξ// · ξ =

ξ42ξ
2
1

ξ21 + ξ22
e1 ⊗ e1.

Assume, by contradiction that Assumption 1 is satisfied: for any ξ 6= 0 in Z3 we
would have

ξ · (ξ ·G// · ξ) · ξ −
ξ42ξ

2
1

ξ21 + ξ22
e1 ⊗ e1 = 0.

that is, for any ξ in Z3,

(ξ21 + ξ22) ξ · (ξ ·G// · ξ) · ξ − ξ42ξ21 e1 ⊗ e1 = 0.

This polynomial identity extends to wholeC3. We get a contradiction by considering
for instance ξ = (1, i, 0). By converse statement of Theorem 2 we know that there
is no strain-gradient model which can approximate the considered model more
accurately than what is done at order η2 by the standard model
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Ω

1

2
e(u) : C : e(u) dx.

1.7 Conclusion

Our study has practical implications. Assume that you are analyzing the results of
an experimental campaign, that is the equilibrium displacement fields of samples
submitted to different force fields. Assume moreover that you have noticed scale
effects and thus that you are suspecting your material to behave either like a strain-
gradient one or a micromorphic one. Our study shows that it is rather difficult to
differentiate these two possibilities. Indeed, in general, the characteristic wavelengths
of the applied force fields are much larger than the intrinsic lengths of the suspected
models. Let η << 1 be their ratio. Then both strain-gradient and micromorphic
models provide a correction to the Cauchy model of order η2 but, for well tuned
material parameters, the difference between the two corrections is extremely small: of
order η4. In other words, in order to decide whether your material is better described
by a micromorphic model or by a strain-gradient one, you must be extremely precise
or use force fields which vary extremely rapidly in space.

Our study gives also a new insight on recent results about periodic homoge-
nization of elastic materials : results of Smyshlyaev and Cherednichenko (2000);
Allaire et al (2016) state that the first correction which must be applied to the
classical homogenized strain model is always obtained by adding in the energy
a small strain-gradient term. On the other hand, results from Abdoul-Anziz and
Seppecher (2018a,b); Jakabčin and Seppecher (2020) provide micromorphic effec-
tive behaviors. These seemingly contradictory results may become coherent when
spread enough forces are considered.

We must emphasize that our results apply only for micromorphic models which
satisfy assumption 1. The question of the status of models which do not satisfy
this assumption remains open: previous conclusion does not apply. We suspect that
such models cannot be obtained through periodic homogenization. We recall that
the example that we provide in Section 1.6 corresponds to a quadratic, objective
and lower-semi-continuous functional and thus, as proved in Camar-Eddine and
Seppecher (2003), that it can be obtained as the limit of heterogeneous classical
elastic continua. However the results of Camar-Eddine and Seppecher (2003) are
obtained using non-periodic heterogeneities. This leads to a new general question :
what is the subclass of all functionals which can be obtained as the limit of period-
ically heterogeneous classical elastic continua ? And, in particular, is it equivalent,
for a functional Em defined by (1.4), to belong to this class and to satisfy Assumption
1?
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